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Douglas Alem University of Southampton UK
Christian Almeder European University Viadrina Germany
Glorie Alozie University of Strathclyde UK
Ashwin Arulselvan University of Strathclyde UK
Oyku Naz Attila University of Strathclyde UK
Tolga Bektas University of Southampton UK
Zhen Chen Beihang University China
Quentin Christ Ecole des Mines de Saint-Etienne France
Alistair Clark University of the West of England, Bristol UK
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Welcome to Glasgow!

Dear colleagues,

It is a pleasure to welcome you to the eighth International Workshop on Lot Sizing, to the University of

Strathclyde Business School, and to the friendly city of Glasgow. Hopefully, you will have “nae bother”

during your stay (and in particular understanding Glaswegian!).

As in the previous editions, the workshop aims to cover recent advances in lot sizing, including new

approaches for classical problems, new relevant problems, integration of lot sizing with other problems,

presentation of case studies, and so on. The workshop will also aim at favoring exchanges between

researchers and enhancing fruitful collaboration. Hence, we continue the tradition of the previous work-

shops to discuss high quality research in a relaxed atmosphere, and to allow plenty time around formal

talks to maximize discussions and collaborations.

We would like to thank our generous sponsors for their support in organizing this workshop: University

of Strathclyde Business School for providing us the most suitable space; and EURO, The OR Society,

EURO Working Group on Lot-Sizing and ORGS for enabling free registrations to students and a number

of travel grants as well as keeping costs low.

We wish you a pleasant stay in Glasgow and hope that you find the workshop inspiring and productive.

Kerem, Roberto, Mahdi and Ashwin
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An easy construction heuristic for capacitated
lot-sizing problems

Christian Almeder
European University Viadrina Frankfurt(Oder)
almeder@europa-uni.de

Abstract

The main ideas of the most successful construction heuristics, such as the
Dixon-Silver-heuristic or the ABC-heuristics, is building up a production plan
stepwise starting from the first period. But neither is this approach forced
by the problem definition, nor is it intuitive. More naturally, one would start
to plan difficult periods first, but it is unclear how a difficult period should
be defined. So, our approach is to build up a production plan stepwise by
adding demand elements, i.e., demands for a certain product in a certain period.
Adding a single demand element to an existing production plan is straight
forward. Hence, if the demand elements are added in the right order, we can
create a high-quality production plan very fast.

1 Introduction

When considering fast construction heuristics for the standard capacitated lot-sizing
problem (CLSP) there are two old, but still state-of-the-art algorithms. The first one
is the Dixon-Silver-heuristic (cf. [1]) which builds up a production plan period-by-
period starting from the first one. The main idea is to make a ”local” decision about
the extension of a production lot in the current period. This decision is influenced by
potential per-period cost savings of the lot and the necessity of preproduction due to
capacity reasons.

The second algorithm is the ABC-heuristic which consists in fact of a pool of 72
variants of a construction heuristic. These variants differ in the order of the products
to be lot-sized and the lot-sizing rule. Basically the production plan is constructed
step wise from the first to the last period similar to the Doxon-Silver-heuristic.

Since in the case of the CLSP with setup times, i.e. a setup operations consumes
capacity, there is no easy way to determine necessary amounts to be preproduced to
guarantee feasibility of the production plan1, both algorithms are restricted to CLSP
instances without setup times.

1For the CLSP with setup times the feasibility problem, i.e., the problem to determine if a feasible
production plan exists, is NP-complete.
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Recently, [3] proposed a simple construction heuristic embedded in a metaheuristic
for the practical lot-sizing problem of a pharmaceutical company. This construction
heuristic is a simple, rule-based method to add new demand to an existing production
plan. The sequence of the demands added to the plan is optimized by a genetic
algorithm. Our heuristic is based on similar ideas for the classical CLSP with setup
times. We do not consider backorders but overtime in order to be able to create
production plans even if there is not sufficient capacity.

2 Rule-based construction heuristic for the CLSP

The main idea of the algorithm is to add step-by-step demand to a production plan.
So the first step is taking all positive demands di,t > 0 for all products i and all
periods t and put them in a list dl =< di1,t1 , di2,t2 , . . . , diK ,tK > of K elements. We
start with an empty production plan, i.e., no setup and no production is scheduled
yet. One-by-one a demand from the list is added to the production plan. Hence,
the subproblem to solve when adding a demand to the production plan is: What is
the best way to extend the current production plan such that the total cost are kept
low? We apply the following rules when extending the production plan by a demand
element di,t:

Rule 1 (use inventory) If there is positive inventory at the end of period t (Ii,t > 0)
use the inventory to satisfy as much of the demand di,t as possible. The amount,
by which the inventory is decreased creates a new demand of the same amount
for the next period and is added to the beginning of the list. If there is demand
left in the current period which cannot be satisfied by the inventory add it to
the production plan using the following rules.

Rule 2 (extend current lot) If there is already a lot scheduled for product i in
period t extend the lot such that either the whole demand is satisfied or the
capacity is used up. If there is unsatisfied demand left, increase the inventory
of the previous period Ii,t−1 accordingly, and create a demand element at the
front of the list. If the current period is t = 0 produce the whole demand using
overtime.

Rule 3 (create new lot or increase previous lots) If there is no lot scheduled
in period t for product i but there would be sufficient capacity for satisfying
the whole demand, then create a new lot unless there is sufficient capacity in
previous periods to increase already existing lots for product i and the additional
holding cost are less than the setup cost.

Rule 4 (create new lot in previous period) Check if there is a period before pe-
riod t, where the whole demand can be produced. If the total cost (setup cost
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and holding cost) is smaller than splitting the demand over periods with already
existing lots then create this new lot, otherwise extend existing lots.

Rule 5 (create partial lot) Create a new lot as big as possible in period t and
create a new demand for the remaining amount in period t − 1. This demand
is added to the front of the demand list.

For each element of the demand list dl the rules are applied one after each other
starting from Rule 1 until the demand is integrated in the production plan. The final
production plan depends on the order of the demand elements in the demand list.
Overtime may be used in the first period only.

3 Properties and extensions

The order of the demand elements is crucial. Hence, finding a good solution for the
CLSP is reduced to determine an appropriate order of the demand elements. Some
preliminary tests have shown that in case of low or medium capacity utilization almost
any sequence creates a reasonable good production plan without overtime. If there is
a high capacity utilization it is more difficult to find a sequence which creates plan
within the capacity limits.

In order to determine the optimal sequence different methods are possible. First,
a simple priority rule might be sufficient to create fast reasonable good solutions.
Second, any optimization method could be applied to this scheduling problem. First
test with a simple local search method based on an adjacent pairwise interchange and
first improvement strategy provide promising results that such a simple optimization
strategy provides already high quality results.

The rules listed in Section 2 can easily be changed or extended in order to solve
other lot-sizing problems. For instance, an easy way to tackle multi-level problems is
to apply the above rules and with every lot of a product created in the plan, demand
elements for the items on the production level below are created and added to the
list. Other possibilities are to consider backorders or use the above scheme for solving
an on-line lot-sizing problem where demand orders have to be scheduled immediately
when they arrive.

References

[1] Dixon, P.S., Silver, E.A., A heuristic solution procedure for the multi-item,
single-level, limited capacity, lot-sizing problem, Journal of Operations Man-
agement 2, 23-39 (1981)
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A Unified Decomposition Matheuristic for
Assembly, Production and Inventory Routing

Raf Jans
HEC Montreal, Canada
raf.jans@hec.ca

Masoud Chitsaz
HEC Montreal, Canada
masoud.chitsaz@hec.ca

Jean-François Cordeau
HEC Montreal, Canada
jean-francois.cordeau@hec.ca

Abstract

We introduce a model for the assembly routing problem (ARP), which con-
sists of simultaneously planning the assembly of a finished product at a plant
and the routing of vehicles collecting materials from suppliers to meet the in-
ventory requirements imposed by the production. We formulate the problem
as a mixed-integer linear program and propose a three-phase decomposition
matheuristic that relies on the iterative solution of different subproblems. The
first phase determines a setup schedule while the second phase optimizes pro-
duction quantities, supplier visit schedules and shipment quantities. The third
phase solves a vehicle routing problem for each period. The algorithm is flex-
ible and we show how it can also be used to solve two well-known problems
related to the ARP: the production routing problem (PRP) and the inventory
routing problem (IRP). Using the same parameter setting for all problems and
instances, we obtain many new best known solutions out of 2,628 standard IRP
and PRP test instances. In particular, on large-scale multi-vehicle instances,
the new algorithm outperforms specialized state-of-the-art heuristics for these
two problems.
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1 Introduction

The literature on production planning has paid a lot of attention in the past decade
to the integration of lot sizing and outbound transportation decisions. The typical
supply chain that is considered consists of a plant that delivers final products to
several customers. Considering both the production planning at the plant and the
outbound delivery to the customers via routes results in what is called the production
routing problem (PRP) [2]. If the production quantities at the plant are assumed to be
given and the decisions only relate to the inventory and route planning, the problem
is referred to as the inventory routing problem (IRP) [3].

In contrast, only few studies have focused on the integration of production plan-
ning with inbound transportation planning. Yet, in a standard supply chain, a plant
often uses several different components to assemble a final product. These com-
ponents are typically produced in other plants or purchased from suppliers. If the
assembly plant is responsible for organizing the inbound transportation of the vari-
ous components, then gains can be achieved by integrating the production planning
with the inbound vehicle routing. We refer to this problem as the assembly routing
problem (ARP).

To the best of our knowledge, the problem of jointly optimizing production plan-
ning and inbound vehicle routing with a finite horizon and discrete planning periods
has only been considered by [4] in a restricted just-in-time (JIT) environment. They
consider multiple components and products and the JIT environment assumes that
the components which arrive at the plant must be used immediately in production.
Therefore, [4] do not consider the possibility of holding inventory of the components
at the plant level before production takes place. Furthermore, the holding cost at the
suppliers is not considered in their specific study.

2 The Assembly Routing Problem

We consider a many-to-one assembly system where n suppliers each provide a unique
component necessary for the production of a final product at the central plant. The
planning horizon comprises a finite number of discretized time periods. The com-
ponent supply at each supplier in each period is predetermined over the planning
horizon. The production system has to satisfy the external demand for the final
product at the plant in each period without stockouts while respecting the plant’s
production capacity. Both the suppliers and the plant can hold inventory. Each
supplier has a storage capacity for its components. The plant provides a shared ca-
pacitated storage for the components and has a separate outbound storage capacity
for the final product. A fleet of m homogeneous vehicles, each with a capacity of Q,
is available to perform shipments from the suppliers to the plant using routes that
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start and end at the plant. We suppose throughout that the components delivered to
the plant in period t ∈ T can be used for production in the same period.

We assume that one unit of each component is needed to make one unit of the final
product. Obviously, the unit components may not have identical sizes. Therefore, we
consider that each component has a specific unit size which will be taken into account
in the vehicle capacity and plant storage area for components. We consider a unit
production cost and setup cost at the plant level. The unit holding costs are imposed
for the inventory of a component at its supplier and at the plant, respectively. The
inventory of the final product incurs a unit holding cost at the plant. When a vehicle
travels from location i to j it entails a period-independent cost of cij.

In the ARP, the following decisions should be optimized simultaneously for each
period:
1. whether or not to produce the final product at the plant and the quantity to be
produced;
2. the quantity to be shipped from the suppliers to the plant, and;
3. which suppliers to visit, in what order and by which vehicle.

3 Heuristic

We present a unified decomposition matheuristic for the ARP, which can also be
applied to the PRP and the IRP. In this section, we explain the algorithm in the
context of the ARP.

Our algorithm decomposes the ARP model into three separate subproblems. The
first subproblem is a special lot-sizing problem that determines a setup schedule by
relying on an approximation of the routing cost using the number of dispatched
vehicles. Considering a given setup schedule, the second subproblem chooses the
node visits and shipment quantities. For multi-vehicle instances, a modified model is
employed in this phase to look for possible improvements in node visits and shipments.
Finally, the third subproblem solves a series of separate vehicle routing problems, one
for each period t (V RPt).

The solutions of the routing subproblems are then used to update the transporta-
tion cost approximation. This procedure is repeated for a number of iterations to
reach a local optimum. Then, a local branching scheme is used to change the setup
schedule and explore other parts of the feasible solution space, looking for better
solutions. The entire procedure continues until a stopping condition is met.

Our algorithm shares similarities with the decomposition-based heuristic devel-
oped by [1] for the PRP. However, there are also some important differences between
the two algorithms, such as the decomposition in three phases and the use of the
diversification constraints.

We test our algorithm on three different problems, the IRP, the PRP and the
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ARP, with a total of 4,068 instances. Updated results will be presented during the
workshop.

References
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A stochastic multi-item lot-sizing problem with
bounded number of setups

Etienne de Saint Germain
Argon Consulting and CERMICS
etienne.gaillard-de-saint-germain@enpc.fr

Vincent Leclère, Frédéric Meunier
CERMICS

Abstract

Within a partnership with a consulting company, we address a production
problem modelled as a stochastic multi-item lot-sizing problem with bounded
numbers of setups per period and without setup cost. While this formulation
seems to be rather non-standard in the lot-sizing landscape, it is motivated
by concrete missions of the company. Since the deterministic version of the
problem isNP-hard and its full stochastic version clearly intractable, we turn to
approximate methods and propose a repeated two-stage stochastic programming
approach to solve it. Using simulations on real-world instances, we show that our
method gives better results than current heuristics used in industry. Moreover,
our method provides lower bounds proving the quality of the approach. Since
the computational time are small and the method easy to use, our contribution
constitutes a promising response to the original industrial problem.

1 Introduction
Fixing the production level for the forthcoming week is a basic decision to be taken
when managing a production line. Usually, a demand has to be satisfied at due
dates but the limited capacity of the line prevents to produce at the last moments.
On the other hand, too early productions may lead to unnecessary high inventory
costs. The challenge of this kind of lot-sizing problems consists in finding a trade-off
between demand satisfaction and holding costs. This is a well-studied topic, with
many variations (deterministic/stochastic, single/multi item, etc.). Recent surveys
have been proposed by Gicquel in her PhD thesis and Mula et al. (International
Journal of Production Economics, 2006). When several references can be produced
on a same line (multi-item lot-sizing problems), the capacity is often all the more
reduced as the number of distinct references produced over the current week is high.
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This is because changing a reference in production stops the line for a moment. This
additional capacity reduction is usually modelled by setup costs contributing to the
total cost.

The present work introduces a stochastic multi-item lot-sizing problem met within
a partnership with a consulting company. A non-standard feature of the problem is
that the capacity reduction due to reference changes is not modelled by setup costs
but instead by an explicit upper bound on the total number of references that can be
produced over a week. According to the company, many clients aim at minimizing
their inventory costs while keeping the number of distinct references produced over
each week below some threshold. This is essentially because setup costs are hard to
quantify and a maximal number of possible changes per week is easy to estimate. To
the best of authors’ knowledge, the problem addressed in the present work is original
and such a bound on the number of distinct references produced over a week has not
been considered by academics yet, with the notable exception of Rubaszewski et al.
(IESM, 2011) but, contrary to our problem, their bound is an overall bound for the
whole horizon and they still consider setup costs.

We propose for this problem a method that can be easily used and maintained in
practice. The efficiency of the method is proved via extensive numerical experiments
on real industrial data.

2 Problem formulation and model
The assembly line produces a setR of references over T weeks. The number of distinct
references produced over a week cannot exceed N . There is also an upper bound on
the total week production (summed over all references). We normalize all quantities
so that this upper bound is equal to 1. The demand of reference r over week t is a
random variable dr

t (of known distribution), whose realization is revealed at the end
of week t. Production of a reference r that is not used to satisfy the demand can be
stored and incurs a unit holding cost hr per week. A demand that is not satisfied by
the production of the present week or by inventory can be satisfied later: backorder
for any reference r is allowed and incurs a unit backorder cost γr per week. Note that
there is no setup cost, as discussed in the introduction. For each reference r, there is
an initial inventory sr0 ∈ R+. At the beginning of each week, before the demand of
each reference is revealed, the production of the week has to be fixed. The objective
is to minimize in expectation the total cost over the whole horizon of T weeks.

The production problem at the beginning of week t can be modelled as (S), where
the variable s̃rt′ (resp. b

r
t′) models the inventory (resp. the backorder) of reference r at

the end of week t′, the variable qr
t′ models the quantity of reference r produced over

week t′, and the variable xr
t′ takes the value 1 if the reference r is produced over week

t′ and 0 otherwise. The last constraint of the program, written as a measurability
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constraint, means that the values of the variables qr
t′ can only depend on the values

taken before time t′. A feasible solution (qr
t′)t′=t,...,T, r∈R of (S) provides a deterministic

production (qr
t )r∈R for the current week t.

min E

[
T∑

t′=t

∑

r∈R

(
hrs̃rt′ + γrbrt′

)
]

srt′ = s̃rt′ − brt′ t′ = t, . . . , T, ∀r ∈ R
srt′ = srt′−1 + qr

t′ − dr
t′ t′ = t, . . . , T, ∀r ∈ R∑

r∈R
qr
t′ ≤ 1 t′ = t, . . . , T

qr
t′ ≤ xr

t′ t′ = t, . . . , T, ∀r ∈ R∑

r∈R
xr
t′ ≤ N t′ = t, . . . , T

xr
t′ ∈ {0, 1}, qr

t′ , s̃
r
t′ , b

r
t′ ≥ 0 t′ = t, . . . , T, ∀r ∈ R

σ
(
qr
t′
)
⊂ σ

((
dr′
t , . . . ,d

r′
t′−1

)
r′∈R

)
t′ = t, . . . , T, ∀r ∈ R.

(S)

The deterministic version of (S) is easily shown to be NP-hard for any fixed
N ≥ 3. (Curiously, its complexity status when N ∈ {1, 2} is open.)

