

Agenda

- Introduction
- Privacy and Security Concerns
- Collaborative System Architecture
- Proposed Solution
- Formal Validation of the Proposed Security Protocol
- Architecture Deployment in a Real Environment
- Conclusions

Introduction

- Architecture of the considered target scenarios:
 - Distributed applications consisting of different devices and software modules that interact with each other.
 - Ubiquitous access to the system:
 - Use of PDAs, laptops, etc.
 - Heterogeneous application or information servers:
 - Sensors and other low capacity devices used to collect data and realtime information.
- Main characteristics: invisibility and pervasiveness
 - Huge potential value.
 - Key challenges: PRIVACY!

Privacy and Security Concerns (I)

Privacy: "...the claim of individuals, groups or institutions to determine for themselves when, how, and to what extent information about them is communicated to others..." [Westin]

- The considered collaborative environments present important challenges to protect end-users' privacy:
 - Unprecedented data collection coverage.
 - Invisibility of the collection process.
 - Amount of data collected.
 - Envisioned system connectivity.

Privacy and Security Concerns (II)

- Main objective of our work:
 - Develop an infrastructure that allows the construction of privacy-aware collaborative applications integrating low capacity devices.
- Privacy vs Security:
 - Privacy: implies the possession of some kind of information and the subsequent terms and conditions by which it may be used, retained and disclosed to others.
 - Security: describes the capacity of a technical system to protect and maintain the privacy of the information within that system.

Privacy and Security Concerns (III)

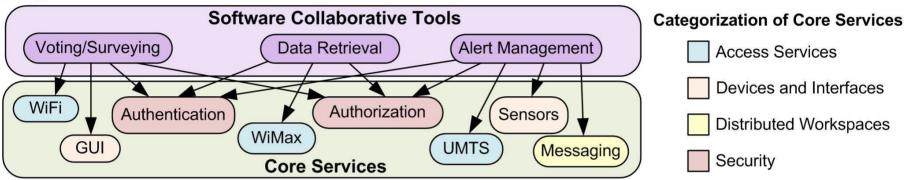
Privacy-aware architecture

Implementation of security mechanisms

Cryptography

Authentication
Authorization
Integrity
confidentiality

Highly resource consuming algorithms vs
Severely limited devices

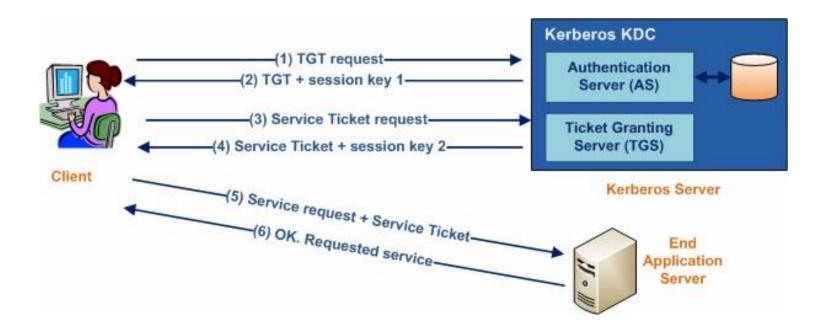

Traditional security mechanisms and asymmetric cryptography not applicable

Collaborative System Architecture

- Core Services:
 - Reusable software modules implementing basic or core functionalities.
- Software Collaborative Tools:
 - Offer aggregated functionalities by exploiting one or more core services.
- Necessity of centralized management of identity and access rights related information:
 - Neutrality and independence of core services.
 - Different trust relationships in different collaborative applications.

PROPOSED SOLUTION

- Security protocol that deals with the two major constraints of the considered environments:
 - Resource limited devices
 - Minimize communication and computation overhead.
 - Dynamic creation of collaborative applications:
 - Centralized authentication and authorization processes.
- Kerberos-based approach:
 - Extension of the protocol with authorization functionalities.
 - Avoid the need for synchronized clocks.



PROPOSED SOLUTION: Why a Kerberos-Based Approach?

• Kerberos: time-tested, widely-deployed system for authentication and establishment of secure channels.

PROPOSED SOLUTION: Why a Kerberos-Based Approach?

BENEFITS

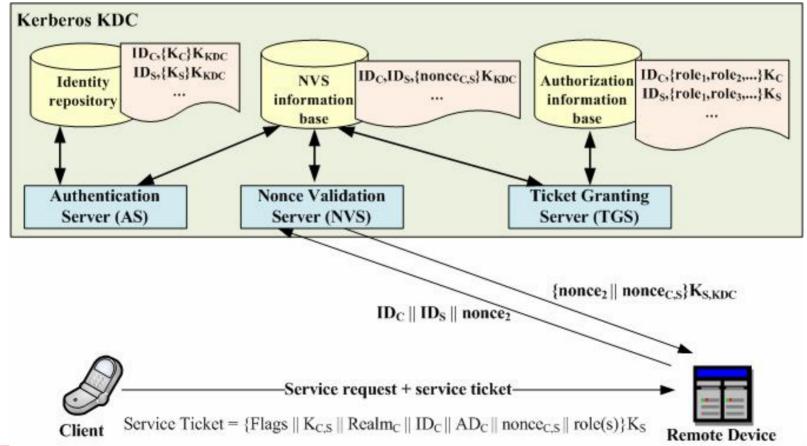
- Prevents the transmission of passwords over the network
- Provides SSO functionalities
- Makes use of a centralized user account administration

