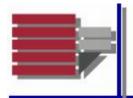


#### PRO-VE'10


11th IFIP Working Conference on VIRTUAL ENTERPRISES

Saint-Etienne. France. 11-13 October 2010



# Eigenvector centrality based on shared research topics in a scientific community

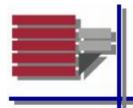
Antonio P. Volpentesta, Alberto M. Felicetti



# **About us**

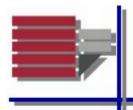


Prof. ANTONIO VOLPENTESTA volpentesta@deis.unical.it



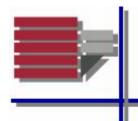

Dr. ALBERTO FELICETTI afelicetti@deis.unical.it




GIUDALab:
a lab of economics and management engineering
at University of CALABRIA








- Introduction and Theoretical Background
- Eigenvector centrality for weighted multi-hypergraphs
- The weighted multi-hypergraph model
- A model instantiation for the Pro-VE community
- Conclusions and future works





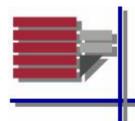
- Introduction and Theoretical Background
- Eigenvector centrality for weighted multi-hypergraphs
- The weighted multi-hypergraph model
- A model instantiation for the Pro-VE community
- Conclusions and future works



### Introduction



#### Scientific Community (SC):


Networks of scientists, researchers and professionals who aim to produce, in a collaborative way, new knowledge within a specific domain or issue-area.

Key Factor for Scientific Knowledge development



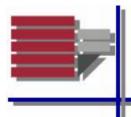
#### **ISSUE:**

Scholars are often not aware of other researchers who are working on similar projects and have same interests



# Introduction




- Identify researchers who work on the same research topic.
- Highlight the "importance" of the different research topics (RTs) within a scientific community (SC).

### What does it mean "importance"?

Relevance of a RT in a SC.

#### How do we can quantify "importance"?

By analyzing Centrality in a collaboration network of scientists.

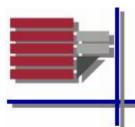


# What is centrality?



Network centrality: importance of a position within a network.

Idea of centrality comes from social networks literature.


#### Multiple meanings of centrality:

**Degree centrality**. Number of links incident upon a node.

Closeness centrality. Nodes are more central if they can reach other nodes 'easily.'

**Betweeness centrality**. Based on shortest paths in a network.

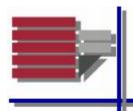
Eigenvector centrality. Important nodes have important "friends"



### Introduction

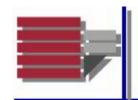


#### Previous studies:


Based primarly on graph structures.

Few attempts in utilizing hypergraph in social network modeling.

#### What we propose:

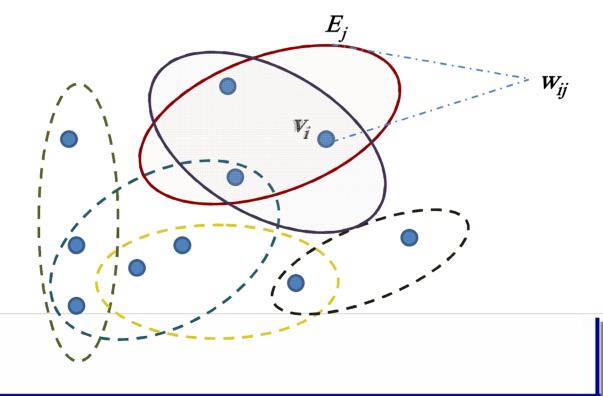

Model based on weighted multi-hypergraph to represent relationship between researchers and research interests.

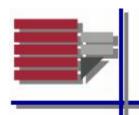
Measure of the importance in a such network, by extending eigenvector centrality notion to a weighted multi-hypergraph.





- Introduction and Theoretical Background
- Eigenvector centrality for weighted multi-hypergraphs
- The weighted multi-hypergraph model
- A model instantiation for the Pro-VE community
- Conclusions and future works




$$\mathfrak{K}(\mathfrak{V}, \mathcal{E})$$

={ $v_1, ..., v_m$ } is a set of vertices.

 $\mathcal{E}=\{E_1,\ldots,E_n\}$  is a multi-set of nonempty subsets of , called hy redges.





# Eigenvector centrality for weighted multi-hypergraphs



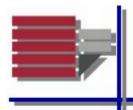
#### Mutually reinforcing relationship assumption:

An important hyperedge is a hyperedge whose elements are important vertices; An important vertex is a vertex that belongs to many important hyperedges.

#### Numerically:

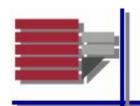
 $\mathbf{x_i} \rightarrow$  'importance' of vertex  $V_i$ 

$$x_i = c_1 \sum_{i=1}^n w_{ij} y_j$$
, for  $i = 1, ..., m$ .


 $y_j \rightarrow$  'importance' of hyperedge  $E_j$ 

$$y_j = c_2 \sum_{i=1}^m w_{ij} x_i$$
, for  $j = 1, ..., n$ .