3 Method
We propose a two-stage approximation consisting in relaxing the measurability con-
straint: the production decisions for the current week t can still not depend on the
future, but now the subsequent production decisions depend on the future demand.
This relaxation is then solved by a classical sample average approximation. We build
a set Ω of a predetermined number m of scenarios sampled uniformly at random.
Each of these scenarios is a possible realization of (dr

t ,d
r
t+1, . . . ,d

r
T ) for each r. We

get then a mixed integer program (P), solved by any standard MIP solver, with xrt ,
qrt , xrt′(ω), qrt′(ω), s̃rt′(ω), and brt′(ω) for all t′ = t, . . . , T , r ∈ R, and ω ∈ Ω as variables.
At week t, the production is then set to be the solution (qrt )r∈R found by the solver.

4 Numerical experiments
Gurobi 6.5.1 was used to solve the MIP and the computer is a PC with CPU @
3.40GHz and 8Go RAM.
Instances. The instances used are realistic and have been provided by a client of
the partner. A horizon T of 13 weeks has been used (typical one). The demand is
obtained via a generalized autoregressive process based on historical data (d

r

t )t∈[T ],r∈R.
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The initial inventory has been set to sr0 = 1
3
(d

r

1 + d
r

2 + d
r

3). The other parameters are
provided in Table 1. The parameter C is the capacity of the line before normalization:
we have thus γr = γ/C.
Three other heuristics. The first heuristic is the deterministic version of (S),
where the random demand is replaced by its expectation. The second one, cover-
size, consists in determining at t = 0 a value Tr for each reference r ∈ R (via an
“aggregated” convex program, such as the one given by Ziegler (Operations Research
Letters, 1982). At time t, if the inventory of reference r is below a fixed safety level,
the quantity qrt is chosen so that the inventory of reference r exceeds the safety level
of the expected demand for the next Tr weeks. Easy anticipations are allowed and in
case of capacity issues, the production is postponed (backorder). The third heuristic,
lot-size, is almost the same but with a fixed quantity `r above safety level when
production is activated.
Results. The results are provided in Table 1. All quantities are in Me and given with
a confidence interval at 95% (many runs have been performed to get these intervals).
The column LB provides the lower bound obtained by the optimal value at time t = 1
of program (P) (with m = 1000 and a time limit of 30 minutes for the solver). The
column 2SS corresponds to the proposed method (with m = 20 and a time limit of
90 seconds for the solver).
Comments. Our method clearly outperforms the three other heuristics. It dramat-
ically reduces the costs, while remaining a quite simple method.

By playing with the values of γ, our method can also be used as an approach for
keeping the holding cost reasonable, while trying to ensure a good fill rate service
shortage, measured as the sum of all backorders over time. Experiments have shown
that not only on the considered instances our method ensures low holding costs, but
it is also competitive regarding the fill rate service shortage. Roughly speaking, it
beats lot-size and is above the cover-size performances by a small percentage.

Instances Instance characteristics
|R| max(d

r

t ) C N hrt γ
L2_1000 21 4992 10562 7 35–61 1000
L2_300 300
L2_80 80
L6_1000 22 8640 13299 8 16–23 1000

Instances LB 2SS Det. Cover-size Lot-size
L2_1000 ? 4.96± 0.06 8.20± 0.13 9.17± 0.08 18.20± 0.57
L2_300 ? 3.39± 0.03 3.82± 0.03 8.39± 0.05 10.89± 0.16
L2_80 ? 1.98± 0.02 2.02± 0.02 8.15± 0.50 8.59± 0.04
L6_1000 54.84± 0.44 74.22± 2.79 82.95± 2.79 149.69± 3.33 117.22± 3.15

Table 1: Instance characteristics and results
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Abstract

This work introduces a responsive planning approach within a rolling hori-
zon environment for stochastic capacitated dynamic lot sizing with uncertain
demand under service constraints. In the first step, a set-up pattern is de-
termined based on the distribution parameters of demand and fixed only for
a small number of periods in order to achieve a high robustness of the plan.
To ensure a high delivery reliability despite uncertain demand and low hold-
ing costs at the same time, the approach calculates optimal implicit dynamic
safety stocks. In the second step, actual production quantities are determined
period-wise, factoring in previously realized demand. By incorporating already
observed realizations of the random variables for further decisions, this ap-
proach leads to both more robust production plans and less total costs in real
world stochastic production environments.

1 Introduction

Real world production environments have to deal with many uncertainties, like un-
certainty regarding the forecast demand. Many lot sizing approaches, however, leave
aside this stochasticity of those input parameters. Stochastic lot sizing approaches,
like Helber et al. (2013)[1] and Tempelmeier and Hilger (2015)[2], however, incorpo-
rate that stochasticity. Many of them are static, as they decide on both production
times and production quantities before any demand is realized. Therefore, those de-
cisions are often premature: If the demand is underestimated, the delivery reliability
will be low, while an overestimated demand would lead to high inventory holding
costs. A more promising way of stochastic lot sizing is introduced by this work, as it
takes prior demand realizations into account when deciding on the production quan-
tities for subsequent periods.

Proposed is a responsive planning approach with rolling horizons for robust stochastic
capacitated multi-product lot sizing with service constraints. It is designed to focus
on real production environments, where decisions on products to produce in a given
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period have to be made several periods in advance. In the first step, the decisions on
the production times are made for a small number of periods, in order to get a robust
set-up pattern. The actual production quantities, however, are determined within the
second step period-wise in the respective period after the demand has been realized.
Unlike static approaches, the responsive approach ensures that a given service level
is met, and first results show that in many problem instances it also leads to lower
total costs.

2 A responsive algorithm for stochastic lot sizing

The proposed approach aims to make decisions in a way that a set-up pattern can be
found, which is robust to the greatest possible extent, while there is still flexibility
regarding the actual production quantities. Therefore, the model is solved within a
rolling horizon environment with re-optimizations executed in every period, taking
into account the demand realized so far. The following three sub-horizons of the
whole planning horizon are defined:

1. Periods with fixed production quantities:
Only for the period currently considered (and all prior periods), the production
quantities are fixed. This ensures that all possible information on past demand
realizations is regarded and a profound decision is made.

2. Periods with fixed set-up patterns:
The set-up pattern is fixed only for a small number of periods in advance. This
leads to high robustness, while flexibility regarding subsequent periods leads to
set-up patterns adapted to prior demand realizations.

3. Periods comprised by the optimization:
Due to high uncertainty regarding the remote future, it is not necessary to
comprise the whole planning horizon in every optimization. On the other hand,
comprising only the periods for which the set-up pattern will be fixed, would
lead to myopic plans. To avoid this myopia, a certain amount of additional
periods in the future is taken into account in every optimization. However, the
set-up pattern as well as the production quantities for these additional periods
are, at this moment, still alterable and subject to recalculations in the following
periods.
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Figure 1: Exemplary plan determined by the introduced responsive algorithm

Figure 1 shows an example of a production plan determined by the introduced re-
sponsive algorithm. It depicts the results of the optimization executed in period 2. In
this example it is assumed that the set-up pattern is specified four periods in advance.
In order to avoid myopic production plans, the algorithm comprises four additional
periods for any optimizations. So in this example in period 2 the production plan
is calculated for the periods 2 to 9. However, only the set-up patterns for the four
periods 2 to 5 are fixed and the plan for the additional periods 6 to 9 is still alterable.
Although calculated for all the periods comprised, the production quantities are only
fixed for the current period 2. This ensures that as much information about demand
realizations as possible is considered when deciding on the quantities. In the following
period 3 all the planning horizons still have the same lengths, but begin in period 3:
The optimization then comprises periods 3 to 10 and the set-up pattern for period 6
as well as the quantities for period 3 are fixed additionally. The algorithm continues
until all decisions are fixed.

In case the demand is underestimated, it might be unavoidable to produce a certain
product in a given period in order to avoid a violation of the set service level, even
though this is not scheduled in the fixed pattern. For this particular case, the al-
gorithm is designed to allow an additional set-up for the respective product. These
additional set-ups lead to both higher set-up costs and less robustness of the plans.
Therefore, minimizing those additional set-ups is a special focus of this work.
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3 Main features of the underlying model

The introduced algorithm solves an extended and generalized stochastic capacitated
lot sizing model based on the SCLSP as proposed by Helber et al. (2013)[1]. The
main features of the extensions include:

• Consideration of expected costs for additional set-ups:
The objective function not only considers the costs for inventory holding, set-
up activities and overtime, but also takes into account the expected costs for
additional set-ups as a function of the production quantities and the demand
information. This leads to dynamic implicit safety stocks, whose levels are
chosen endogenously and depending on the current utilization. Those safety
stocks reduce the total costs and increase the robustness of the production
plans at the same time and therefore enhance the performance of the algorithm
considerably.

• Limitation of backlogs with waiting time constraints:
The known service level definitions are not applicable for the limitation of back-
logs in an algorithm with varying lengths of the planning horizon. Therefore,
the backlogs are controlled by a product-specific waiting time constraint. This
restriction defines the maximum permitted expected mean waiting time of a
a unit of demand to be fulfilled, which equals the quotient of the cumulated
backlog for the respective product and of the cumulated expected demand. It
leads to more consistent production and therefore to less additional set-ups and
higher robustness of the determined plans.

• Piecewise linear approximation:
The conceptional model for the SCLSP is non-linear and not feasible due to the
random variables. Various approaches can be used to transfer the conceptional
model into a linear deterministic approximation model. In this work, the piece-
wise linear approximation of the inventory and backlog functions as proposed by
Helber et al. (2013)([1]) is adapted to varying lengths of the planning horizons.
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Abstract

This paper addresses the single-item single-stock location stochastic lot-
sizing problem under (R,S) policy. We assume demands in different periods
are dependent. We present a mixed integer linear programming (MILP) model
for computing optimal (R,S) policy parameters, which is built upon the con-
ditional distribution. Our model can be extended to cover time-series-based
demand processes as well. Our computational experiments demonstrate the
effectiveness and versatility of this model.

1 Introduction

Since [14] proved the optimality of (s, S) policies for a class of dynamic inventory
models, a sizeable literature has been performed for computing the optimal policy
parameters (see, for example, [20, 1, 6]). However, as pointed out in [19], although
the (s, S) policy is cost-optimal, it performs poorly in terms of “nervousness”, i.e. lack
of planning stability. In this regard, the (R, S) policy provides an effective means of
dampening the planning instability and coping with demand uncertainty. Under this
policy, both inventory reviews R and associated order-up-to-levels S are fixed at the
beginning of the planning horizon, while actual order quantities are decided upon
only after demand has been observed.

In the seminal work, [3] proposed a two-stage deterministic equivalent heuristic
which fixes replenishment periods first and then determines order quantities under the
independent demand assumption. [17] presented a mixed integer programming (MIP)
model that determines both timing and quantity of orders simultaneously without
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addressing computational performance. Under the independent demand assumption,
[19, 12, 16, 17, 18, 11] proposed efficient solution methods.

In the literature, most inventory models assume that demands over different time
periods are independent and identically distributed. Recently, a few studies on in-
ventory theory with correlated demands have been emerged. They either focused on
(s, S) policy (see [9, 15, 5, 4]) or measured the performance of the inventory system
with specific demand patterns ([9, 7, 10, 8]). However, none of them studied the
(R, S) policy with correlated demands, which motivates our work in developing an
efficient method for computing (R, S) policies.

In this paper, we present an MILP-based model for approximating the (R, S)
policies with correlated demand. Our model can cover a series of time-based demand
process, such as the autoregressive process (AR), the moving-average process (MA),
the autoregressive moving average process (ARMA), the autoregressive conditional
heteroskedasticity process (ARCH). Preliminary computational experiments demon-
strate that optimality gaps of our model are tighter than existing algorithms, and
computational times of model are reasonable. Our model can be accommodated to
approximate (s, S), and (R,Q) policies.

2 Problem description

Let a random vector d = [d1, . . . ,dn]T represents stochastic demand over the planning
horizon, which follows the multivariate distribution f with cumulative distribution
function F : Rn → R. Let d̃ be the mean of demand vector d, and Σ be the
variance-covariance matrix, we require that Σ is symmetric positive definite.

Lemma 1 (Conditional distribution) Let d == [d1, . . . ,dq,dq+1 . . . ,dn]T de-
note a random vector with joint probability function f(d1, . . . , dq, . . . , dn), then the
conditional joint probability density function of d1, . . . , dq given dq+1 = dq+1, . . . ,dn =
dn is

f1,...,q|q+1,...,n(d1, . . . , dq|dq+1 = dq+1, . . . ,dn = dn) =
f(d1, . . . , dq)

f(dq+1, . . . , dn)
(1)

We now consider the multivariate normal distribution (MVN). A vector-valued
random variable d = [d1, . . . ,dn]T is said to have a multivariate normal distribution
(MVN) with mean d̃ ∈ Rn and covariance matrix Σ ∈ Rn×n, if its probability density
function is given by

f(d; d̃,Σ) =
1

(2π)
1
2 |Σ| 12

exp
(
− 1

2
(d− d̃)TΣ−1(d− d̃)T

)
. (2)
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Lemma 2 (Conditional distribution of MVN) Let d = [d1,d2]T be a parti-
tioned multivariate normal random vector, with mean d̃ = [d̃1, d̃2]T and variance-
covariance matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (3)

Then, the conditional distribution of d2 given d1 = d1 is MVN, with conditional
distribution d2|d1 = d1 ∼ N

(
d̃2 + Σ21Σ

−1
11 (d1 − d̃1),Σ22 −Σ21Σ

−1
11 Σ12

)
.

Example. We now demonstrate the concepts introduced on a 4-period example.
d̃ = [20, 40, 60, 40] and standard deviations σ = 0.25d̃. We assume any dt, t =
{2, . . . , T}, is only correlated to dt−1 with correlation coefficient ρ = 0.5, then the
variance-covariance matrix is

Σ =




25 25 0 0
25 100 75 0
0 75 225 75
0 0 75 100


 .

Therefore, the conditional distribution of dt, for t = {2, . . . , T}, is d2|d1 = d1 ∼
N (20+d1, 75), d3|d2 = d2 ∼ N (30+ 3

4
d2, 168.75), and d4|d3 = d3 ∼ N (20+ 1

3
d3, 75).

3 Stochastic dynamic programming

We consider a single-item single-stocking location inventory management system over
a T-period planning horizon. We assume that the demand dt depends on realised
information set it−1 at period t− 1; it follows the conditional distribution f(dt|it−1).
Let It−1 denote the opening inventory level, and Qt represent the order quantity.

At the beginning of period t, there exist ordering costs c(·) comprising a fixed
ordering cost K, and a linear ordering cost c. At the end of period t, a linear holding
cost h is charged on every unit carried from one period to the next; a linear penalty
cost b is occurred for each unmet demand at the end of each time period. Then the
immediate cost can be expressed as

ft(i, It−1, Qt) = ct(i, Qt) + E[h ·max(It−1 +Qt − dt, 0) + b ·max(dt − x−Qt, 0)|it−1 = i],
(4)

where ct(i, Qt) is defined as:

ct(i, Qt) = K · δt + c ·Qt, δt = {0, 1}. (5)

Let Ct(i, It−1) denote the expected total cost of an optimal policy over period
t, . . . , T when the observed demand information set is it = i and the opening inventory
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level is It−1. We model the problem as a stochastic dynamic program ([2]) via the
following functional equation,

Ct(i, It−1) = min
Qt≥0
{ft(i, It−1, Qt) + E[Ct+1(it+1, It−1 +Qt − dt)|it−1 = i]}, t=1,. . . ,T-1

(6)

where

CT (i, It−1) = min
QT≥0
{fT (i, It−1, QT )|iT−1 = i]} (7)

represents the boundary condition.
Example. We illustrate the SDP introduced on the same 4-period example in

Section 2. We assume K = 100, h = 1, b = 10, and c = 1. We observe that the
minimised expected total cost is 262.60 when the opening inventory level is 70.

4 MILP-based models

The (R, S) policy features two control parameters: review periods (R), and order-up-
to-levels (S). Under this policy, both R and S are determined at the beginning of the
planning horizon; an order is issued to reach the order-up-to-level at the beginning
of each review period.

In the literature, [11] built an MILP model upon the piecewise linearisation ap-
proach for the first order loss function L(x, ω) and its complementary function L̂(x, ω),
where ω represents an independent random variable with the probability density func-
tion gω(·) and x denotes a scalar variable. Consider a partition of the support Ω of
ω into W disjoint compact subregions Ω1, . . . ,ΩW . By fixing a priory the proba-
bility mass pi = Pr{ω ∈ Ωi}, the associated conditional expectation E[ω|Ωi] are
determined. Based on Jensen’s and Edmundson-Madanski inequalities, the first or-
der loss function and its complementary function are approximated with piecewise
linear functions (

∑W
i=1 piL(x,E[ω|Ωi]),

∑W
i=1 piL̂(x,E[ω|Ωi])). For a special case of

standard normally distributed random variables, all pi and E[ω|Ωi] are precomputed
in [13].

We now consider a correlated random variable dt, for t = {1, . . . , T}, we can com-
pute the conditional distribution fdt|it−1(·) of dt|it−1 based on Lemma 1. We apply the
piecewise linear approximation proposed in [13] on its conditional distribution. There-
fore, L(x, dt|it−1) and L̂(x, dt|it−1) are approximated by

∑W
i=1 piL

(
x,E

[
{dt|it−1}|Ωi

])

and
∑W

i=1 piL̂
(
x,E

[
{dt|it−1}|Ωi

])
, respectively.