CONSTRAINTS

- Need for synchronized clocks
- Lack of authorization functionalities: end application servers must store and manage authorization information and implement access control mechanisms

PROPOSED SOLUTION: Related Work

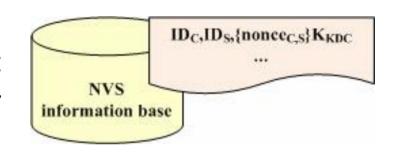
- Adding authorization support to Kerberos is not a new idea, other protocols have been proposed:
 - SESAME.
 - IDfusion.
 - Proxy-based authorization and accounting.
 - Microsoft's implementation of Kerberos protocol.
- Drawbacks:
 - Use of public key technology.
 - No centralized management of users' privileges.



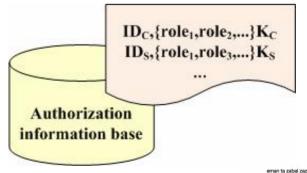
PROPOSED SOLUTION: The Time Synchronization Problem

- Kerberos makes use of timestamps:
 - Need for synchronized clocks.
 - Statelessness.
- nonce-based implementation of Kerberos:
 - Stateful, but state information is only maintained in the KDC.
 - Nonce values included in the *authtime* field of Kerberos tickets and protocol messages.
- New Service: NVS (Nonce Validation Service)
 - Located in the Kerberos KDC, along with the AS and the TGS.

PROPOSED SOLUTION: The Authorization Issue



PROPOSED SOLUTION: Additional Information Stores

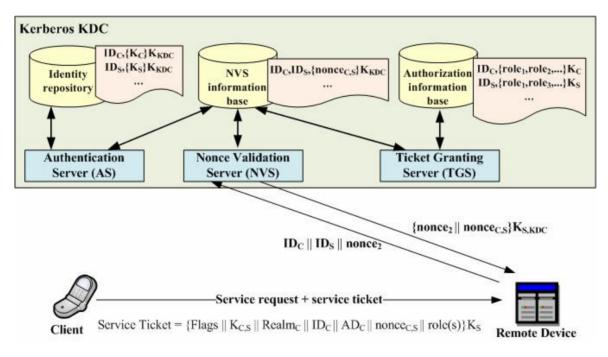

NVS information base

Information base in which each entry corresponds to a client and service principal and their associated nonce value.

Authorization solution based on RBAC

Entries associating client and service identities with their corresponding roles.

PROPOSED SOLUTION: The Authorization Issue


- The authorization decision is performed by the KDC whenever a client principal requests a Service Ticket.
 - Issues a query to its local authorization information base.
- Only authorized clients are provided with the requested Service Tickets.
 - The authorization payload field contains the identifier of the role undertaken by the client principal.

PROPOSED SOLUTION: The Service Access Phase

- Validation of Service Tickets:
 - Successful decryption with the service principal's secret key.
 - Nonce validation against the Kerberos KDC.
 - Verification of the existence of a role identifier in the authorization field.

Formal Validation of the Proposed Security Protocol (I)

- AVISPA: Automated Validation of Internet Security Protocols and Applications:
 - Based on HLPSL (High Level Protocol Specification Language).
 - Four different back-ends.
 - Dolev-Yao intruder model.
- Security goals:
 - The security analysis is performed against this goals and the results indicate if the protocol meets them or not.
 - Templates for authentication and secrecy.

Formal Validation of the Proposed Security Protocol (II)

- Security goals defined for our protocol:
 - Authentication.
 - Access Control.
 - Data confidentiality and data integrity.
- Key parameter: initial knowledge of the intruder
 - Different scenarios:
 - Single session and the intruder playing the role of each legitimate agent.
 - Two parallel sessions and in one of them, one legitimate agent playing a role for which it is not intended to.
 - AVISPA reports the protocol to be secure in all cases.

Architecture Deployment in a Real Environment (I)

- C@R, "A Collaborative Platform for Working and Living in Rural Areas":
 - Promote collaborative environments in rural areas in order to enable their development and permit their integration in the information society.
 - Development of a novel architecture for the composition of collaborative applications.
 - Integration of the introduced security model.
 - Validation based on Living Lab methodology.

Architecture Deployment in a Real Environment (II)

Cudillero Living Lab:

- Objective: quality hallmark with origin certificates for hake catches.
- Fishermen and fishing boats equipped with different types of sensors (location, temperature, humidity, etc).
- Data access restrictions vary depending on the situation:
 - Everyday work vs emergency.

Conclusions

- Privacy concerns regarding collaborative applications that involve low capacity devices.
- Requirements of a security model tailored to the target environments:
 - Lightweight cryptographic solution.
 - Centralized management of authentication and authorization processes.
- The presented security model:
 - meets above requirements.
 - allows the establishment of trust relationships between the different entities that compose a collaborative application.

THANK YOU FOR YOUR ATTENTION!

