

PROVE'10. 11TH IFIP WORKING CONFERENCE ON VIRTUAL ENTERPRISES

Saint-Etienne, FRANCE, 11-13 October 2010

An approach to select suppliers for sustainable collaborative networks

María José Verdecho, Juan José Alfaro and Raúl Rodríguez

mverdecho@cigip.upv.es

CIGIP

Research Centre on Production Management & Engineering

WWW.CIGIP.ORG

Universidad Politécnica de Valencia Camino de Vera s/n, Edificio 7D (Organización de Empresas) 46022 Valencia - España

Alcoy

Esc. Politécnica Superior de Alcoy Universidad Politécnica de Valencia Plaza Ferrándiz Carbonell nº2; Editicio Ferrándiz 03801 Alcoy (Alcante) - España

Tel.:[34] 963 879 680 - Fax:[34] 963 877 689 - e-mail: info@cigip.org

Contents

- Introduction
- Background
- The supplier selection approach
- Case study. Pilot
- Conclusions & research implications

Introduction

- □ Supplier selection crucial process for competitiveness.
- Even more complex if this decision involves different partners that are already collaborating and desire to choose a partner for enhancing the sustainability of their collaborative supply chain/ network.
- □ Studies point out the importance of Performance Measurement (PM) for the whole supply chain. PM framework for managing the collaborative association & focus efforts on their common strategy.
 - Use structured PM framework: overview of performance status.
 - Balanced ScoreCard (BSC): extended for interorganizational contexts
- Pressures for improving the sustainability.
 - Sustainability factors: environmental, social, and economic factors.
- □ How can we evaluate suppliers in these contexts?

Introduction

How can we evaluate suppliers in this context?

Performance of collaborative enterprises

INPUTS

Sustainability factors

Brand image Process performance

Waste disposal

Supplier selection

Environmental practices

OUTPUT

Introduction

With this approach, enterprises can select suppliers aligned to their common strategy and improving the sustainability of the whole enterprise association.

Most Decision Problems are Multi-criteria

- Maximize profits
- Satisfy customer demands
- Maximize employee satisfaction
- Satisfy stakeholders
- Minimize costs of production
- Satisfy government regulations
- Minimize taxes
- ...

- Multi-criteria methods applied for supplier selection:
 - AHP
 - ANP
 - DEA
 - VPA
 - MAUT
 - SMART
 - Goal Programming
 - TOPSIS
 - ELECTRE
 - PROMETHEE
 - **-** ...

Selecting one method depends on characteristics:

- Decision maker (individual or group),
- Nature of the alternatives (discrete or continuous),
- Type of criteria (quantitative, qualitative or mixed),
- Data aggregation,
- Relationships among criteria (independence or interdependence),
- etc.

□ Multi-criteria methods:

- AHP
- DEA
- VPA
- MAUT
- SMART
- Goal Programming
- TOPSIS
- ELECTRE
- PROMETHEE
- ...

ANALYTIC NETWORK PROCESS (ANP)

- Group Decision
- Quantitative and Qualitative criteria
- Interrelationships

- □ The ANP has been previously used for supplier selection under a wide variety of applications within interorganizational contexts. Some of them...
 - Select suppliers depending on different levels of cooperation
 - Select members for an agile virtual enterprise
 - Select suppliers within specific industries such as pharmaceutical industry
 - ...
- □ Few ANP models consider sustainability factors
- Research gap: integrate both sustainability factors and overall interorganizational performance to select suppliers
- Both inputs are *interrelated*.

Phase 1. Description and analysis of the problem

- Enterprises
- Products
- Sector
- Customers
- > Collaboration agreements
- Group of experts
- Supplier selection need
- > Supplier characteristics

Phase 2. Definition of performance elements

Phase 3. Determine potential suppliers

- Supplier 1
- Supplier 2
- Supplier 3
- **>**

Phase 4. Definition of sustainability criteria

- Increasing growth in sustainability awareness.
- Review of conceptual frameworks of collaboration and sustainability within interorganizational contexts.
- Validation by the group of experts.

Phase 5. Building the ANP model

Phase 5. Building the ANP model

Phase 5. Building the ANP model

Matrix of Influences among Elements

		F	P	СР		••	ВС	1	E	С	••	
		P1		CP1	 		C1		EC1			
ED	FP1	0										
FP		X										
	OP1	X										
СР		0										
		Г										
	BC1											
ВС												
	EC1											
EC												
•••												

Phase 5. Building the ANP model

Phase 6. Making pairwise comparisons

Pairwise comparison matrix among elements

Calculate priority vectors & consistency

<u>-</u>	eij	eik
eij	cij,ij	cij,ik
eik	cik,ij	cik,ik

Intensity	Description
1	Same influence
3	Moderate
5	Strong
7	Very strong
9	Extreme
2,4,6,8	Intermediate values

Fundamental scale Saaty (1980)

Phase 8. Obtain the solution

Limit matrix

Ranking of KPIs

Rank		L.P	N.L.P
1	FP1	0,0950	
2	CP1	0,0680	
3	IL1	0,0620	
4			
5			

Ranking of Sustainability Criteria

Rank		L.P	N.L.P
1	BC1	0,1536	
2	EC1	0,1099	
3	SC1	0,1056	
4			
5			

Ranking of Suppliers

Rank		L.P	N.L.P
1	S 1	0,0350	0,4436
2	S2	0,0272	0,3447
3	S3	0,0167	0,2117
4			
5			
5			

Phase 1. Description and analysis of the problem

- Research Project: "Design and Implementation of Performance Measurement Systems within Collaborative Contexts for aiding the Decision-making Process".
- Collaborative enterprise network (raw material suppliers, badge supplier and injection moulding manufacturers) belonging to the automotive industry in Spain.
- Selecting the best supplier of one high-volume metallic subassembly.
- Group of experts: Managing directors of purchasing and R&D departments were in charge of the assessment of the suppliers and the authors of this paper acted as consultants.