Example. We illustrate the MILP model introduced on the same example in
Section 3. We observe that the minimum expected total cost is 256.07, when the
opening inventory level is 70. Specifically, the reviewing time periods are 1 and 3,
and the corresponding order-up-to-levels are 69.18 and 114.34.
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5 Conclusion

In this paper we presented a MILP-based model for approximating optimal (R, S)
policy parameters with correlated demand. This model is based on a mathematical
programming model that can be solved by using-off-the-shelf optimization packages.
Our preliminary results show that the optimality gap of our model is tighter, and the
computational time of our model is reasonable. This model also can be extended to
cover time-series-based demand process, such as AR, MA, ARMA, ARCH.
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Abstract

We study the multi-item uncapacitated lot-sizing problem with inventory
bounds (MI-ULS-IB). We present a new MILP formulation for the case of non-
speculative (Wagner-Whitin) cost structure using a set of variables to determine
the production intervals for each item. Several Dantzig-Wolfe (DW) reformula-
tions of this new formulation are presented and analyzed. These reformulations
exploit the structure of the MI-ULS-IB by decomposing it into two subprob-
lems: one relating to the production decisions per item and another that relates
to the inventory decisions per period. We propose stabilized column generation
algorithms for solving the DW reformulations. Computational experiments are
performed to evaluate the proposed formulations and algorithms on a set of
benchmark instances involving up to 50 items and 50 periods.

1 Introduction

In various types of production systems and industries it is common to find that inven-
tory levels of products are bounded. These restrictions on the quantities to be stored
may be related to physical warehouse space and even to administrative policies, spe-
cially for voluminous products, or products requiring special warehouse conditions
(i.e., clean rooms, controlled temperatures) [1]. Storage capacity (inventory bounds,
IB) considerations are even more relevant for multi-item production structures, where
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different types of products share storage space. We study the multi-item uncapac-
itated lot-sizing problem with inventory bounds (MI-ULS-IB), a problem of special
theoretical and practical interest. General production-distribution planning prob-
lems considering IB can be found in [2] and [3]. An industrial application example of
a multi-item replenishment-storage planning problem with IB was presented by Ak-
balik et al. [4]. Gutiérrez et al [5] presented a variant of the problem with different
item weights (or volume), where the bounds are imposed on the total weight of the
stock. More formally, the MI-ULS-IB was studied by Akbalik et al. [1]. The authors
showed that the problem is NP-hard, even for the case of Wagner-Within cost struc-
ture. Most recently, Melo and Ribeiro [6] presented a shortest path formulation and
a formulation based on the addition of (l,S )-inequalities. The authors also proposed
a rounding and relax-and-fix heuristics.

2 Problem statement

The MI-ULS-IB can be described as having m different items to be produced over a
finite planning horizon of n periods to satisfy the demand dit for each item i = 1, . . . ,m
and each period t = 1, . . . , n (we assume backlogging is not allowed). Any produced
units that are not immediately used to satisfy demand at period t are inventoried
in a common storage space. The total amount of inventory in period t is limited
by the storage capacity ut (considering that any item consumes one unit of storage
capacity). Producing an item i in any period t incurs a fixed setup cost qit and a
variable production cost pit (joint setup costs are not considered). In addition, a
holding cost hi

t is incurred for each unit of item i in stock between period t and t+ 1.
We assume no initial and final stocks and nonnegative demands and costs.

To formulate the MI-ULS-IB using the facility location approach for LS problems,
let variables wi

lt represent the amount of item i, measured as a fraction of the demand
dit, that is produced in period l to satisfy demand of period t, and yit = 1 if and only
if there is production of item i in period t. Let also I and T be the set of all items
and all periods, respectively. The facility location MILP formulation is:

FLF minimize
m∑

i= 1

n∑

t= 1

(
n∑

l = t

citlw
i
tl + qity

i
t

)
(1)

subject to
t∑

k = 1

wi
kt = 1 i ∈ I, t ∈ T (2)

wi
kt ≤ yik i ∈ I, k ∈ T, t ∈ T (3)

(4)
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m∑

i= 1

t∑

k = 1

n∑

l = t+1

dilw
i
kl ≤ ut 1 ≤ t ≤ n− 1 (5)

wi
kt ≥ 0 i ∈ I, k ∈ T, t ∈ T, k ≤ t (6)

yit ∈ {0, 1} i ∈ I, t ∈ T (7)

where citl = dit

(
pit +

∑l−1
r = t h

i
r

)
.

We propose an alternative MILP formulation for the case of non-speculative costs
(also known as Wagner-Whitin costs) where producing and storing one unit in a
period costs more than producing it later, that is pit + hi

t ≥ pit+1 for any item i in
any period t. This cost structure is very frequent in practical situations and appears
in a vast set of lot-sizing literature. This alternative formulation extends the binary
variables yit to determine the production time intervals [k, t], 1 ≤ k ≤ t ≤ n, for each
item and are defined as yikt = 1 is and only if there is production of item i to cover all
demand from period k to t. The alternative MILP formulation for the MI-ULS-IB is:

CDF minimize
m∑

i=1

n∑

k=1

n∑

t=k

qiky
i
kt (8)

subject to
t∑

k=1

n∑

l=t

yikl = 1 i ∈M, t ∈ N (9)

m∑

i=1

n∑

l=t+1

t∑

k=1

Di
tly

i
kl ≤ ut t ∈ N (10)

yikt ∈ {0, 1} i ∈ I, k ∈ N, t ∈ N, k ≤ t (11)

where Di
tl =

∑l
k=t+1 d

i
k. For all our preliminary computational experiments we repli-

cate the same instances used by Melo and Ribeiro [6]. They consider neither produc-
tion costs nor storage costs, which is why the CDF only optimizes the setup costs.
However, production and storage costs can be easily incorporated.

3 Dantzig-Wolfe reformulations and column gen-

eration

Using a reduced version of CDF, the MI-ULS-IB can be decomposed into two in-
dependent subproblems, one which constitutes an uncapacitated lot-sizing problem
(ULS ) for i ∈ M , and one which constitutes a special case of a multi-item knapsack
problem (CAP) for t = 1, . . . , n− 1. ULS makes sure that demand dit is satisfied for
every i ∈ M and t ∈ N , and CAP makes sure that inventory bounds ut are satisfied
for every t ∈ N .
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Let Ui denote the subset of configurations for the ULS subproblem for i ∈ M
and Ct denote the subset of feasible configurations for the CAP subproblem for
t = 1, . . . , n− 1.

The RMP can be stated as follows:

RMP minimize
∑

i∈M

∑

c∈Ui

F c
i L

c
i (12)

subject to
∑

c∈Ui

Lc
i = 1 i ∈M (13)

∑

c∈Ct

Xc
t = 1 1 ≤ t ≤ n− 1 (14)

∑

c∈Ui:
∑t

k=1 z
i
kl

Lc
i =

∑

c∈Ct:yitl=1

Xc
t i ∈M,

1 ≤ t ≤ n− 1, t + 1 ≤ l ≤ n (15)

There are two pricing problems, each associated with one of the subproblems (and
each of the two sets of variables in RMP).
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Abstract

In this study, we investigate two-period relaxations for lot-sizing problems with
big bucket capacities. In particular, we study the polyhedral structure of the
mixed integer sets related to two-period relaxations where setup times are set
to zero. We present two families of strong valid inequalities for two-period
relaxations and discuss the separation problems associated with these valid in-
equalities. Finally, we report preliminary computational results based on gen-
erating consecutive two-period relaxations versus generating non-consecutive
two-period relaxations for big bucket lot-sizing problems with zero setup times.

1 Introduction

Production planning problems have been interesting for both researchers and prac-
titioners for more than 50 years. The problem aims to determine a plan for how
much to produce and stock in each time period during a time interval called planning
horizon. It is an important challenge for manufacturing companies because it has a
strong impact on their performance in terms of customer service quality and oper-
ating costs. In this study, we focus on multi-level, multi-item production planning
problems with big bucket capacities, i.e., each resource is shared by multiple items
and hence different items can be produced in a specific time period. These real-world
problems remain challenging to solve to optimality as well as to obtain strong bounds.

Let NT , NI and NK be the number of periods, items, and machine types, re-
spectively. We assume that each machine type operates only on one level, and each
level can employ a number of machine types. The set endp indicates all end-items,
i.e. items with external demand; the other items are assumed to have only internal

International Workshop on Lot Sizing (IWLS) 2017, Glasgow, Scotland

27



demand. Let xit, y
i
t, and sit represent production, setup, and inventory variables for

item i in period t, respectively. The setup and inventory cost coefficients are indicated
by f it and hit for each period t and item i. The parameter δ(i) represents the set of
immediate successors of item i, and the parameter rij represents the number of items
required of i to produce one unit of item j. The parameter dit denotes the demand for
end-product i in period t, and dit,t′ is the total demand between t and t′. The param-
eter aik represents the time necessary to produce one unit of i on machine k, and ST ik
is the setup time for item i on machine k, which has a capacity of Ck

t in period t. Let
M i

t represent the maximum number of item i that can be produced in period t. Fol-
lowing the notation of [2], the multi-level, multi-item production planning problems
with big bucket capacities can then be formulated:

min
NT∑

t=1

NI∑

i=1

f ity
i
t +

NT∑

t=1

NI∑

i=1

hits
i
t

s.t. sit−1 + xit = sit + dit, t ∈ [1, NT ], i ∈ endp, (1)

sit−1 + xit = sit +
∑

j∈δ(i)
rijxjt , t ∈ [1, NT ], i ∈ [1, NI] \ endp, (2)

NI∑

i=1

(aikx
i
t + ST iky

i
t) ≤ Ck

t , t ∈ [1, NT ], k ∈ [1, NK], (3)

xit ≤M i
ty
i
t, t ∈ [1, NT ], i ∈ [1, NI], (4)

y ∈ {0, 1}NT×NI , x ≥ 0, s ≥ 0. (5)

Here, (1) and (2) are flow conservation constraints for end-items and intermediate
items respectively. The constraints (3) are the big bucket capacity constraints, and
(4) guarantee that the setup variable is equal to 1 if production occurs. Finally, (5)
give the integrality and non-negativity constraints.

We note that uncapacitated relaxation and single-item relaxation have been stud-
ied previously by [5]. In addition, [4] introduced and studied the single-period re-
laxation with preceding inventory, where they also derived cover and reverse cover
inequalities for this relaxation. Finally, we also remark the work of [3] on a single-
period relaxation as a relevant study.

2 Two-Period Relaxation

Now, we present the feasible region of a two-period, single-machine relaxation of
the multi-level, multi-item production planning problems with big bucket capacities,
denoted by X2PL (see [1] for details).

xit′ ≤ M̃ i
t′y

i
t′ , i ∈ {1, . . . , NI}, t′ = 1, 2,
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xit′ ≤ d̃it′y
i
t′ + si, i ∈ {1, . . . , NI}, t′ = 1, 2,

xi1 + xi2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si, i ∈ {1, . . . , NI},

xi1 + xi2 ≤ d̃i1 + si, i ∈ {1, . . . , NI},
NI∑

i=1

(aixit′ + ST iyit′) ≤ C̃t′ , t′ = 1, 2,

x ≥ 0, s ≥ 0, y ∈ {0, 1}2×NI .

Since we consider a single machine, we dropped the k index from this formulation,
however, all parameters are defined in the same lines as before. Observe that for a
given time period t, the obvious choice for the “horizon” of this two-period relaxation
would be t+ 1, i.e., t′ = 1, 2 relate to the periods of t, t+α with α ∈ {1, . . . , NT − t}.
The parameters can be associated with the original problem parameters using the
relations M̃ i

t′ = M i
t+(t′−1)α, C̃t′ = Ck

t+(t′−1)α, and d̃it′ = dit+(t′−1)α,t+α for all i and
t′ = 1, 2.

Next, we remark the following polyhedral result for X2PL (see [1] for details).

Proposition 2.1 Assume that M̃ i
t > 0, ∀t ∈ {1, . . . , NT}, ∀i ∈ {1, . . . , NI} and

ST i < C̃t,∀t ∈ {1, . . . , NT},∀i ∈ {1, . . . , NI}. Then conv(X2PL) is full-dimensional.

In this study, we investigate the case of setup times ST i = 0,∀i ∈ {1, . . . , NI}.
Then a promising relaxation of X2PL is established and its polyhedral structures is
studied. We derive two classes of valid inequalities, cover and partition inequalities,
for this mixed integer set that are valid for X2PL as well. Next, we discuss on the
separation problems associated to those valid inequalities. Lastly, we include these
cuts in the cutting-planes algorithm to test the effectiveness of these inequalities in
closing the integrality gap by generating consecutive two-period relaxation versus
generating non-consecutive two-period relaxations. This talk will cover the details of
these aspects.
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1 Introduction

Manufacturing planning problems answer very diverse questions on different scales.
They range from long-term issues such as the choice of new plants to more opera-
tional problems such as the scheduling of operations on machines. Between these two
extremes, tactical planning aims at taking mid-term decisions such as determining
production plans, i.e. quantities to produce over a time horizon, generally taking
into account capacity constraints and customer demands. Capacity planning tries
to determine how many tools are required to support a given demand or how much
can be produced for a given set of machines while maintaining acceptable perfor-
mances. Production and capacity planning have been extensively studied for many
manufacturing systems for decades [1].

The semiconductor manufacturing industry is known to involve many various,
complex and large optimization problems. For an exhaustive review of planning
studies in this context, we invite readers to refer to [2]. Regarding production and
capacity planning problems, the main sources of difficulty come from the complexity
of production flows and the size of problems. Indeed, semiconductor manufacturing
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plants can be considered as job shop systems including, in particular, re-entrant flows,
batching constraints, numerous products and non-identical machines. Furthermore,
production factories usually process hundreds of jobs at the same time, all in dif-
ferent stages of their manufacturing routes, each job requiring hundreds of process
operations. This complexity forces researchers to develop simplified models, e.g. con-
sidering capacity only on bottleneck resources [3], grouping equipment as workcenters
[4], or reasoning only on quantities [5]. Our goal is to develop an approach that can
handle the complexity of a semiconductor manufacturing facility (fab), and in par-
ticular that can consider capacity constraints for all machines and avoid important
aggregation choices.

2 Problem Definition

The planning horizon is decomposed into periods, which can be days, weeks or months.
A set of jobs currently in the fab (usually called Work In Progress), as well as other
jobs to be started are considered. Each job has a customer delivery date also called
due date. The objective to optimize can take several forms such as minimization of
tardiness, minimization of cycle time or machine use rate maximization. A solution
plan has to define, for each operation of each job, the period in which it has to be
executed. A number of constraints are considered, the most important ones being
capacity constraints. Storage constraints are not considered as they are not critical
in semiconductor manufacturing.

Important characteristics of our problem include considering job units (lots of
usually 25 wafers), not just volumes, while not trying to determine a detailed schedule.
This choice allows a reasonably detailed plan to be determined and larger problems
than those encountered in classical operational planning to be considered.

3 Heuristic based planning approach

As previously mentioned, semiconductor manufacturing involves handling problems
with hundreds of jobs, each of them requiring hundreds of process operations. There-
fore, it is highly unlikely that exact solving methods could be industrially imple-
mented for real life instances. Hence, we developed a planning tool based on the use
of a heuristic, which is decomposed into three main modules detailed below.

3.1 Job Projection

This first module requires the input, for every type of product, of the associated
theoretical cycle time, which is mainly based on historical data. At the end of this
process, the projection module provides theoretical start and end dates for every
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operation of every job. It consequently generates a forecast of the operations to be
processed in each period. Questions such that in which period to assign an operation
starting in one period and ending in another have to be answered.

3.2 Workload Balancing

The second module aims at estimating the workload for each machine in each period,
i.e. at distributing the product quantities on non-identical machines. To solve this
problem, for each period and for each independent group of machines, we solve a linear
program whose objective is to minimize the maximum workload of the machines. At
the end of this process, we get a unique solution indicating the expected workload for
each machine. This workload can be larger than the capacity of the machine, i.e. the
machine can be overloaded. Analyzing this information allows potential bottleneck
machines to be predicted in the context of infinite capacity planning. To consider
the machine capacity constraints, we developed a third module that can be seen as a
forward smoothing procedure to move operations from one period to the next.

3.3 Step Shifting

The main input data of this module are the machine workloads. An iterative smooth-
ing procedure is then executed that, from the first period to the last, ensures that
the capacity constraints are satisfied. In each period, as long as there are overloaded
machines, the procedure selects the most overloaded machine, and among its assigned
operations, selects the one associated to the job which is late the least. The selected
operation is then postponed (as well as all following operations of the job) to the next
period and the corresponding workload is removed from all the machines to which
the operation was assigned.

Once the capacity constraints are satisfied for all machines in a period, the projec-
tion module is launched again for the next period, taking into account the operations
postponed by the “Step Shifting” module. The heuristic ends once all periods have
been considered.

The final production plan is the outcome of this module.

4 Performance Evaluation and Perspectives

We also developed a mathematical model to empirically analyze the problem com-
plexity. In order to improve the resolution speed of the model by a standard solver,
several techniques were used, such as the aggregation of certain operations or the use
of lower bounds established from the study of relaxed problems. However, in spite
of these improvements, several hours are still necessary to solve problems with only
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10 jobs. Therefore, it is impossible to use this model for problems with hundreds of
jobs, let alone thousands.

The heuristic is fully implemented in a factory of STMicroelectronics in France.
The decision support tool provides production and capacity plans in one minute for
large-sized real problems. A comparative study between the mathematical model and
the heuristic for instances of small sizes will be presented in the workshop.

Amongst future studies, extending the heuristic to consider multiple periods in the
“Workload Balancing” and “Step Shifting” modules seems promising. Indeed, these
modules take greedy decisions in a single period, without analyzing how the workload
could be better balanced between periods. For example, considering multiple periods
in the “step shifting” module would allow to better choose the lots to move to the
next period in the forward smoothing approach already implemented, and to develop
a backward smoothing approach.
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Abstract

We analyse the value of process flexibility in the context of a deterministic
lot sizing problem with backlogging, where several types of products can be
made on several alternative resources, like machines or plants. When multiple
parallel resources are present, the standard assumption is that each product
can be produced on any of the resources, i.e. we have complete resource flexi-
bility. However, it may be very costly in practice to install resources that have
complete flexibility, especially if the products are very different. Therefore, it
might be interesting to only implement a limited amount of flexibility where
each resource can produce only certain types of items. In order to study the
value of such process flexibility, we perform several analyses by proposing some
chaining configurations and two mathematical models. The first one determines
the best chain configuration and the second one determines the best flexibil-
ity configuration for a given budget. Our computational results show that the
benefits of a limited amount of flexibility depends on the level of capacity and
the homogeneity of the scenarios in terms of cost and demand.