In matrix notation with  $x = (x_1, x_2, ..., x_m)$  and  $y = (y_1, y_2, ..., y_n)$  this yields:


$$WW^{t}x = \lambda x$$
,  $W^{t}Wy = \lambda y$ , where  $\lambda = c_{1}c_{2}$ .

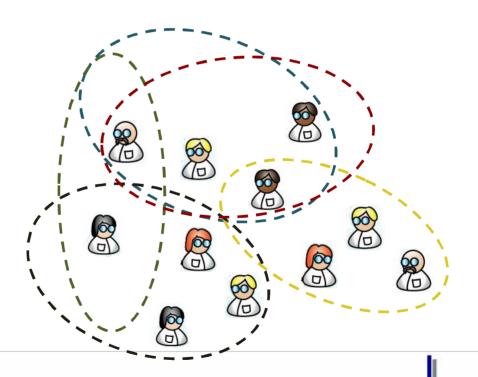
A solution is given by setting  $\lambda = \lambda^*$ , the dominant W<sup>t</sup>W's eigenvalue

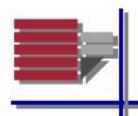




- Introduction and Theoretical Background
- Eigenvector centrality for weighted multi-hypergraphs
- The weighted multi-hypergraph model
- A model instantiation for the Pro-VE community
- Conclusions and future works







- $T = \{t_1, ..., t_m\}$  an ordered set of research interests (research topics);
- $R = \{r_1, ..., r_n\}$  an ordered set of researchers (authors), members of a SC;

Multi-hypergraph  $\mathcal{H}$   $(\mathcal{R}, \mathcal{E})$ 

• 
$$\Re = \mathbf{R} = \{r_1, \dots, r_n\};$$

• 
$$\mathcal{E} = \{E_1, \dots, E_n\}$$
, with  $E_j = E(t_j)$ 

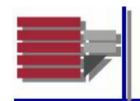




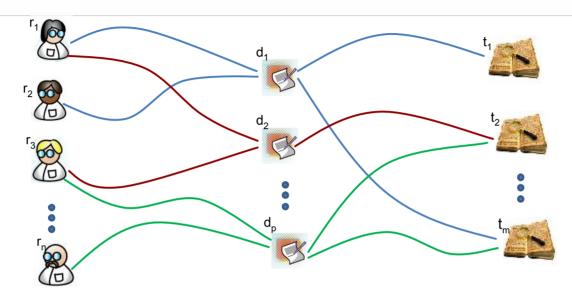


How to identify the research topics?

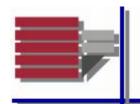
How to relate researcher to research topics?


•D =  $\{d_1, ..., d_p\}$  an ordered set of documents (scientific papers);




#### **Assumptions:**

Research interests of any researcher  $r_i$  are manifested on documents whose  $r_i$  is an author;


The relationship between researchers and interest groups may be derived through a semantic analysis of the documents' content.

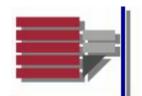






- $A \in \mathbb{R}^{n \times p}$  a binary matrix that represents the relationships between authors and documents produced by them.
- $B \in \mathbb{R}^{p \times m}$  a nonnegative matrix that gives a measure of how much documents are devoted to research topics.
- $C = (c_1, c_2, c_p)$  a positive vector, where the generic entry  $c_k$  represents a measure of the popularity of  $d_k$  in the scientific community.

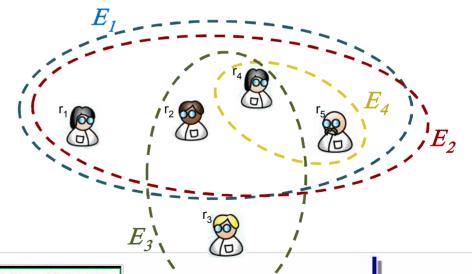





#### **Assumptions:**

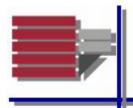
- The content of a document is due in equal measure to all its authors:  $a_{ik}/h_k$   $(h_k$ , # of authors of  $d_k$ ) measures the document portion that is attributed to  $r_i$
- The number  $b_{kj} \cdot c_k$  measures the contribution given by the research topic  $t_j$  to the popularity of the document  $d_k$ .
- The number  $(a_{ik}/h_k)\cdot (b_{kj}\cdot c_k)$  measures the contribution given by the portion of  $d_k$ , dealing with  $t_j$  and attributed to  $r_j$  to the popularity of  $d_k$ .