Phase 2. Definition of performance elements

- 1. Mission and vision
- 2. Performance objectives: BSC
- 3. Performance indicators : BSC
 - Financial perspective: sales volume and profitability
 - Customer perspective: new product development, customer loyalty and market share.
 - Process perspective: on-time delivery orders, total cycle time, non-conforming parts delivered to customer and waste disposal.
 - Innovation & Learning perspective: ...
- 4. Check consistency among them.

Phase 3. Determine potential suppliers

- The three suppliers currently delivering the sub-assembly have the capability and knowhow to manufacture the component.
 - Supplier 1. Spanish supplier located in Barcelona
 - Supplier 2. Foreign supplier (Swiss supplier)
 - Supplier 3. Spanish supplier located in Bilbao (North of Spain)

Phase 4. Definition of sustainability criteria

- Proposal based on literature review (sustainability and collaborative frameworks)
- 3 dimensions:
 - Business criteria: product, structure, relationship, innovativeness and financial profile.
 - Environmental criteria: environmental practices and environmental performance.
 - Social criteria: employment practices, health & safety practices and stakeholder influence.
- Validated by the group of experts of the collaborative enterprise network.

Phase 5. Building the ANP model

Phase 6. Making pairwise comparisons

Pairwise comparison of customer perspective KPIs with respect to profitability KPI

	New Prod. Dev.	Cust. loyalty	Market share	Priorities
New Prod. Dev.	1	3	5	0.1047
Cust. loyalty	1/3	1	3	0.2583
Market share	1/5	1/3	1	0.6370
			C.R.	0.037

Phase 7. Building the supermatrices

Unweighted supermatrix: Excerpt of Business criteria

	Product	Structure	Relationship	Innovativeness	Financial profile
Product	0,0000	0,5294	0,3031	0,4874	0,5769
Structure	0,0736	0,0000	0,1296	0,1182	0,1807
Relationship	0,2845	0,1377	0,0000	0,2762	0,1263
Innovativeness	0,3210	0,2122	0,3889	0,0000	0,1161
Financial Profile	0,3210	0,1207	0,1783	0,1182	0,0000

- Cluster matrix
- Weighted supermatrix

Phase 8. Obtain the solution

■ Limit matrix: limit priorities

KPIs

1	Profitability	0,0564	0,1698
2	Anticipation to industry changes	0,0445	0,1339
3	Market share	0,0426	0,1282
4	Sales volume	0,0417	0,1254
5	Total cycle time	0,0259	0,0779
6	On-time delivery	0,0213	0,0640
7	Customer loyalty	0,0189	0,0569
8	Aligment of procedures & Methods	0,0185	0,0558
9	Non-conforming parts	0,0169	0,0508
10	New product development	0,0164	0,0494
11	Waste disposal	0,0149	0,0448
12	Health & safety	0,0143	0,0432

Phase 8. Obtain the solution

■ Limit matrix: limit priorities

Sustainability criteria

1	Product	0,1505	0,2382	
2	Relationship	0,0980	0,1552	
3	Innovativenness	0,0754	0,1193	
4	Environmental practices	0,0640	0,1013	
5	Financial profile	0,0544	0,0861	
6	Structure	0,0413	0,0654	
7	Health & safety	0,0395	0,0626	
8	Stakeholder influence	0,0388	0,0614	
9	Environmental performance	0,0367	0,0581	
10	Employment practices	0,0330	0,0523	

Phase 8. Obtain the solution

Limit matrix: limit priorities

Suppliers

1	Supplier 2	0,0150	0,4136
2	Supplier 1	0,0115	0,3185
3	Supplier 3	0,0097	0,2679

■ Validated by the group of experts of the collaborative enterprise network.

Conclusions

- Supplier selection problem:
 Alignment with a BSC structure.
- □ Three core dimensions for sustainability: environmental, social, and economic factors.

relationships

- Understanding of core strategic aspects and sustainability factors that influence their enterprises: Management.
- □ The approach is applicable to all types of inter-enterprise associations taking into account that the performance elements definition will change depending on the specific context.
- □ Some specific collaborative relationships may consider other factors, e.g. industry specific factors.
- Modification and adaptations (specific relationships/industry) to be performed for these two reasons will enable to use this approach in other collaborative relationships.

- International collaborative enterprise network: heterogeneity and cultural differences.
- Developing further a BSC that allows *integrating* sustainability indicators coherently to increase the traceability among the supplier sustainability criteria and the collaborative enterprise performance framework.
- Integrating the Inter-BSC with the Individual enterprises-BSC.
- Defining sustainability indicators for different sectors under common regulations.

Thank you for your attention!

mverdecho@cigip.upv.es