1 Introduction

The literature on flexibility covers a wide spectrum of issues ranging from strategic
decisions such as capacity planning [1, 2] to detailed operational issues such as the
number of tool changes [3]. The concept of process flexibility in a supply chain defines
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the type of products that can be manufactured on various alternative resources such
as plants or machines.

Jordan and Graves [2] analysed the value of manufacturing process flexibility
in a stochastic model with a single period and single stage production environment
where multiple products can be produced in different capacitated plants. Each plant
can be either dedicated to one specific product or flexible to produce several different
products. Demand is random and it is possible that some of the demand will be lost
if there is insufficient capacity. More flexibility will allow one to satisfy more of the
total demand. The main insight from the paper is that almost all of the benefits of
total flexibility can be achieved by implementing only a small amount of flexibility,
but in a smart way. To analyse the value of process flexibility, [2] introduced the
concept of “chaining”. A “chain” is a group of ‘products and plants which are all
connected, directly or indirectly, by product assignment decisions. Within a chain, a
path can be traced from any product or plant to any other product or plant via the
product assignment links. The intuition behind this concept is easy to grasp. In the
stochastic context presented in [2], the longer the chain of products and plants, the
greater the opportunities are for shifting capacity for building products with lower
than expected demand to those with higher than expected demand.

This chaining principle has, to the best of our knowledge, not yet been explored
in a lot sizing context. Therefore, the main objective of this work is to analyse
the trade-off between the benefits of process flexibility and its cost in a lot sizing
context. More specifically, we analyse the value of process flexibility in the context
of the deterministic lot sizing problem with backlogging which consists basically of
determining the size of production lots, i.e. the amounts of each product to be
produced in each of the periods in the planning horizon, in a way that minimizes
total costs, respects the resource availability and meets the known demand of the
products.

2 Analysis of Process Flexibility Configurations

We will analyse the concept of process flexibility in a lot sizing context. The base
case for the comparison is the case in which each machine is dedicated to exactly
one specific product. In the deterministic lot sizing case, the value of flexibility will
be apparent if for this base case (i.e., with only dedicated machines), not all of the
demand can be satisfied on time leading to costly backorders. In such a case, adding
flexibility (i.e. some machines can produce several types of products instead of just
one) can decrease the amount of backlog and hence the total cost. The objective of
the experiments is to analyse the effect of long chains, such as proposed in [2], and
compare this against several other cases such as the base case with only dedicated
machines, the case with random flexibility where there is no specific pattern in the
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augmented flexibility, and the case of total flexibility where each machine can make
every product. We also analyse how different parameters such as the introduction of
setup times and the heterogeneity in demand and backlog costs have an impact on
the value of flexibility.

For each instance, we tested the effect of using different flexibility configurations
on the total cost. Figure 1 shows an example with 6 items, 6 machines and 4 of the
5 flexibility configurations that we analyse. The first case (case (a)) is the dedicated
case. In cases (b) and (c), we have added additional links to increase the flexibility.
The number of additional links (on top of the base case) is equal to the number of
items. However, the flexibility was added in different ways. In case (b) we have 3
clusters of 2 machines, whereas in case (c) we have a long chain. The goal is to
show the impact of adding the same number of additional links, when these are being
added in different ways. In the final case (d), all the flexibility links are present. In
the case of 12 and 24 machines this figure is extended in a straightforward way. For
the clustered configuration, we have 6 clusters of 2 machines for the 12 machine case,
and 12 clusters of 2 machines for the 24 machine case.

Figure 1: Flexibility configuration for 6 items.

The random flexibility configuration is not presented in Figure 1. In this random
flexibility configuration, we add the same amount of links as in the clustered and
the long chain, i.e. 6 additional links for the 6 machine case, 12 additional links
for the 12 machine case and 24 additional links for the 24 machine case. The addi-
tional links are added randomly. Since there are many ways in which links can be
added randomly to the dedicated case, we generated 10 different random flexibility
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configurations. We also note that there are many different long chains and clustered
configurations possible, by changing the sequence of the items as explained in Section
3.2. Therefore, we generated 10 different long chains and clustered configurations,
by changing the order of the items randomly and keeping the same structure of links
between machines and items. Finally, we also propose two mathematical models that
allow us to analyse the performance of the best chain and the case where all the
product-machine assignments are decision variables.

3 Discussion of the Computational Results

The computational results show that the benefits of flexibility which is measured
as the percentage decrease in the objective function value compared to the dedicated
case, depends on the characteristics of the instances, but in general are the highest for
medium levels of capacity. Furthermore, the benefit of the best chain is very close to
the benefit obtained by the total flexibility configuration for high levels of capacity and
for homogeneous (cost and demand) scenarios. However, for low capacity levels and
for non-homogeneous (cost and demand) scenarios, the best chain has a substantial
performance difference compared to the total flexibility case. Moreover, we do see
that almost all benefits of process flexibility are found by adding a limited number
of links, but not necessarily according to the chain principle and in some cases, this
limited number of links is substantially lower than the amount of flexibility needed in
a long chain. By comparing the performance of the average long chain with the best
chain, we also observe that the exact configuration of the long chain does not matter
for the homogeneous case. However, the exact configuration of the chain becomes
very important for low capacity levels with backlog heterogeneity and considering
setup times, and for medium capacity levels considering demand heterogeneity.
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1 Introduction

In some manufacturing systems, the sequence in which products are processed is
fixed in order to follow certain production rules, or to minimize setup times and costs
such as the ones required when changing colors. However, not all products have to
be manufactured in each period. In this context, we consider a special case of the
Capacitated Lot Sizing Problem (CLSP) with sequence dependent setups, which is
called CLSP with a fixed product sequence. In this case, the number of potential
setup sequences is reduced to O(n2n) compared to O(n!) for the CLSP with sequence
dependent setups. To our knowledge, no research has been conducted on this problem.
The recent work of [3] considers a fixed sequence in the general job-shop scheduling
problem but without sequence dependent setups.

In this presentation, the problem is shown to be NP-hard, and four mixed inte-
ger programming formulations are presented. Also, a column generation heuristic is
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developed. Computational results on benchmark instances are presented to evaluate
the proposed formulations and the performance of the column generation approach.

In the CLSP with a fixed product sequence, denoted by CLSP-FS1, the production
sequence chosen in each period are restricted to satisfy certain properties, which
depend on the fixed product sequence.

Definition 1.1 Given two sequences ω = 〈ω1, ω2, . . . , ωn〉 and α = 〈α1, α2, . . . , αm〉
(m ≤ n+ 1), we say α follows the order of ω, denoted by α � ω, if

1. αi ∈ ω for i ∈ {1, 2, . . . ,m}.
2. αi 6= αj for i 6= j ∈ {1, 2, . . . ,m} unless i = 1 and j = m.

3. Let i be the index such that ωi = α1 and define sequence
β(i) = 〈ωi, ωi+1, . . . , ωn, ω1, ω2, . . . , ωi−1, ωi〉. There exists a subset
Ω′ = {ωi1 , ωi2 , . . . , ωinm

} ⊆ β(i) such that
〈α1, ωi1 , ωi2 , . . . , ωin1

, α2, ωin1+1 , ωin1+2 , . . . , ωin2
, α3, . . . , αm, ωinm−1+1 , . . . , ωinm

〉 =

β(i).

We consider the CLSP with a single machine whose parameters are:

N = {1, 2, . . . , N}, the set of N products,
T = {1, 2, . . . , T} the set of T time periods,
capt: Machine capacity in period t,
dit: Demand of product i in period t,
ptit: Unitary production time of product i in period t,
hcit: Unitary inventory cost of product i in period t,
bit: Maximum amount of product i that can be produced in period t,
stij: Setup time from product i to product j,
scij: Setup cost from product i to product j,
ω = 〈ω1, ω2, . . . , ωN〉, ωk ∈ N ∀k and ωi 6= ωj for i 6= j.

In CLSP-FS1, the production sequence and the production quantity of each prod-
uct in each period must be determined so that all demands are satisfied with a mini-
mum total cost while respecting the machine capacities. Moreover, the chosen period-
sequence of each period s(t) has to satisfy that s(t) � ω.

Theorem 1.1 CLSP-FS1 is NP-hard.

We prove this theorem by reduction from the knapsack problem.
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2 Formulation

We first present an aggregated, sequence-oriented formulation (AG-SO). Let S = {s :
s � ω}. Given a sequence s ∈ S with length L(s), its associated setup cost sc(s)

and setup time st(s) are defined as follows: sc(s) =
∑L(s)−1

k=1 scsk,sk+1
and st(s) =∑L(s)−1

k=1 scsk,sk+1
. We introduce the following variables for i ∈ N , t ∈ T and s ∈ S:

xit ∈ R+: Quantity of product i produced in period t,
Iit ∈ R+: Inventory of product i at the end of period t,
wst ∈ {0, 1}: Is equal to 1 if sequence s is chosen for period t, and 0
otherwise.

The problem can be formulated as follows:

min
∑

i∈N ,t∈T
hcitIit +

∑

s∈S,t∈T
sc(s)wst (1)

s.t. Ii,t−1 + xit = Iit + dit i ∈ N , t ∈ T (2)
∑

i∈N
ptitxit +

∑

s∈S
st(s)wst ≤ capt t ∈ T (3)

xit ≤ bit
∑

s∈S:i∈s
wst i ∈ N , t ∈ T (4)

∑

s∈S
wst = 1 t ∈ T (5)

∑

s∈S
s1ws,t+1 =

∑

s∈S
sL(s)wst t ∈ T \{T} (6)

xit, Iit ≥ 0, Ii,0 = 0 i ∈ N , t ∈ T (7)

wst ∈ {0, 1} s ∈ S, t ∈ T (8)

The objective function (1) includes the inventory cost and setup costs. The material
flow balance constraints are formulated as (2). Constraints (3) ensure that the used
capacity does not exceed the available capacity. Constraints (4) express that there can
be a production for product i only if there is a setup for i, which implies that a sub-
sequence containing i is selected. One and only one sub-sequence can be chosen, which
is guaranteed by Constraints (5). At last, Constraints (6) express the consistence of
the chosen sequences from one period to the next, which means that the last product
of period t should be the same as the first product of period t+ 1.

We have also developed three other MIP models based on classical formulations for
the CLSP ([1]): Aggregated product-oriented formulation (AG-PO), facility location
based sequence-oriented formulation (FL-SO) and facility location based product-
oriented formulation (FL-PO). The sequence-oriented formulation has exponential
size, whereas the size of the product-oriented formulation is polynomial. Due to
space limit, they are not presented here.
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3 Numerical results

We performed preliminary computational experiments to compare the four formula-
tions on 10 instances from [2] with only the first 10 products and 10 periods. The
results obtained with the standard solver IBM ILOG CPLEX 12.6 and a time limit of
10 minutes are summarized in Table 1, which provides average values over all tested
instances and for each formulation of: the objective function, the computational time,
the relative gap compared to the best known lower bound, the number of columns,
the number of binary variables, the number of constraints (rows) and the number of
nodes in the search. Moreover, the lower bounds associated to the linear relaxation
and its computational time are also given.

Table 1: Computational results

MIP LP

Inst Obj Time Gap (%) LB Cols Binary Rows Nodes Obj Time

AG-SO 42,921 600 3.8 37,383 102,501 102,300 320 15,448 11,486 6
FL-SO 42,200 601 2.2 40,516 102,851 102,300 770 27,462 39,991 15
AG-PO 42,277 581 2.4 40,612 6,712 6,511 1,312 159,063 9,038 0
FL-PO 42,178 560 2.1 41,188 7,062 6,511 1,762 154,882 37,138 0

* Time in seconds.

Note that formulation FL-PO gives the lowest average gap of (2.1%), whereas
formulation AG-SO gives the largest average gap (3.8%). Moreover, formulation FL-
PO also has the shortest computational time compared to the other formulations.
When considering the linear relaxation, formulation FL-SO gives the best average
lower bound while formulation AG-PO gives the worst average lower bound.
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1 Introduction

We address lot-sizing problems in the context of energy management where a single
non-reversible energy source is used to fulfill a discrete energy demand over a planning
horizon. In addition, a reversible source (such as battery and super-capacitor) can
be used to store and/or to supply energy assuming a limited capacity. Therefore, a
careful management of the energy storage is required to optimize the total production
cost. The non-reversible source is characterized by an efficiency function allowing to
get the amount of usable energy for a given cost. The inverse of this function is used
in lot-sizing models to get the cost related to the produced amount of energy over the
planning horizon. Similarly, efficiency aspects have to be considered for the reversible
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source. Losses can also be assumed when carrying energy units from a period to
another.
Energy management was already considered within production scheduling problems [1,
2], but very few works address energy management in lot-sizing problems. We quote
the work of Masmoudi et al. [5] that introduce explicitly the price of electricity as
well as availability limitations in the considered lot-sizing models.
The aim of our study is to provide a classification of this new class of lot-sizing
problems for energy management mainly based on the structure of the efficiency
functions. Our focus is on drawing the boundary between polynomially solvable and
NP-complete cases.

2 Problem definition and formulation

We consider that an energy demand dt in period t has to be satisfied over a discrete
planning horizon of T periods. A storage capacity bt of the reversible source is avail-
able in period t. The efficiency function of the non reversible source is denoted by
ρ. For the reversible source, f (resp. g) is the efficiency function when the source
produces (resp. stores) an amount of energy. The objective function consists in min-
imizing the total energy cost over the planning horizon to satisfy the demand subject
to inventory limitations and efficiency aspects.
The quantity of energy produced by the non reversible source in period t is denoted
xt. The variable st is the energy inventory carried from period t to period t + 1 by
the reversible source The amount of energy collected at period t by the reversible
source is denoted zt. The usable energy produced by the reversible source at period
t is given by wt. The mathematical formulation of the problem is provided below.

min
T∑

t=1

ρ−1(xt) (1)

s.t.

xt − dt = zt − wt ∀t ∈ {1, · · · , T} (2)

st = st−1 − f−1(wt) + g(zt) ∀t ∈ {1, · · · , T} (3)

st ≤ bt ∀t ∈ {1, · · · , T} (4)

xt, st, wt, zt ∈ R+ ∀t ∈ {1, · · · , T} (5)

The objective function (1) minimizes the total energy cost over the planning hori-
zon. Constraints (2) are energy demand constraints where the difference zt − wt

represents the inventory variation in the reversible source that can be either positive
or negative. Constraints (3) are the inventory balance equations and Constraints (4)
impose a limitation on the storage capacity of the reversible energy source.
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3 Classification and complexity analysis

We introduce a classification based on two fields α/β. They provide the characteristics
of the non reversible source efficiency function (ρ−1(.)) and the characteristics of the
reversible source efficiency functions (f−1(.) and g(.)), respectively. The fields α and
β can have the following values:

- I: Identity function (φ(x) = x),
- P: Proportional function (φ(x) = ax),
- L: Linear function (φ(x) = ax+ b),
- CC: Concave function,
- CV: Convex function,
- PWL: Piecewise linear function.

Table 1 summarizes the complexity results for each configuration of fields α and β
when no inventory losses are taken into account. Notations ”P”, ”NP-H” and ”?”
stand respectively for: Polynomial, NP-Hard and open problem.

Reversible source efficiency function
I P L CC CV PWL

N
on

R
ev

er
si

b
le

so
u
rc

e
effi

ci
en

cy
fu

n
ct

io
n

I P P ? ? ? ?
P P P ? ? ? ?
L P NP-H NP-H NP-H NP-H NP-H

CC P NP-H NP-H NP-H NP-H NP-H
CV ? NP-H NP-H NP-H NP-H NP-H

PWL NP-H NP-H NP-H NP-H NP-H NP-H

Table 1: Summary of complexity results

A dominance property can be derived regarding the amount of collected and produced
energy. We show that there exists an optimal solution that satisfies wtzt = 0 at each
period of the planning horizon. We show that some classes are polynomially solvable
such as P/I problem that can be solved in O(T log T ), and L/I and CC/I problems
that are solvable in O(T 2). We prove that the PWL/I problem is NP-hard via a
reduction from the partition problem and provide a pseudo-polynomial dynamic
programming algorithm to solve it. This result generalizes the results of [3]. We
also prove that the L/P problem is NP-hard via a reduction from the knapsack
problem. We extend some structural properties proposed in [4] to provide a block
decomposition of the optimal solutions of the problem.
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4 Conclusion and perspectives

In this study, we introduce a new class of lot-sizing problems that deal with energy
management. We prove that some classes remain polynomially solvable while several
other classes turn to be NP-Hard. We also study some classes when considering
inventory losses from one period to another. We show that this problem remains
polynomially solvable for the classical CC/I case.
As future research directions, first, it will be interesting to close all open problems
in Table 1 and to propose solution methods for each class of problems. A second
research direction is to consider inventory losses for all classes addressed in Table 1.
A last perspective would be to consider several non reversible sources and/or several
reversible sources.
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Abstract

We consider single-item lot-sizing problems which are (NP-)hard because of the
shape of the objective function, typically not concave. We propose polynomial
time approximation algorithms based on a ‘sandwich’ technique, in which the
objective function of the original problem is bounded from below and above by
cost objective functions. In fact, finding the tightest sandwich function is an
optimization problem on its own, of which the result determines the obtained
approximation ratio, typically depending on the problem parameters. We show
that this idea can be applied to several lot-sizing problems such as the problem
with batch procurement or with a modified all-unit discount cost structure.

