

Autonomic Approach to Planning and Scheduling in Networked Small Factories

F Bonfatti – L Martinelli – P D Monari

University of Modena & Reggio Emilia SATA SRL, Modena

Outline

- □ Business ecosystem
- □ Company behaviour
 - □ As leader
 - □ As supplier
- □ Autonomic computing
 - □ Why autonomic computing
- □ The showcase

Business ecosystem

□ Legend

- Order from outside to one company in the business ecosystem
- Supply chain lead in the business ecosystem
- Supplier of products / services in the business ecosystem

□ A company can act as a leader or supplier

3

Company behaviour as leader

□ Plan the best distributed process

- Choose between make or buy alternatives for some activities
- □ Select the **most convenient suppliers** for other activities
- □ Ultimately, build up the preferred process configuration

□ Confirm cost and delivery time

- To the customer, if consistent with the planned process
- Otherwise counterpropose affordable solutions

□ Trigger and monitor the process

- By sending operational orders to the selected suppliers
- □ And performing internally the other activities
- While checking the achievement of major milestones

□ Handle possible exceptions

- Coming from the customer
- Coming from the supply chain
- Coming from the internal shop floor

Distributed process planning

- □ For every combination of suppliers
 - Computation of total lead time and total cost
 - Plus computation of start and end time of each activity
- Selection of the most convenient configuration
 - By applying a proper policy (e.g. shortest lead time or lowest cost)
 - And then selecting the suppliers to whom assign tasks

□ Reaching the optimal solutions is hard without using appropriate

Company behaviour as supplier

- Schedule internal activities
 - □ Choose among alternative routings (if any)
 - Select the most convenient resource types among those available
 - Apply a finite capacity algorithm to allocate single resource instances
- □ Confirm cost and delivery time
 - To the customer, if consistent with the planned process
 - Otherwise counterpropose affordable solutions
- □ Execute and monitor the shop floor work
 - By assigning tasks to internal resources
 - □ While checking the achievement of major internal milestones
- □ Handle possible exceptions
 - Coming from the customer
 - Coming from the internal shop floor

Internal process scheduling

- □ Adopt the most convenient schedule
 - By applying the preferred policy
 - □ And consequently book the involver resource instances
 - On their respective work calendars
- Optimise resource allocation
 - To reduce or remove resource idle times
 - Or to overcome changes in resource availability

Autonomic computing & system

- □ Autonomic Computing Initiative
 - □ Launched by IBM in 2001
 - Automating low level tasks
 - Adjective taken from autonomic nervous system
 - Dynamic adaptation and reorganization to the new needs of the users
- □ Autonomic System
 - Self-Configuration
 - Self-Optimization
 - Self-Healing
 - Self-Protection

Why autonomic computing /1

- Current situation in planning (self-configuration)
 - Manual (intuitive) procedures taking some days
 - Many phone calls and negotiations, waiting for supplier answers
 - Impossible to evaluate all alternatives
- □ Current situation in scheduling (self-optimization)
 - Manual (intuitive) procedures taking some hours
 - Approximate estimation of time
 - Approximate estimation of cost
- □ Current situation in exception handling (self-healing)
 - Late detection and always manual management
 - Often propagation of perturbations up to the final customer
- Analysis of past performance (self-protection)

Why autonomic computing /2

- □ Relieve companies from hard tasks
 - □ They don't like to divert resources from core business
 - □ They wish to assure **fast response** to customers
 - □ They wish to accurately estimate time and cost
 - □ They wish to choose the **most convenient** configuration
 - And recover fast delays and problems on resources
- The smaller they are the more they need
 - □ Although they don't know it ... yet

The textile cluster case

- □ Ten companies in the Carpi district
 - □ Providing textile services
 - □ E.g. prototyping, knitting, ..., finishing, ironing, packaging
 - Covering most of the productive cycle phases
 - Looking for new customers and markets
- □ For further information
 - luca.martinelli@unimore.it
 - www.softlab.unimore.it >> our University laboratory
 - www.ebest.eu >> the European project developing this technology

Exception handling

□ From the upper level

- Customer asks for earlier delivery time
- Customer proposes a later delivery time
- Customer changes the order quantity (or cancels the order)
- □ The company tries to damp down alone the perturbation otherwise propagates below

□ From the lower level

- Supplier declares a delay on an assigned task
- Supplier declares a loss of materials
- The company tries to damp down alone the perturbation otherwise propagates above

□ Internal in the company

- Problems occur in the shop floor
- Typically changing the availability of resources
- □ The company tries to damp down alone the perturbation otherwise propagates above