According to these assumptions and settings, we propose to estimate the weight associated to the couple  $(r_i, t_j)$ , as follows:


$$w_{ij} = \sum_{k=1}^p (a_{ik} \, / h_k) \cdot (b_{kj} \cdot c_k)$$
 A.P. Volpentesta and A.M. Felicetti

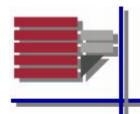





$$D = \{ d_1, d_2, d_3 \}; \quad T = \{ t_1, t_2, t_3, t_4 \}; \quad R = \{ r_1, r_2, r_3, r_4, r_5 \}; \quad C = (1, 2, 3);$$

$$h_k = \frac{1}{\sum_i a_{ik}}$$
 k=1,2,3,  
i.e.  $(h_1, h_2, h_3) = (2, 3, 2)$ ;




Results:

x =(0,0656; 0,1966; 0,1309; 0,3689; 0,2379) y =(0,2165; 0,1729; 0,3082; 0,3024)



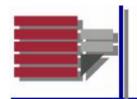


- Introduction and Theoretical Background
- Eigenvector centrality for weighted multi-hypergraphs
- The weighted multi-hypergraph model
- A model instantiation for the Pro-VE community
- Conclusions and future works



# A model instantiation for the Pro-VE community




- D: all selected papers that were published in the books of the last five Pro-Ve conferences (2005-2009);
- R: researchers who appeared as an author of at least one scientific article published in such books
- A represents relation between authorship and Pro-Ve papers.

#### What is a Research Topic (RT) in the Pro-Ve community?

We have modeled a research topic in the triple (OF, DA, ES), where:

- OF is the set of Collaborative Network (CN) Organizational Forms.
- DA is the set of Dimensional Aspects (Derived from ARCON Model) of a CN.
- ES is the set of the economic sectors, each one encompassing real business environments, where CN principles are instantiated and implemented.

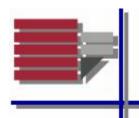
In other words, a RT is characterized by a dimensional aspect of a CN organizational form and possibly a case study or an application in primary industry, manufacturing, industrial services or intellectual services



# A Research Topic in the Pro-VE community



**Dimensional Aspects** 


| 2                      | iai Aspects                          |
|------------------------|--------------------------------------|
|                        | Actors / relationships               |
| Structural dimension   | Roles                                |
| Componential dimension | Hardware / software resources        |
|                        | Human resources                      |
|                        | Information / knowledge resources    |
|                        | Ontology resources                   |
| Functional dimension   | Processes                            |
|                        | Auxiliary processes                  |
|                        | Methodologies                        |
| Behavioral dimension   | Prescriptive behavior                |
|                        | Obligatory behavior                  |
|                        | Constraints and conditions           |
|                        | Contracts and cooperation agreements |
| Meta dimension         |                                      |
| External view          |                                      |

**CN Organisational Forms** 

| CN | Continuous production<br>driven Network         | Supply chain  Virtual Government                                                                      |
|----|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|    | Market Opportunity<br>driven Network            | Virtual Enterprise Virtual Organization Extended Enterprise Virtual Team                              |
|    | Human breeding<br>environments<br>(Communities) | Virtual Team User's Community Community of Practices                                                  |
|    | Organizational breeding environments            | Industry Cluster Industrial District Business Ecosystem Collaborative Virtual Lab Disaster rescue Net |

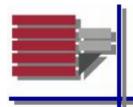
#### **Economic Sector**

| Primary Economic Sector    | (i.e.): Agriculture, Fishing, Forestry, etc                                          |  |
|----------------------------|--------------------------------------------------------------------------------------|--|
| Secondary Economic Sector  | (i.e.): Automotive, Construction, Electronics, Mechanical, Textile, etc              |  |
| Tertiary Economic Sector   | (i.e.): Industrial Services, Commerce, Transportation, Hospitality, Maintenance, etc |  |
| Quaternary Economic Sector | (i.e.): Banking, Consulting, Education, Government Services, Healthcare, etc         |  |
| No real world application  |                                                                                      |  |



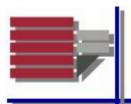
# A model instantiation for the Pro-VE community




Matrix B:

Obtained through a collaborative process of semantic analysis of Pro-VE papers;

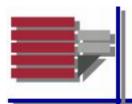
 Process → Associate one or more instantiations of (OF, DA, ES) to any Pro-VE paper.


#### Assumptions

- Equi-distribution of the content of a paper among its research topics.
  - Any entry  $c_k$  is intantiated at  $x_k+1$  ( $x_k$ : number of documents in D that cite  $d_k$ )



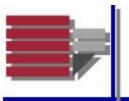



- Introduction and Theoretical Background
- Eigenvector centrality for weighted multi-hypergraphs
- The weighted multi-hypergraph model
- A model instantiation for the Pro-VE community
- Conclusions and future works



#### Conclusions




- We have proposed a model based on a weighted multi-hypergraph to represent relationships between researchers and research interests, grouping researchers with common interests.
- In order to measure the importance of researchers and research topics in a scientific community, we have extended the eigenvector centrality notion to this general logical structure and we present an algorithmic approach.
- We have described a first application of the model to the Pro-VE Community.



### Further developments



- Complete the implementation phase (we are collecting and validating data derived from a semantic analysis of Pro-Ve papers).
- Provide measurements and statistical analysis of the centrality of researcher and research topics within the Pro-Ve community.
- Extend this studies in order to map competences in a SC.
- Provide a competence map of the Pro-VE community.





### Thanks for your attention

alberto.felicetti@deis.unical.it