1 Introduction

Consider the minimization problem (P)

min f(x)
s.t. x ∈ F,

with f(x) some ‘complicated’ objective function and F the feasible region. Suppose
that we are able to find some ‘easy’ function r(x) and parameter β > 1 satisfying

r(x) ≤ f(x) ≤ βr(x) for any x ∈ F .
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Then we say that f(x) is β-sandwiched by r(x). Now consider the relaxed problem

min r(x)
s.t. x ∈ F,

and assume it can be solved efficiently with x̂ an optimal solution. Then it is not
difficult to verify that x̂ gives a β-approximation for problem (P). We will apply this
principle to several lot-sizing problems.

2 Lot-sizing with batch procurement

Consider some lot-sizing problem with a FTL cost structure with batches of size B.
That is, the cost to order a quantity x ≥ 0 is given by:

f(x) = KI(x > 0) + dx/Bek + px

with K ≥ 0 the setup cost, k ≥ 0 the fixed cost per batch, p ≥ 0 the unit ordering
cost and I(·) the indicator function. It is not difficult to verify that for x ≥ 0 the
function f(x) is 2-sandwiched by

r(x) = 1
2
(K + k)I(x > 0) + 1

2
(k + p)x.

However, we can find a tighter sandwich function. To this end, consider the
parameterized function

rα(x) = (K + αk)I(x > 0) + ((1− α)k + p)x

with 0 ≤ α ≤ 1. If f(x) is β-sandwiched by rα(x), then one can verify that the
conditions βK+βαk ≥ K+k and β(1−α) ≥ 1 should hold. Therefore, the ‘optimal’
sandwich function can be found by solving the (non-linear) problem

min
α,β

β

s.t. βK + βαk ≥ K + k,
β(1− β) ≥ 1,
0 ≤ α ≤ 1,

which has an optimal objective value of β∗ = K+2k
K+k

< 2 for K > 0. For instances
such that K ≤ k, which is a quite realistic assumption, we obtain an a posteriori
performance guarantee of at most 3/2.

We now apply this result to find approximation algorithms for two lot-sizing prob-
lems with batch procurement. As the first example, consider the single-item multi-
level problem with level-dependent batch sizes Bi, which we can show to be NP-hard.
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Now using the above sandwich function for each level i and period t and solving this
relaxed problem with the O(LT 4) algorithm of [1], gives a β-approximation with

β = max
i,t

{
Ki
t + 2kit
Ki
t + kit

}
≤ 2.

The second example is a single-level lot-sizing problem where two different batch
(or truck) sizes can be used. Each mode i delivers units in batches of size Bi, and
incurs a FTL cost. To the best of our knowledge, the complexity of this problem is
unknown. Let

fi(x) = KI(x > 0) + dx/Bieki + pix

In any period, it is possible to procure units using any combination of the modes.
Hence, the optimal cost to procure x units is

f(x) = min
0≤y≤x

{f1(y) + f2(x− y)}.

Now let ri(x) be an affine βi-sandwich function for fi(x). Then one can show that
the function r(x) = min0≤y≤x{r1(y) + r2(x − y)} is (i) a β-sandwich function with
β = max{β1, β2} ≤ 2 for f(x), and (ii) a concave function. This means that by
solving a single-level lot-sizing problem with relaxed cost function r(x) which can
be done in O(T 2) time, we obtain a max{β1, β2}-approximation algorithm. Similar
results hold in case of a fixed number of modes.

3 Modified all-unit discount cost function

Consider a modified all-unit discount cost function with N price rates pi and discount
levels Mi (i = 1, . . . , N). For suitably chosen M ′

i the function is defined as

q(x) =





0 if x = 0
C1 = p1M1 if 0 < x ≤M1

p1x if M1 < x ≤M ′
1

C2 = p1M
′
1 if M ′

1 < x ≤M2

p2x if M2 < x ≤M ′
2

...
pNx if x > MN

Note that this is a piecewise linear function with alternating zero and positive slopes.
We want to β-sandwich this function q(x) by some affine function r(x) = a + bx.
In order to optimize the sandwich ratio, it turns out that only the breakpoints are
important, and after some further analysis one needs to solve the following non-linear
optimization problem:

min
a,b,β

β
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s.t. βa ≥ C,
β(a+ bM ′

i) ≥ piM
′
i , for i = 1, . . . , N − 1,

a+ bMi ≤ piMi, for i = 1, . . . , N,
βb ≥ pN .

This problem can be solved by realizing that there exists an optimal solution such
that (a) r(x) intersects q(x) at least once, (b) βr(x) intersects q(x) at least once, and
(c) there will be (at least) three intersections in total. This means we can solve the
problem by (i) setting three constraints at equality, (ii) solve for a, b, β, and (iii) pick
the best among the feasible solutions.

We apply this approach to the single-item problem with modified all-unit discount
cost functions, which is NP-hard as shown in [2], who also give a 4/3-approximation
algorithm. The pictures below show our approach applied to one of the examples in
this paper. It turns out that two of the four cases lead to a feasible solution with
β = 5/3 the best ratio. Finally, note that our approximation would not become worse
(in general better) if we generalize the problem to time-invariant capacities, because
the sandwich ratio optimization problem becomes less constrained.

Figure 1: Finding sandwich functions for a modified all-unit discount cost function
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Abstract

We study a single-item lot sizing problem with a limited energy consumption
in a shop constituted of M parallel, identical and capacitated machines. Each
machine consumes a certain amount of energy when being turned on, when pro-
ducing units and when being on, whatever it produces or not. In addition to
the classical lot sizing costs (setup, unit production and unit inventory costs),
we also consider a start-up cost, to pay to turn on a machine. All parameters
are time-dependent. The objective is to satisfy the demand over the horizon at
minimum cost while respecting the amount of available energy in each period.
We show this problem to be NP-hard even under restricted conditions. Then,
assuming stationary energy parameters, null setup cost and null running pa-
rameters, we propose an exact polynomial time algorithm in O(M5T 4), with M
being the number of machines and T the number of periods. This algorithm is
then adapted to solve the general problem in time O(M6T 6) under stationary
energy parameters.

1 Introduction

The optimization of the production planning is no more only cost and benefit ori-
ented, but is also designed to be energy-efficient. Most of the papers published in
the domain of energy-aware production planning focus on energy-efficient machine
scheduling problems (see Biel and Glock [1]). To the best of our knowledge, there
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are only a few studies in the literature coupling energy issues with discrete lot sizing
problem: Masmoudi et al. [3], Giglio et al. [2] and Rapine et al. [4]. In [3] and [2], the
authors consider respectively flow-shop and job-shop systems where they integrate
some energy cost or constraints and propose heuristics to solve them. Theoretical
results (complexity analysis, exact algorithms, etc.) are thus quasi-inexistant con-
cerning the energy-aware lot sizing problem, apart from Rapine et al. [4] detailed
below.

The problem we consider here was first introduced by Rapine et al. [4]. The
authors propose an efficient O(T log T ) time algorithm assuming stationary start-up
costs and only one activity (start-up or production) consuming energy. In this study
we extend the previous model to a more realistic case. We consider time-dependent
cost parameters: Start-up costs, joint production setup costs, and running costs for
each machine not turned off. In each period, we have to decide how the available
amount of energy is shared among the start-up of the machines, the production of
units, and keeping the machines turned on (no matter if producing or not). We
show this problem to be NP-hard if some energy parameters are time-dependent,
even on a single resource with non-null setup or running costs. We also show that
the problem is polynomially solvable if all the energy parameters, that is periodic
amount of available energy, start-up and unit consumptions, are stationary. We
propose a dynamic programming algorithm in O(M6T 6) time for the general case.
Assuming stationary energy parameters, null setup cost and null running parameters,
the overall complexity is reduced to O(M5T 4) time.

2 Problem formulation

A mixed integer linear programming formulation of the problem is given below, with
the following decision variables:

xt : quantity produced in period t
yt : setup variable in period t
st : quantity remainin in stock at the end of t
mt : the number of machines running in t
m+

t : the number of machines turned on in t
m−

t : the number of machines turned off in t

and the following parameters :
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dt : demand in period t
U : capacity of a machine
M : number of machines in the system
E : amount of energy available in each period
Kt : joint set-up cost for producing in period t
ct : unit production cost in t
ht : unit holding cost from period t to t + 1
ft(k) : cost to turn on k machines in t
rt : running cost, incurred by each machine running during period t
gt : running energy consumption in period t
pt : unit energy consumption to produce one unit in t
wt : energy consumption to start a machine in t

The MILP formulation of the problem can thus be written as follows :

min
∑T

t=1(ft(m
+
t ) + ctxt + htst + rtmt + Ktyt)

s.t. st−1 + xt = st + dt ∀t ∈ {1..T} (1)

xt ≤ Umt ∀t ∈ {1..T} (2)

pxt + wm+
t + gmt ≤ E ∀t ∈ {1..T} (3)

mt = mt−1 + m+
t −m−

t ∀t ∈ {1..T} (4)

mt ≤M ∀t ∈ {1..T} (5)

xt ≤ UMyt ∀t ∈ {1..T} (6)

st ≥ 0, xt ≥ 0, yt ∈ {0, 1},mt ∈ Z+,m+
t ∈ Z+,m−

t ∈ Z+ ∀t ∈ {1..T} (7)

Constraint (1) is the material balance between the production, storage and de-
mand in each period. In a period t the production is limited by two constraints:
production capacity due to the machines on (2) and energy restriction constraint (3).
Constraint (4) represents the total number of machines running in each period. Con-
straint (5) indicates that the number of machines running can not exceed the total
number of machines in the system. Constraint (6) forces variable yt to be equal to 1
if the quantity xt is positive. The feasibility domains are given by constraint (7).

We assume that production costs follow non-speculative motives, also called Wagner-
Whitin (WW) cost structure.

Theorem 1 If the number M of machines is part of the instance, problem energy-
LSP is NP-hard even with null production cost (c = 0) and null holding cost (h = 0),
and with stationary energy parameters E and w.
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3 Polynomial time algorithms

We propose dynamic programming algorithms to solve energy-LSP under stationary
energy parameters. We show that, in a dominant solution, each production period
with a non null entering stock uses either entirely the available capacity (all the
machines that are not turned off produce at full capacity), or entirely the available
amount of energy (for production and/or for starting additional machines). In a
classical approach, we decompose the problem into subplans, and evaluate the optimal
cost of each subplan, for a given number of machines turned on at the beginning and
at the end of the subplan. Finally, we use a shortest path algorithm to obtain the
overall optimal cost. We obtain the following result:

Theorem 2 Problem energy-LSP can be solved in polynomial time in O(M5T 4) if
energy parameters p, w and E are stationary.

Theorem 3 Problem energy-LSP with running costs, joint setup costs and running
energy consumption can be solved in polynomial time in O(M6T 6) if energy parameters
p, w, g and E are stationary.
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Abstract

We consider the lot-sizing problem where demands are uncertain. The de-
mand can be satisfied by production, by inventory held in stock or backlogged.
A recourse model is considered where the production decisions are first stage
decisions and the stock and backlog variables are adjustable to the demands.
For the uncertainty set, we consider the classical budget polytope introduced
by Bertimas and Sim (2003, 2004).

We revisite the two classical robust approaches for this problem: the true
min-max approach introduced by Bienstock and Ozbay (2008) and the dualiza-
tion approach from Bertsimas and Thiele (2006). Our main contribution is to
derive the dualization approach from a lagrangean relaxation of the maximiza-
tion sub-problem occurring in the min-max approach, and, as a consequence,
to provide a better understanding of the relation between the two approaches.
Moreover, such relaxation can be regarded as a less conservative and tractable
robust approach.

1 Introduction
We consider a simple lot-sizing problem defined for a finite time horizon T =

{1, . . . , n}. For each time period, t ∈ T, the unit holding cost ht, the unit backlogging
cost bt and the unit production cost ct are considered. The demand in time period
t ∈ T is given by dt. For t ∈ {1, . . . , n+ 1}, we define xt as the inventory at the start
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of period t (x1 is the initial inventory level). If xt is negative it indicates a shortage.
Variables ut ≥ 0 indicate the quantity to produce in time period t ∈ T.

When dt is known and fixed we obtain a basic deterministic lot-sizing problem
that can be modelled as follows:

min
u,x

T∑

t=1

(ctut + max{htxt+1,−btxt+1})

s.t. xt+1 = xt + ut − dt, 1 ≤ t ≤ T,

ut ≥ 0, 1 ≤ t ≤ T.

where max{htxt+1,−btxt+1} gives the holding cost htxt+1 if xt+1 > 0 and the back-
logging cost −btxt+1 if xt+1 < 0 at the end of time period t+ 1.

Here we consider the case where the demands dt are uncertain and belong to the
well known budget polytope introduced by Bertsimas and Sim [3]:

∆ = {d|dt = µt + δtzt,
t∑

j=1

|zj| ≤ Γt, zt ∈ [−1, 1], t ∈ T}.

Two approaches to handle with demand uncertainty have been proposed. Bien-
stock and Ozbay (2008) propose a min-max approach where, for a given production
vector, the demand dt is being picked by an adversary. The min-max formulation is
the following:

R∗ = min
u≥0

R(u)

where

R(u) = max
z,x

T∑

t=1

(ctut + max{htxt+1,−btxt+1}) (1)

s.t. xt+1 = xt + ut − dt, t ∈ T, (2)
dt = µt + δtzt, t ∈ T, (3)

t∑

j=1

|zj| ≤ Γt, t ∈ T, (4)

zt ∈ [−1, 1], t ∈ T. (5)

R(u) is known as the adversarial problem. R(u) can be modelled as mixed integer
problem as follows.

First, using equations (2) and (3) it is possible to write

xt+1 = x1 +
t∑

j=1

(uj − µj − δjzj) , t ∈ T. (6)
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Using (6) and setting yt = max{htxt+1,−btxt+1}, R(u) can be modelled as follows
(see [7]):

R(u) = max
z

T∑

t=1

(ctut + yt) (7)

s.t. yt ≤ htxt+1 +Mwt, t ∈ T, (8)
yt ≤ −btxt+1 +M(1− wt), t ∈ T, (9)
wt ∈ {0, 1}, t ∈ T, (10)

t∑

j=1

|zj| ≤ Γt, t ∈ T, (11)

zt ∈ [−1, 1], t ∈ T. (12)

Bienstock and Ozbay [5] solve the min-max problem using a decomposition ap-
proach. A similar approach is used in [1] where the adversarial problem is solved by
dynamic program.

Another approach was proposed earlier by Bertsimas and Thiele [5] following
the general robust optimization approach proposed in [4]. The idea is to consider for
each individual constraint (6) the realization of the uncertainty parameters (demands)
leading to the worst case value (higher cost). This leads to the following model (see
[5]):

C∗ = min
u

T∑

t=1

(ctut + yt) (13)

s.t. yt ≥ ht

(
x1 +

t∑

j=1

(uj − µj) + Aj

)
, t ∈ T (14)

yt ≥ −bt
(
x1 +

t∑

j=1

(uj − µj) + Aj

)
, t ∈ T (15)

ut ≥ 0, t ∈ T. (16)

where

At = max
v

t∑

j=1

δjzj

t∑

j=1

|zj| ≤ Γt, t ∈ T

zt ∈ [−1, 1], t ∈ T
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As the worst case for each time period can occurs for different demand values one
can easily see that the Bertsimas and Thiele approach tends to be more conservative
than the min-max approach, where the solution for the adversarial problem is a single
demand vector. Consequently, R∗ ≤ C∗. On the other hand model (13)-(16) is easier
to solve than the min-max problem. In order to avoid both the conservativeness of
(13)-(16) and the hardness of the min-max approach, in [2] and [7] are discussed other
conservative approximations for the min-max problem obtained through relaxations
of the uncertainty set, namely using affine approximations.

Our contribution is to derive a lagrangean relaxation from a reformulation of
the adversarial problem (7)-(12). From that relaxation we obtain new conservative
approximations for the min-max problem, and in particular, we show the intuitive
result that when the multipliers are null model (13)-(16) is obtained. Computational
tests are reported to compare the true min-max values with the other conservative
approximations.

References
[1] Agra A, Santos M C, Poss M, Nace D, A dynamic programming approach for

a class of robust optimization problems, SIAM Journal of Optimization, 26(3),
1799 - 1823, 2016.

[2] Ardestani-Jaafari A, Delage E, Robust optimization of sums of piecewise linear
functions with application to inventory problems, Operations Research, 64(2),
474 - 494, 2016.

[3] Bertsimas D, Sim M, Robust discrete optimization and network ows, Mathemat-
ical Programming, 98, 49 - 71, 2003.

[4] Bertsimas D, Sim M, The price of robustness, Opererations Research, 52, 35 -
53, 2004.

[5] Bertsimas D, Thiele A, A robust optimization approach to inventory theory,
Operations Research, 54(1), 150 - 168, 2006.

[6] Bienstock D, Özbay N, Computing robust basestock levels, Discrete Optimiza-
tion, 5 , 389 - 414, 2007.

[7] Gorissen B, Hertog D, Robust counterparts of inequalities containing sums of
maxima of linear functions, European Journal of Operational Research, 227(1),
30 - 43, 2013.

International Workshop on Lot Sizing (IWLS) 2017, Glasgow, Scotland

60



A decomposition algorithm for the robust lot
sizing problem with remanufacturing option
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Abstract

This study presents a decomposition procedure for solving the economic lot
sizing problem with remanufacturing under non-probabilistic parameter un-
certainties. Our method is motivated by reducing the computational effort
required for solving such complex problems, while demand and return parame-
ters are represented as parts of uncertainty sets, using the approach presented
in [2]. Our decomposition procedure is a variation of the work of [1], where
optimal base stock levels are computed for the traditional lot sizing problem
with linear production costs.

1 Introduction

The method presented in this paper is based on production systems with item recov-
eries, where total production costs and waste are reduced through restoring deformed
products to their usable state. More specifically, we are interested in the lot sizing
problem with remanufacturing (LSR), where our main aim is to construct an optimal
production plan that minimizes the total operational cost under inventory balance
and demand satisfaction constraints. Despite the variety of research on traditional
lot sizing problems (LS), the remanufacturing option has not been addressed as widely.

Initial studies on LSR problems include the work of [4] and [5], where the well-
known Wagner-Whithin algorithm is implemented. The complexity of the LSR prob-
lem was shown to be NP-hard by the recent work of [3], motivating further research
to investigate various methods to potentially reduce the computational time require-
ments. A dynamic programming algorithm presented by [6] has shown that the
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LSR problem can be solved in O(T 4) time under the absence of variable production
costs. [7] have shown the tractability of a polynomial time special case and have in-
troduced two classes of valid inequalities for the capacitated version of the problem.
However, studies concerning the influence of uncertainty on these formulations is very
scarce, with the exception of the very recent work of [8], looking into some classes of
robust problems including lot sizing.

Our approach is mainly motivated by the study of [1], where a decomposition pro-
cedure for solving robust inventory problems under demand uncertainty is introduced.
The proposed method in this study aims to extend the aforementioned framework to
contribute to the growing research on LSR, where demand and return uncertainty are
present.

2 Problem Formulation

2.1 Problem Structure

The objective function of our problem minimizes the total costs associated with
setup, manufacturing, remanufacturing, inventory, backlogging and disposal of re-
turned items. We assume two different levels of inventory with specific costs: ser-
viceables and returns. The serviceables inventory level applies for all items that are
considered as-good-as-new, including the returned items that have been remanufac-
tured, while returns that have not yet been remanufactured are kept as a different
inventory level called the returns inventory. In order to produce items, a joint setup
cost has to be incurred, meaning that both manufacturing and remanufacturing would
be allowed for that particular time period.

2.2 Parameter Uncertainties

We consider parameter realizations to be parts of independent uncertainty sets. These
uncertainty sets can be shown as UD

t for demands and UR
t for returns on a given time

period t = 1..T .

All uncertainty sets are formed as budgeted polytopes (see [2]). Accordingly, we
represent a given demand (return) realization as Dt = Dt + D̂zDt (Rt = Rt + R̂zRt ),
where their exact values are determined by the scaled deviation variables, zDt (zRt ).
The values of scaled deviation variables are constrained as 0 ≤ zDt ≤ 1 and 0 ≤ zRt ≤ 1
as they represent the relative amount of deviation from maximum allowed deviations
D̂ and R̂. This results in the demands and returns to take on values within the
intervals [Dt, Dt + D̂t] and [Rt, Rt + R̂t], respectively.
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3 Decomposition Algorithm

Our decomposition algorithm solves a restricted version of the robust LSR problem
iteratively. The restricted problem, which is referred to as the Decision Maker’s
Problem (DMP), is solved to optimality for a subset of demand ŨD ⊆ UD and re-
turn ŨR ⊆ UR points. Once solved, a new demand and return vector is returned
by another problem called the Adversarial Problem (AP). The objective of the AP
is to seek for new demand and return points that maximize the total inventory and
backlogging costs for the production plan that has been generated by the DMP,
through implementing different demand and return values from the corresponding
non-restricted uncertainty sets (UD and UR). Each time a new demand and return
vector is returned by the AP, the restricted uncertainty sets are updated and the
DMP is re-solved, until there are no remaining parameter realizations that result in
the generation of a production plan with a greater total cost. Due to the number of
extreme points in the initial uncertainty sets (UD

t and UR
t ) being finite, the DMP and

AP are guaranteed to converge.
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Abstract

We consider a production-clearing system where a product is produced on
a single production resource at a constant rate without stopping, and then
buffered to meet stochastic demands. The system is unconventional as the
production rate is typically higher than the demand rate. We show that an
(m, q)-policy, i.e., a policy that clears the buffer to level m as soon as the
inventory hits a level q, minimizes the long-term average cost. We also develop
a very efficient computational scheme to find the parameters of the optimal
policy.

1 Background

The models of production-clearing inventory models are useful to analyze inventory
systems where the supply of materials typically exceeds the demand or when it is too
expensive or difficult to switch off or reduce the production rate.

There are many industrial examples of such systems. For instance, dairy cooper-
atives are legally binded to acquire the milk produced in member dairy farms. It is,
therefore, not possible to reduce the milk supply when inventory levels are high and/or
demand rate is low. Also, in industries such as steel-casting or glass-production the
setup costs and/or setup times are so large that switching off continuous production is
economically undesirable, despite being possible in principle. Barron (2015) discusses
many other interesting examples where production-clearing models are relevant.

It is important to note that the inventory control problem faced in traditional
inventory systems is essentially different than the one in production-clearing systems.
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The problem in inventory systems is to control the input (in the form of replenish-
ment orders) such that customer demand is met. The problem in production-clearing
systems, on the other hand, is to control the output (in the form of clearing actions)
as production cannot be controlled.

2 Related Literature

The stochastic production-clearing systems were first in the earlier works of Stidham
(1974, 1977, 1986). The contemporary literature on the subject considers generaliza-
tions of the models introduced in these classical studies.

We can mention two main production-clearing problems in this line of research
which differ with respect to accessibility of the clearing option is over time. First,
there are “continuous-review” problems where it is always possible to clear invento-
ries. Second, there are “sporadic-review” problems where clearing is only possible at
random moments in time. Because the current study considers a continuous-review
problem, in the following we concentrate on the literature in this variant of the prob-
lem.

The literature on continuous-review stochastic production-clearing systems pre-
dominantly concentrates on computing the performance of a given clearing policy. In
this context, Kim and Seila (1993), Perry et al. (2005) and Barron (2015) consider
different cost structures and demand processes.

There are only a few studies which aim at finding an optimal policy that mini-
mize the long-term average cost.Berman et al. (2005) consider a production-clearing
system with exponentially distributed demand. The system is controlled by an “all-
or-nothing” policy that clears all inventory when the inventory level hits or exceeds a
critical level q. For this system, they minimize the long-run average cost as a function
of the clearing level q. The average cost function is stated in terms of the steady-
state distribution of the inventory level, which is obtained by using level crossing
arguments. Barron (2015) discusses a production-clearing system where the produc-
tion switches between a number of rates. However, it is assumed the clearing policy
follows an all-or-nothing rule.

3 Overview and Results

We consider a system where a single machine produces at a fixed rate and without
stopping a certain product into a buffer. The production rate is constant. The
demand is stochastic and follows a compound Poisson process. The production rate
is larger than the demand rate. Because production never stops, it is necessary to
prevent inventory levels to grow without bound. This is done by means of a clearing
policy that occasionally prescribes to clear a part or the complete inventory, for
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instance by selling (salvaging) the surplus in a secondary market with ample demand.
Thus, the control problem involves two types of decisions: when to clear and to
what level to clear the inventory. We assume general piecewise continuous inventory
costs. The clearing cost has fixed and variable components (c.f., Kim and Seila,
1993). We model demands as a compound Poisson process with a general demand
size distribution. Our analysis applies to both backordering and lost sales. We aim
at identifying a stationary clearing policy which minimizes the long-run average cost.

The main contributions of this study are as follows. First, we show that an (m, q)-
policy, i.e., a policy that clears the buffer to level m as soon as the inventory hits
a level q, minimizes the long-run average cost. This policy is more general than the
all-or-nothing policies considered in the literature. Second, we derive a numerically
efficient approach for finding the average-cost optimal policy. This approach uses the
concept of g-revised cost (see e.g. Wijngaard and Stidham, 1986) which is based on
the idea of reformulating a stochastic optimization problem into an equivalent op-
timal stopping problem which is much easier to analyze. Because we consider the
stochastic production-clearing systems under very general assumptions, our results
and methods subsume most of the earlier findings in the literature. Third, we numer-
ically investigate the sensitivity of the optimal policy. The results of our numerical
study reveals that even relatively small deviations from the optimal parameters can
lead to a substantial increase in the long-run average costs. This is especially critical
when the utilization is high.
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Abstract

This paper introduces capital flow to the single item stochastic lot sizing
problem. A retailer can leverage business overdraft to deal with unexpected
capital shortage, but needs to pay interest if its available balance goes be-
low zero. A stochastic dynamic programming model maximizing expected fi-
nal capital increment is formulated to solve the problem to optimality. We
then investigate the performance of four controlling policies: (R,Q), (R,S),
(s, S) and (s, Q, S); for these policies, we adopt simulation-genetic algo-
rithm to obtain approximate values of the controlling parameters. Finally, a
simulation-optimization heuristic is also employed to solve this problem. Com-
putational comparisons among these approaches show that policy (s, S) and
policy (s,Q, S) provide performance close to that of optimal solutions obtained
by stochastic dynamic programming, while simulation-optimization heuristic
offers advantages in terms of computational efficiency. Our numerical tests also
show that capital availability as well as business overdraft interest rate can
substantially affect the retailer’s optimal lot sizing decisions.

1 Introduction

Overdraft is widely used by many companies to prevent capital shortage. It is nec-
essary and important for a manager to take capital flow and external financing into
account when making operational decisions. Our contributions to the lot sizing prob-
lem are the following:
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• We incorporate capital flow and one kind of external financing, i.e. overdraft, in
the stochastic lot sizing problem and formulate a stochastic dynamic program-
ming model to obtain optimal solutions.

• We discuss four inventory controlling policies for this problem and use simulation-
genetic algorithm to obtain approximate values of the controlling parameters.

• We introduce a simulation-optimization heuristic inspired by the approach.

• We conduct a comprehensive numerical study to compare stochastic dynamic
programming, simulation-genetic algorithm and simulation-optimization heuris-
tic.

2 Problem description

All the notations adopted in this paper is listed in Table 1. In our problem, demand
is stochastic and non-stationary. For each period t, its demand is represented by Dt,
which is a non-negative random variable with probability density function ft, cumu-
lative distribution function Ft, mean µt, variance σ2. Random demand is assumed to
be independent over the periods. Unmet demand in any given period is back ordered
and satisfied as soon as the replenishment arrives. Excess stock is transferred to next
period as inventory and the sell back of excess stock is not allowed.

We assume the initial capital quantity of the retailer is B0; order delivery lead time
is zero; selling price of the product is p and the retailer receives payments only when
the products are delivered to customers; a fixed cost a is charged when placing orders,
regardless of the ordering amount, and Rt is a 0-1 variable to determine whether the
retailer makes order at period t; a variable cost v is charged on every ordering unit;
end-of-period inventory level for period t is It, and we set I+t to represent max{It, 0}
and I−t to represent max{−It, 0}; a variable inventory holding cost h is charged on
every product unit carried from one period to the next; per unit stock-out penalty
cost is π; at the beginning of each period t, its present capital is Bt−1, if its initial
capital is below zero, the retailer has to pay interests with a rate of b.

End-of-period capital Bt for period t is defined as its initial capital Bt−1, plus
payments by customers for satisfied demand of this period, minus the payments to
suppliers for orders made in this period and this period’s fixed ordering cost, holding
and backorder costs, and minus the interest paid if its initial capital is negative. It
can be represented by the following equation.

Bt = Bt−1+pmin
{
Dt+I

−
t−1, Qt+I

+
t−1

}
−
(
vQt + aRt + hI+t + πI−t

)
−bmax{−Bt−1, 0}

(1)
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The actual sales amount in period t is min
{
Dt + I−t−1, Qt + I+t−1

}
, where Dt + I−t−1

is demand plus backorder in period t and Qt + I+t−1 is the total available stock in
period t.

For the final capital of the retailer in the whole planning horizon, we defined it as
the end-of period capital BT , minus the interest paid if BT is negative, which is:

BT+1 = BT − bmax{−BT , 0} (2)

We use a tilde above the parameter to represent its expected value. Our aim is
to find a replenishment plan that maximizes the expected final capital increment, i.e.
B̃T+1 −B0.

3 Results and discussion

6 periods with different demand patterns are adopted for experiments and there are
640 numerical cases in total, our computation results show that policies (s, S) and
(s,Q, S) solved by genetic algorithm, in general perform better than other approaches
(RMSE: 3.17 and 3.25, respectively; MAPE: 5.68% and 5.59%, respectively), followed
by policy (R, S) (RMSE: 6.28, MAPE: 26.72%), simulation-optimization heuristic
(RMSE: 13.60, MAPE: 53.67%) and policy (R,Q) (RMSE: 15.90, MAPE: 66.63%).
Considering the confidence levels, performance of policy (s, S) and policy (s,Q, S) are
essentially identical. For the four controlling policies, it can be concluded that their
performance is related with their flexibility. Since policy (s, S) and policy (s,Q, S)
are based on ”dynamic uncertainty” strategy, which is most flexible, they perform
best for the problem, while the least flexible policy (R,Q) has worst performance. It
is however surprising that enforcing a maximum order quantity Q does not seem to
be beneficial, and that an (s, S) policy with parameters carefully selected seems to
provide competitive performances.

The performance of different approaches does not seem to be affected by different
parameter levels under the criterion RMSE; however, it is affected by the margin of
product — selling price and unit variable ordering cost under the MAPE criterion.
Finally, the performance of the simulation-optimization heuristic varies substantially
across different demand patterns.

In terms of computation times, the simulation-optimization heuristic runs faster
than genetic algorithm, with average computation time less than one second (0.04s).
Among the policies solved via genetic algorithm, policy (R, S) runs fastest (42.31s),
followed by policy (R,Q) (46.91s), policy (s, S) (184.88s), policy (s,Q, S) (194.39s).
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Notations Description

Indices
t Period index, t = 1, 2, . . . , N

Problem parameters
B0 Initial capital
I0 Initial inventory level
I+t max{It, 0}
I−t max{−It, 0}
p Product selling price
a Fixed ordering cost
v Unit variable ordering cost
h Unit inventory cost
π Unit penalty cost for back orders
b Interest rate for minus capital
M A big number

Random variables

Dt

Random demand at period t with probability density function ft(Dt),
cumulative distribution function Ft(Dt),
mean µt, variance σ2

State variables
It End-of period inventory for period t, we assume I0 = 0
Bt End-of period capital for period t

Decision variables
Qt Ordering quantity at the beginning of period t
Rt whether the retailer orders at period t
St Order up to level at the beginning of period t, and St = It−1 +Qt

st Threshold of the inventory level for (s, S) policy

Table 1: Notations adopted in our paper
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1 Introduction

Material requirements planning and scheduling are strongly related. Solving these two
levels in a hierarchical manner can quickly lead to suboptimal or infeasible plans. The
reason is that the classical MLCLSP neglects scheduling by assuming a lead time of
zero or one. In [1] that issue is solved by developing a model which synchronizes the
batches (MLCLSP-Sync). However, most standard MLCLSP benchmark instances
turned out to be infeasible using these more detailed problem formulations, i.e., it
was not possible to find a feasible solution fitting both levels. Moreover, the model
is hard to solve such that for some instances the solution status remained unknown.
That is, CPLEX was not able to determine whether the problem is feasible or not
within an acceptable time frame. Consequently, the following conclusions derive
from these results. It is necessary to solve the MLCLSP and the scheduling part
in an integrated model. Otherwise, MCLSLP solutions are likely to be infeasible
at the scheduling level. The MLCLSP-Sync has to be extended in order to provide
(practical) feasible solutions for every instance. Furthermore, a solution method is
needed for the MLCLSP-Sync in order to provide faster and better solutions.

2 Problem description

The MLCLSP-Sync of [1] showed that only a very small number of standard MLCLSP
instances is feasible for the case with lead time. Consequently, the model needs to be
relaxed in those cases in order to provide a solution feasible in practice. In literature
different approaches are common to ensure feasibility. Most prominent are overtime,
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backorders and subcontracting1. The following reasons speak against the usage of the
first two.

• Overtime: Weakens the formulation because the capacity limit serves as big-M
in several constraints. Overtime allows unlimited capacity and thus requires
the formulation of a new big-M which is not as tight as before. Moreover, in
practice overtime is not endless but limited.

• Backorders: In a multi-level structure the consequences of backorders on the
other stages would have to be modeled. The formulation would get even more
complex and thus harder to solve.

Subcontracting means that every missing unit is assumed to be purchased from an-
other company at a price csubi . This approach has several advantages. First of all,
it is not unrealistic to purchase missing parts in practice. Secondly, subcontracting
variable Xsub

it clearly shows at which stage (item i) and when (period t) a shortage
would occur.

2.1 MCLSP-Sync with subcontracting

The MLCLSP-Sync of [1] is adapted as follows. The objective function is extended
by multiplying subcontracting cost csubi of item i with the subcontracted amount Xsub

it

of item i in period t, see (1). Inventory holding cost hi occur for item i in period
t according to inventory level Iit. If there is a changeover Tijtm from item i to item
j in period t on machine m setup cost cij have to be paid. The inventory balance
constraints (2) calculate the inventory level of item i in period t based on the inventory
level of the previous period Iit−1, the production amount Xit and subcontracting
amount Xsub

it of item i in period t. This amount is reduced by internal demand,
i.e., if an amount Xjt of successor item j is produced in period t aij units of i are
needed per unit of j. The inventory level is further reduced by the external demand
Eit. Constraints (3) are also taken from the MLCLSP-Sync where they are used to
determine the production amount X̂ijt of item j starting before predecessor item i is
finished in period t. This is only possible if the inventory level Iit−1 of predecessor
item i is sufficiently high or if the required amount of i is subcontracted. For the
unchanged constraints (8)-(16) and (18) we refer to [1].

min
N∑

i=1

T∑

t=1

(hit · Iit + csubi ·Xsub
it ) +

N∑

i=1

N∑

j=1

T∑

t=1

M∑

m=1

cij · Tijtm (1)

1Another concept which is mathematically identical to subcontracting are lost sales. However,
lost sales do not make sense in a multi-level structure because a product cannot be produced if the
predecessor is not available.
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subject to

Iit = Ii(t−1) +Xit +Xsub
it −

∑

j∈Γ(i)

aij ·Xjt − Eit i, t (2)

(8)-(16),(18) in [1]

Xsub
it + Ii(t−1) ≥

∑

j∈Γ(i)

aijX̂ijt i, t (3)

Xsub
it ≥ 0 i, t (4)

2.2 Subcontracting cost csubi

In order to choose subcontracting cost csubi appropriately we have set it in relation to
the potential production cost, i.e. setup and holding cost. We want to ensure that
subcontracting is only used when there is not enough capacity, in other words, own
production should always be cheaper. Therefore, we get the following inequality.

Xit · csubi > Xit · hit · T + max
j
cji +

∑

j∈Γ−1(i)

csubj · aji ·Xit (5)

csubi > hit · T +
maxj cji
Xit

+
∑

j∈Γ−1(i)

csubj · aji (6)

Obviously, the fulfillment of inequality (6) depends on variable Xit. Since Xit ≥ 0
can become very small, i.e. close to zero, we can never ensure the validity of the
inequality for any csubi . This has an influence on our solution methods.

3 Computational tests

For the given problem two solution approaches with roots in multi-objective optimiza-
tion were tested. First, the presented model was just solved with an MIP solver. This
is considered as the weighted-sum approach where several (conflicting) objectives are
combined in a single function by using weights to indicate priorities. In our case the
weights are the given cost for setups and holding inventory as well as the (artificial)
subcontracting cost. We refer to it as MIP-WS. The second approach follows the
idea of the ε-constraint method and is therefore called MIP-ε. The reason is that
our primary goal is to find a feasible solution. Therefore, first the MLCLSP-Sync
is solved by minimizing subcontracting. Afterwards, subcontracting Xsub

it is limited
by the obtained subcontracting solution and then total cost are minimized. In the
optimal case we solve just the MLCLSP-Sync without subcontracting.

Both approaches were tested for a deterministic time limit of 5.76m CPLEX ticks
(about 7200 sec. on a computer cluster with Intel Xeon E5-2687W Processors at 3.1
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GHz with 256 GB of RAM) for the class1-class6 instances of [2]. For MIP-ε we set
the time limit for step 1 (minimizing subcontracting) to 2.88m CPLEX ticks. If step
1 stopped before this limit was hit the remaining time was added to the time limit of
step 2. In total the deterministic time limit was 5.76m CPLEX ticks as well.

The following observations could be taken from the results. For the small instances
of class1 and class2 the results were almost identical, therefore we consider here only
class3-6.

• MIP-ε found much more solutions without subcontracting than MIP-WS. For
classes 3,4,5,6 MIP-ε found in 75%, 60%, 87%, 48% of all cases a solution
without subcontracting whereas MIP-WS was successful only for 42%, 4%, 9%
and 0% of the instances.

• For the complete objective function comprising setup, holding and subcontract-
ing cost MIP-ε was better for 71%, 96%, 93% and 100% of all instances (classes
3,4,5,6).

• Although MIP-ε neglects setup and holding cost in the first step, at the end it
found more often a better solution regarding the sum of these two cost types.
It was superior in 70%, 90%, 70% and 58% of all cases (classes 3,4,5,6).

Consequently, extending the MLCLSP-Sync by allowing subcontracting is a help-
ful relaxation technique. It enables us to find a feasible lot-sizing and scheduling
solution easily. Searching for a solution with minimal subcontracting first (MIP-ε)
turned out to be superior to simply solving the MIP with the weighted sum approach
(MIP-WS). Further improvement is expected from reformulations. In [3] several of
the classical MLCLSP reformulations were also tested for the MLCLSP-Sync regard-
ing LP bounds and time for first feasible solutions.
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Abstract

We address a three-level lot sizing and transportation problem with a distri-
bution structure (3LSPD). We consider one production plant that produces one
type of item over a discrete and finite planning horizon. The items produced are
transported to warehouses and then to retailers using direct shipments. Each
retailer is linked to a unique warehouse and there are no transfers between
warehouses nor between retailers. The objective is to minimize the sum of the
fixed production and ordering costs and of the unit variable inventory holding
costs. We compare 12 different MIP formulations to solve the problem without
production nor transportation capacities. All these formulations are adapted
from the MIP formulations proposed for the One-Warehouse Multi-Retailer lit-
erature, and most of the formulations proposed are newly introduced in the
context of the 3LSPD. We run experiments on both a balanced and an un-
balanced network (in the balanced network each warehouse serves the same
number of retailers whereas in the unbalanced network 20% of the warehouses
serve 80% of the retailers). Our results indicate that the richer formulations
are not necessarily the best ones in terms of total CPU time, and that the
unbalanced instances are harder to solve.

International Workshop on Lot Sizing (IWLS) 2017, Glasgow, Scotland

77



1 Introduction

Over the last decades, lot sizing problems have attracted the attention of many re-
searchers, mainly because of their numerous applications in production, distribution
and inventory management problems. Extensions of the basic lot sizing problem
(LSP) are often encountered in the context of supply chain planning. Usually, the
customers of a company, which have a certain demand, are located in a different area
from the production plant where the items are actually produced and where lot sizing
decisions are made. This leads to a transportation problem where the company needs
to determine when to deliver the products to its customers so as to minimize the
transportation costs. Companies facing these two operational problems often make
decisions in sequence, where the output of the lot sizing problem becomes the input
of the transportation problem. This leads, however, to solutions that can be far from
the optimal solution of an integrated lot sizing and transportation problem.

We address here an integrated and uncapacitated three-level lot sizing and trans-
portation problem with a distribution structure (3LSPD). We consider a general man-
ufacturing company that has one production plant (level one), several warehouses
(level two) and multiple retailers (level three) facing a dynamic and known demand
for one item over a discrete and finite time horizon. The supply chain considered here
has a distribution structure: the warehouses are all linked to the single plant and all
retailers are linked to exactly one warehouse. When we consider the demand of a
particular retailer, the flow of goods in the supply chain network is hence as follows:
an item is produced at the production plant, then sent to the warehouse linked to the
retailer for storage and finally sent to the retailer to satisfy its demand. Figure 1 il-
lustrates this flow of goods in a distribution network which consists of one production
plant, three warehouses and three retailers linked to each warehouse. The objective
of the problem is to determine the optimal timing and flows of goods between the
different facilities while minimizing the operational and transportation costs in the
whole network (sum of the fixed setup and transportation costs and unit inventory
holding costs).

The motivation to work on MIP formulations for the 3LSPD is to extend the
works of Solyalı and Süral [1] and Cunha and Melo [2] who compare several MIP
formulations for the One-Warehouse Multi-Retailer problem (OWMR).

2 Formulations

The MIP formulations we propose are classified in three families: the classical based
formulations, the echelon stock based formulations and the rich formulations. The
classical based formulations extend the basic MIP formulation for the ULSP as used
by Pochet and Wolsey [4], and the reformulations that have been proposed in the
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Figure 1: Graphical representation of the problem considered

literature for the single item LSP. Indeed, we observe a single item lot sizing structure
for each retailer in the adaptation of this basic formulation. This means that we can
use the existing reformulations of the ULSP for each retailer. Such reformulations are
however not applicable to the warehouse or plant level, since they face a dependent
demand. Therefore, the classical based formulations contain the classical formulation
C, the classical network C-N and the classical transportation C-T formulations (where,
compared to the C formulation, a network and a transportation reformulation are used
at the retailers’ level, respectively). Finally, one can also use the polyhedral results
for the SI-ULSP to improve the classical formulation C at the retailers’ level. We
thus incorporate the (l, S,WW ) valid inequalities and obtain the C-LS formulation.

Employing the idea of an echelon stock presented in Federgruen and Tzur [3],
the 3LSPD can be decomposed into several independent SI-ULSP. To do so, the
inventory variables of the classical formulation C are replaced with echelon stock
variables representing the total inventory of the one item at all descendents of a
particular facility. This leads to the echelon stock formulation ES. Note that with
the introduction of the echelon stock variables, the problem has an uncapacitated lot
sizing structure with independent demand at each level. This means that we can apply
the known reformulation techniques for the ULSP at each level to obtain the ES-N,
ES-T and ES-LS formulations, where the network reformulation, the transportation
reformulation and the (l, S,WW ) inequalities are used, respectively.

The richer formulations contain the network formulation N, the transportation
formulation T and the multi-commodity formulation MC. The N formulation comes
from the property of extreme flows in a network applied to our problem. The T
formulation comes from the interactions between the facilities which are modeled
based on the transportation formulation for the SI-ULSP. Finally, the MC formulation
is based on the distinction of each retailer-time period pair. These three formulations
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are richer in the sense that the decision variables used contain more information than
the decision variables used in the other formulations. They also have a much higher
number of decision variables.

3 Numerical results

In order to assess the strenghts and weaknesses of the different formulations, we con-
ducted computational experiments by adapting the instances used in [1]. In order to
contrast our results, we also define two structures for the distribution network repre-
sented in Figure 1. In the first structure, we consider a balanced network where each
warehouse has the same number of retailers. In the second structure, we consider an
unbalanced network where 80% of the retailers are assigned to 20% of the warehouses.
We performed our experiments using CPLEX 12.6.1.0 C++ library with a time limit
of three hours. We compare all solutions with respect to different indicators: CPU
time, number of optimal solutions obtained, cost of the optimal solution/best solution
found, number of nodes in the branch-and-cut tree, and integrality and optimality
gap. We also take a look at the LP relaxation and the time taken to obtain it.

Our results show that the unbalanced instances are harder to solve and that the
MC formulations suits best our problem, both for the balanced and unbalanced in-
stances. The rich formulation N has trouble finding the optimal MIP solution for
many instances, despite having the best LP relaxation. The classical based formu-
lations have a poor performance, even if reformulations are used. The echelon stock
based formulations, however, benefit from the reformulation techniques used in the
formulations ES-N, ES-T and ES-LS to get good performances, but are still worse
than the performances of the MC formulation.
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Abstract

We consider a two-level supply chain with one supplier and one retailer that
has to meet a non-stationary demand for a single product. We suppose that the
supplier has the market power to impose his planning decisions to the retailer.
This may induce a large cost for the retailer. We assume that the supplier knows
the demand and the retailer’s cost parameters. The purpose of our work consists
in devising coordination mechanisms for the planning decisions of the actors
within the supply chain in order to minimize the retailer’s cost. The production
plan imposed by the supplier can be viewed as a capacity reservation contract
for the retailer. In order to minimize his cost, the retailer can propose to the
supplier a contract composed of production and replenishment plans, as well as
a side payment. Designing such contracts lead to particular lot-sizing problems
with subcontracting aspects. We analyze the complexity of these problems and
discuss solving issues for some specific cases.
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1 Introduction

We consider a two-level supply chain composed of one supplier and one retailer that
has to satisfy a demand for a single product over a planning horizon of T discrete pe-
riods. We suppose that the supplier knows the demand at the retailer level. Ordering
units at period t induce a unit ordering cost pSt (resp. pRt ) and a fixed ordering cost
fS
t (resp. fR

t ) for the supplier (resp. retailer). Carrying units in the inventory induce
a unit holding cost hS

t and hR
t for the supplier and the retailer respectively.

We address the problem of coordinating the planning decisions of this supply chain
by assuming that the supplier has the market power to impose his optimal production
plan to the retailer such that the demands can be satisfied. The optimal production
plan of the supplier is determined by minimizing the supplier’s total cost where all
the units are stored at the retailer’s level. Without coordination, the replenishment
plan of the retailer is equal to the production plan imposed by the supplier which can
induce a large cost for the retailer.

When the supplier has the market power, the problem of coordinating the planning
decisions is different from the case where the market power is owned by the retailer [3,
4]. The production plan that is imposed to the retailer can be considered as a capacity
that is reserved by the supplier such that the demand can be satisfied. Hence, in our
study, we focus on the reservation capacity contract [5]. In this contract, the supplier
reserves a certain capacity of units for the retailer. However, when the retailer’s
ordered units exceeds the capacity, the supplier proposes to the retailer a larger
ordering cost denoted by bSt for the extra units, i.e the ones exceeding the capacity.

If the actors decide to coordinate their planning decisions, the supplier agrees to
order more units at a period t than his optimal ordering if the retailer takes over the
ordering cost bSt for the extra units. The coordination scheme is the following: the
supplier determines his optimal production plan xS

opt of cost CS
opt which represents the

reservation capacity. Then, he proposes to the retailer a reservation capacity contract
(xS

opt, b
S). Finally, in order to decrease his cost, the retailer can propose to the supplier

a contract composed of a replenishment plan and a possible side payment to ensure
that the supplier’s cost will not increase.

In our study, we propose different contracts by assuming that the optimal produc-
tion plan of the supplier is modified or not. The problem of designing these contracts
leads to particular lot-sizing problems for which we propose a complexity analysis.

2 Contract with stock transfer at the supplier level

We consider the case where the retailer does not modify the optimal production plan
of the supplier. However, in order to decrease his cost, he proposes to cover the
supplier’s holding cost of the units that are stored at the supplier level. In that case,
the retailer proposes to the supplier a contract (xR, z) where xR is a replenishment
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plan and z represents a side payment on the supplier’s holding cost.
The problem of designing the contract (xR, z) corresponds to a two-level lot-sizing

problem where the supplier’s production plan is fixed to his optimal production plan.
At first, we show that the retailer can decrease his cost by a factor arbitrarily large by
proposing a contract (xR, z). Then, we propose a dynamic programming algorithm
that solves the problem of designing the contract (xR, z) in O(T 2logT ).

3 Contract with subcontracting

The retailer can propose another production plan to the supplier from the reservation
capacity contract. The assumption that the supplier does not carry units in his
inventory still hold.

In this context, determining a replenishment plan in order to minimize the re-
tailer’s total cost is known as a capacitated lot-sizing problem with subcontracting
in the literature, denoted by CLS-S. The CLS-S problem is defined as a lot-sizing
problem where the production capacity is limited, but it is possible to order more
than the capacity by subcontracting at a higher cost. The CLS-S problem can be
solved in polynomial time by dynamic programming algorithms when the production
capacity is stationary [1, 2, 6].

Ordering more units than the capacity can induce additional fixed ordering costs
to the supplier that he did not have to pay in its optimal solution. We propose to
study the case where the retailer pay part of the supplier’s fixed ordering cost or not.

3.1 Side payment on the supplier’s fixed ordering cost

We consider the problem of designing a contract (xR, z) where the retailer pays the
additional fixed ordering cost of the supplier. xR is a replenishment plan and z is a
side payment on the unit ordering cost bS and the additional fixed ordering cost of
the supplier. The supplier’s cost associated to this contract is at most equal to CS

opt.
Let Rt be the capacity reserved by the supplier at period t. The quantity of units

ordered at period t which does not exceed Rt is given by xt. The one that exceed Rt

is given by ut. The setup variable yt (resp. zt) is equal to 1 if the setup is (resp. is
not) initially in the optimal production plan. The mathematical formulation of this
problem is given by:

min
∑

t∈T
fR
t (yt + zt) + pRt (xt + ut) + hR

t s
R
t + bSt ut + fS

t zt

s.t. sRt−1 + xt + ut = dt + sRt ∀t ∈ T , (1)

xt ≤ Rtyt ∀t ∈ T , (2)

ut ≤ (dtT −Rt)(yt + zt) ∀t ∈ T , (3)

xt, s
R
t , ut ≥ 0, yt, zt ∈ {0, 1} ∀t ∈ T
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Constraint (1) represent the inventory balance constraint. Constraint (2) ensure that
the quantity of units xt does not exceed Rt. Constraint (3) ensure that the retailer
will only pay the additional fixed ordering cost of the supplier.

We show that the supplier’s and the retailer’s gain associated to the contract
(xR, z) can be arbitrarily large.

3.2 No side payment on the supplier’s fixed ordering cost

We suppose that the retailer does not pay the supplier’s additional fixed ordering
cost. He proposes to the supplier a contract (x̃R, z) where x̃R is a replenishment plan
and z is a side payment on the unit ordering cost bS. In that case, the retailer has to
ensure that the contract does not increase the supplier’s cost.

Similarly to the problem of designing a contract (xR, z), the supplier’s and the
retailer’s gain associated to the contract (x̃R, z) can be arbitrarily large. Moreover,
we show that the problem of designing the contract (x̃R, z) is NP-hard through a
reduction from the knapsack problem.
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1 Introduction

The advantages of integrating production and distribution planning are well known
and have been discussed intensively in research. In these so-called production routing
problems (PRP) lot sizing is combined with vehicle routing to model the distribution
part [1]. Due to increased levels of integration of supply chain partners and especially
for assembly-oriented manufacturers, a similar problem occurs on the supply side, i.e.,
in order to feed the production system with raw materials a wisely chosen logistic
system is necessary to ensure a timely and cost efficient supply of raw materials
avoiding unnecessary high stocks as well as raw material shortages.

Kuhn and Liske [5] were the first researchers tackling the problem of combining
a vehicle routing problem (VRP) on the supply side with an economic lot scheduling
problem (ELSP) on the production side. Hein and Almeder [3] extend their approach
to a more realistic production setting facing dynamic demand and capacity restric-
tions. The authors show that an integration of supply and production planning allows
for substantial cost savings compared to a classical sequential planning approach par-
ticularly if raw material storage is relatively costly compared to the storage of final
products.

However, this type of problem is challenging since it integrates two complex plan-
ning problems, namely inventory routing and capacitated lot sizing. Thus, an efficient
algorithm is needed to be able to solve large instances which does not yet exist. For
the counterpart, the PRP, various heuristic algorithms have been developed [1]. How-
ever, so far no constructive heuristic has been proposed though the benefits of such
heuristics are manifold, e.g., the computation time is extremely low, no commercial
solver is needed, it can be easily integrated into existing software, and it is usually
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better understood and accepted by practitioners. The aim of this work is to pro-
vide a construction heuristic for the supply vehicle routing and lot sizing problem
(CLSVRP) utilizing common-sense priority rules. After that, these rather intuitive
priority rules are replaced by more advanced rules that have been automatically gen-
erated by means of genetic programming [4].

2 Problem description

Consider a single-stage production system in which a set of end products are manufac-
tured for which predefined amounts of raw materials are needed. The manufacturer
has to solve a standard lot sizing problem (without setup times) in order to meet
deterministic but time-dependent demand. Raw materials are withdrawn from the
raw material inventories and transformed into final goods. There is a general relation
between raw materials and end products, i.e., the same raw material might be used
for several end products and an end product is usually made out of several different
raw materials. The production amounts per period are limited by a finite capacity.
In order to replenish raw material inventories the manufacturer has to collect those
raw materials using a homogeneous fleet of vehicles with limited capacities at differ-
ent suppliers which are geographically dispersed in close proximity to the production
facility. We assume that a tour of a vehicle starts and ends in the same time period
such that the raw materials collected by those vehicles are available for production in
the following time period. The overall objective is to minimize total cost consisting
of setup cost, holding cost for end products, holding cost for raw materials, fixed and
variable transportation cost.

3 Model outline

A mathematical formulation of the CLSVRP has been introduced by [3]. The in-
tegrated model contains a production part represented by a capacitated lot sizing
problem (CLSP), and a routing part modeled similar to an inventory routing prob-
lem (IRP). In the CLSP production amounts are limited by the availability of raw
materials. The IRP used to model the routing part is, in fact, a routing problem
where materials are collected from different locations (assuming infinite supply) and
stored at the depot (= production plant) waiting to be used in the production process.
Both parts are linked by the inventory balance equation of the raw materials.
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4 Construction heuristic

In this section we propose a simple construction heuristic for the CLSVRP which is
built upon the Dixon-Silver (DS) heuristic, a construction heuristic originally designed
for solving the CLSP [2]. The DS algorithm follows an iterative procedure in which
a production schedule is generated period-wise. Crucial decision criteria for the lot
formation are (i) the sequence in which products are planned, and (ii) the boolean
decision on lot extension. For both decisions, DS uses a priority index uDS which is
defined as:

uDSiτ =
(
SCiτ +HCT

iτ

Ti
− SCiτ +HCT+1

iτ

Ti + 1

)
/kidi,τ+Ti (1)

Let SCiτ denote the setup cost of product i in the current planning period τ , let
HCT

iτ and HCT+1
iτ denote the total holding cost incurred with the lot of product i

setup in τ covering the demand of T and T + 1 periods, respectively, and let kidi,τ+Ti
indicate the additional capacity requirements needed to include the demand of period
τ + Ti in the current lot. Finally, uDS expresses the difference in the average total
costs per period per additional capacity unit required. For criterion (i), items are
sorted according to non-increasing uDS, for criterion (ii), a lot extension is confirmed
if cost savings can be achieved, i.e. uDS ≥ 0.

In order to simultaneously build a production plan and a supply schedule, we
adapt uDS by including the approximate supply cost in the definition of the priority
index ensuring that supply cost are already regarded during the lot sizing step. The
cost of raw material supply arising with the production of end product i, denoted as
inventory routing cost IRCi, are determined by a cheapest insertion heuristic. Thus,
the modified priority index uDS−V RP for solving the CLSVRP is defined as:

uDS−V RPiτ =
(
SCiτ +HCT

iτ + IRCT
iτ

Ti
− SCi +HCT+1

iτ + IRCT+1
iτ

Ti + 1

)
/kidi,τ+Ti (2)

The computation of IRCiτ comprises the following steps:

• Compute raw material requirements: for each raw material m ∈ Si with Si
being the set of raw materials of end product i, compute the amounts needed
to produce di,τ+Ti units of i

• Determine supply cost of raw materials: for each m ∈ Si check the supply cost
in lexicographical order:

– Determine vehicle routing cost: seek for the cheapest insertion of the cor-
responding supplier in any existing tour of period t = {τ, τ − 1, ..., 1};
insertion cost in t are denoted as V RCmt
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– Find cheapest supply period: for each t compute the supply cost consisting
of routing cost V RCmt and holding cost of raw materials HCraw

mt , find the
cheapest supply period, i.e. set IRCraw

mτ = min
t
{V RCmt +HCraw

mt }

• Calculate total supply cost: IRCiτ =
∑
m∈Si

IRCraw
mτ

The heuristic proceeds similar to the original DS algorithm. Each time a change
of the lots in the production plan is confirmed, the routing schedule is updated ac-
cordingly requiring a recalculation of uDS−V RP .

A genetic programming enhanced construction heuristic Within the struc-
ture of the extended DS algorithm, we identified three crucial decisions which relate
to: (i) the sequence of end products, (ii) lot extension, and (iii) the sequence of raw
materials in which they are checked for computing supply cost. Our aim is to replace
these rather intuitive decision rules by more advanced rules automatically generated
through genetic programming (GP). Genetic programming belongs to the class of evo-
lutionary algorithms and is able to automatically construct mathematical expressions
typically represented as parse trees suitable for solving a given problem [4].
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Abstract

In warehouses, storage replenishment involves the transportation of items to
the capacitated item slots in forward storage area from reserve storage. These
items are later picked from these slots if necessary. While picking constitutes
the majority of operating costs, replenishment might be as costly if pick lists
consist of only a few lines. We consider the storage replenishment problem in
a rectangular warehouse, where replenishment and picking are carried out in
successive waves with time limits. The problem is analogous to the inventory
routing due to the inherent trade-off between labor and travel costs. We show
that the problem is NP-hard. We use a heuristic inspired from the literature.
We analyze the effect of storage policies and demand patterns and compare our
approach to those in practice.

1 Introduction

Breakdown of warehouse operating costs reveals that making necessary items avail-
able in pick area and picking of these items for satisfying customer orders cover 55% of
the total costs. Although the order picking problem (OPP) is a well-studied problem,
to the best of our knowledge, its relation with replenishment activities is not con-
sidered in the literature. In this study, we consider a coordinated approach, where
the replenishment and routing decisions are made in an integrated manner by taking
into account the dependence between the replenishment and pick cycles. In doing so,
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we aim to complete the replenishment operations within pre-specified time limits be-
fore picking operations, hence avoiding overtime, while minimizing the transportation
costs by making use of economies of scale during replenishment.

Order picking operations require items to be available in the storage area prior to
picking. Upon receipt, items are put away into the reserve storage area, where they
are stored in bulk amounts. According to the picking schedule, items are broken down
and replenished into the forward storage area, where storage is in smaller quantities.
The motivation is to sacrifice space efficiency and provide better accessibility of items
for more efficient picking. Hence, the availability of items in the forward storage area
is ensured by replenishing the needed items from the storage area.

In general, replenishment and picking activities are performed in sequence in a
cyclic manner. Each of the replenishment and pick cycles is called a “wave.” When
planning for replenishment, these waves are treated independently, that is, the deci-
sions of which items to replenish and how much are made based only on the upcoming
pick wave. In this case, routing decisions for replenishment in the forward storage area
are made mostly identical to those of order picking. Two issues might arise: (i) The
replenishment wave might exceed the time limit, resulting in the need for overtime,
and (ii) Treating each wave independently might result in excessive transportation.

To the best of our knowledge, the case of replenishment of items in the forward
storage area is not considered in conjunction with order picking cycles, which is a gap
that is aimed to be filled in this study.

2 Problem Definition and Complexity

The replenishment and picking tasks are performed in a cyclic manner. We assume
equal cycle lengths and the customer orders to be picked in each pick cycle are known.

We define the storage replenishment problem (SRP), which aims to make decisions
on (i) when and how much to replenish each item in the pick area from reserve
storage to guarantee availability and (ii) the routing of the replenishment carrier in
each period. In the SRP, we assume a single uncapacitated replenishment carrier
available. A set of “periods” (waves), their pre-specified time lengths of waves, and
arrivals of each item at the reserve storage in each day are known. The warehouse
layout, item locations with corresponding storage capacities, inventories of items in
the reserve and forward storage areas, and the amount of each item to be picked
in each wave are given. Demand patterns (uniform or skewed) and storage policies
(random or turnover-based) are specified and known. The objective in the SRP is to
minimize the total replenishment travel time. Under these settings, the SRP is similar
to the Inventory Routing Problem (IRP). The (dis)similar features that (de)construct
the two problems can be specified as follows. There exists one-to-one correspondence
between “supliers” and “retailers” in the IRP and “reserve storage area” and “item
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locations”. “Demand time and amounts” in the IRP match with “pick lists” of the
SRP while “load capacity” of IRP can represent “wave time limit” of the SRP. A
“single item and multiple retailers” structure of the IRP can be seen as a “multiple
items, each of which demanded by one retailer”. Although “holding cost” of the
IRP is an important trade-off component, the SRP does not incorporate such a cost
item. However, “availability” may point out an imputed cost in the SRP. Another
distinction between two problems is about routing decisions because the SPR has a
special structure that makes routing “easier” than that of the IRP.

3 An A Priori Route-Based Heuristic

The NP-completeness of the SRP suggests that as the instance size grows, the solution
time increases. To overcome this burden, we propose an a priori route-based heuristic
so that once the items to visit are fixed, the routing problem is easily solvable. Solving
the routing problem faster differentiates our work from that by [4].

In the first step of the heuristic, we solve the OPP corresponding to all the items
that will be picked throughout the planning horizon. To do so, we may use the
exact approach by [3] or the heuristics proposed by [2]. Once the a priori route is
determined, we fix the sequence of items to be visited in each replenishment trip in
order to simplify the routing decisions in the next step. The first two steps of the
heuristic determine the route of replenishment, given which items will be replenished.
This leaves the decision of which items to replenish (note that how much to replenish
is not a part of the decisions). For this end, we extend the strong formulation of the
reduced model for the IRP, for which the idea was applied by [4].

The model uses the precedence sets for each item determined by the previous step
and the wikt values for each item as additional parameters, and decides on whether
an arc on the network will be used or not, subject to inventory balance, network flow
balance, wave time limit, and routing precedence constraints. As the last step, given
which items will be replenished in each wave, the resulting routes are improved using
the Ratliff and Rosenthal algorithm for these waves. Note that wikt denotes whether
item i is replenished in wave t, after the last replenishment was made in wave k.

4 Computational Experiments

The objectives of computational experiments are as follows: compare different a priori
routing approaches among each other; measure the effect of instance size, demand
structure, and storage policy on the efficiency of replenishment; and analyze the
extent of the improvement of the replenishment schemes over those in practice.

We consider demand as uniform, where the probability that any item will appear
on a pick list on a given day is identical; and skewed, where items have more likelihood
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to appear on the pick list. For the latter, we use the Pareto distribution with 20-80
skewness, i.e., 20% of the items receive 80% of the total demand. We analyze two
storage policies: items are stored randomly; and turnover-based storage where items
with more demand are stored “in good locations.” 75 instances are based on [1]-[4].

The S-shape heuristic is closer to the optimal route when the density of the items
in the warehouse is high. This is reflected in the results by the decreasing gap of
it from 15 to 75 items. The largest gap heuristic, which performs better when item
density is lower, displays an increasing gap level with increasing number of items.

For demand and storage policy effect, the results are best when demand is skewed
and turnover-based storage is used. If demand is skewed, applying a turnover-based
storage has an average travel time savings of 6% on average, underlining the im-
portance of using a storage policy in line with demand skewness. When demand is
skewed and turnover-based storage is applied, an average of 4% less time is observed
compared to uniform demand and random storage. When storage policy is in line
with demand skewness, it yields an advantage over the case when demand is uniform.

We show the percent improvement of the heuristics under different a priori route
schemes from the method where each wave is treated independently as being treated in
practice. The improvement ranges from 15-31% for optimal, from 9-28% for S-shape,
and 9-23% for largest gap a priori routes.

5 Conclusion and Further Research Directions

New research directions involve the extension of the work to multiple capacitated
replenishment pickers and warehouses with different layouts.
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1 Introduction

Companies buy transportation services from carriers offering various transportation
modes, which are characterized by vehicle or container type and capacity, as well as
a specific cost function and a lead time. Within physical modes (road, rail, sea, air),
several options exist depending on the shipment size, the type of service impacting
the transportation lead time (emergency or regular) or the type of cargo, for example
frozen, oversized, bulk and general carriers. Typical modes used for different shipment
sizes include parcel, Less than Truck Load (LTL) and Full Truck Load (FTL). The
parcel carriers are usually used for small shipments, LTL for intermediate and FTL
for large shipments. The size of the trucks or containers varies, and depending on
the packaging option (for example the type of pallets), the maximum load capacity is
different. For the FTL mode, a fixed fee is charged per container or vehicle regardless
the filling rate. A realistic cost structure for LTL modes is a piecewise linear, all-unit
discount function with a minimum shipment charge to discourage extremely small
shipments. Over-declaring is a common practice for LTL shipments to obtain lower
price corresponding to the next rate breakpoint.

Hence, the complexity of modeling and choosing the optimal transportation mode
has increased due to more transportation options and pricing schedules offered by
carriers. Despite the fact that the share of transportation in logistics costs is high,
the majority of the existing inventory management models neglect or simplify trans-
portation costs, often assuming that only one transportation option is available. In
this presentation, we review and classify the methods for modeling multiple modes
and identify new areas for research (see [4] for more details).
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2 Transportation costs and mode usage

The following ways of modeling transportation costs in inventory models have been
found in the inventory management literature: Constant unit cost, fixed charge func-
tion, FTL function, LTL function, approximation function, carload discount schedule,
combined replenishment function. According to [6], the transportation expense is of-
ten omitted or assumed fixed when the buyer decides replenishment quantities, and
this inaccuracy can easily overwhelm any savings related to good inventory manage-
ment. Transportation costs are also often oversimplified by disregarding discount
schedules, transportation capacity limits, as well as availability of multiple modes. In
practice, shippers may choose among different transportation alternatives and switch
from one to another as needed. In the literature on supplier selection, order split
has been widely studied [2]. However, the number of studies that consider multiple
transportation modes is limited and can be divided into the following groups based
on their assumptions on transportation mode usage during the planning horizon:

1. Multiple transportation modes are available, but only one mode can be used
during the whole planning horizon [7],

2. Multiple transportation modes are available, but only one mode can be used at
each time period, however, this mode can be different for each period [3],

3. Multiple transportation modes can be used simultaneously, i.e. combined, and
each mode can deliver a fraction of the order in each period [1].

Combining transportation modes corresponds to order split in supplier selection
decisions, when the total order quantity is split among several suppliers. The reasons
for order split can be a total cost reduction, reduction of dependency on a single
supplier, transportation lead time reduction or if the total demand is larger than the
supply capacity of a single supplier, etc. Order split, also termed multiple sourcing,
is often used in stochastic demand settings to reduce the risk of stock-out situations
or the costs of safety stocks, typically combining regular and emergency shipments.
The benefits of mode combinations can be cost and emission savings, risk mitigation
in case of disruptions, access to extra capacity in addition to internal fleet.

3 Methods for modeling multiple modes

In situation where multiple transportation modes are available, the transportation
costs can be modeled in the following ways.

1. Combining all modes into a single cost function, where each quantity corre-
sponds to a predefined mode. When combining different modes into a single
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cost function, the quantity shipped by each mode is not modeled explicitly. The
decision variable reflects the total shipping quantity, which corresponds implic-
itly to the pre-defined type of mode that is used. Two approaches for the first
method are identified: Pre-processing and use of a “car-load” discount schedule:

• The pre-processing approach includes combining transportation cost func-
tions for all modes and creating a new general cost function, where each
quantity is associated with the cost of the mode with the lowest cost for
this quantity, see for example [3]. It is assumed that only one transporta-
tion mode can be used for each shipment quantity. This approach can be
used to create a general cost function combining different discount sched-
ules, and is only valid if it is easy to determine which rate is superior
for each mode. The drawbacks of this approach include worse solutions
compared to other methods (as modal split is not allowed), the need for
a pre-proceeding procedure to create a general cost function, a very large
number of break points and a-priori determination of the maximum ship-
ment quantity, without the possibility to define constraints on a specific
mode.

• A “carload” discount schedule can only be used for modeling two modes,
FTL and LTL, with the same cargo limits in the same cost function. These
two modes are treated as one mode, where a switch to FTL mode is based
on the shipped or over-declared quantity, as in [8]. Freight rates from
the carriers can be directly used in this approach, and it is easy to model
without pre-processing. However, only two modes (FTL and LTL with
single quantity interval) with identical maximum capacity can be modeled
using a “carload” discount schedule approach.

2. The cost function of each mode is modeled explicitly, i.e. the decision variables
reflect the quantity shipped by each mode. The main benefit is that lower costs
can be obtained compared to the first approaches. Using this approach, the
freight rates from carriers can be directly used in the model, and it is easier
to apply restrictions per mode or allowed combinations. However, the number
of decision variables increases when the number of modes increases. Several
authors have considered that several FTL or multiple set-up modes are available
and that it is possible to combine them for the same shipment (see for example
[5] and [1]). However, in these studies, only multiple FTL modes are modeled,
while LTL modes are not considered. In addition, some of the reviewed models
assume bulk shipments and that the modes always fully utilize the capacity.
Such assumption is not always realistic in practice for other types of shipments.
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4 Conclusions

Various methods for modeling transportation costs and multiple modes have been
proposed in the inventory management literature. Based on the performed review, we
propose several directions for future research that will be detailed in the presentation:

• Development of methods to increase the computational efficiency for solving
models with realistic discounts and a large number of multiple modes with
different capacities,

• Investigation of the conditions for using various methods for mode selection,
achieving savings from changing or combining modes, parameter analysis and
managerial recommendations.

References

[1] Absi, N., Dauzère-Pérès, S., Kedad-Sidhoum, S., Penz, B., Rapine, C., 2013.
Lot sizing with carbon emission constraints. European Journal of Operational
Research 227 (1), 55–61.

[2] Aissaoui, N., Haouari, M., Hassini, E., 2007. Supplier selection and order lot
sizing modeling: A review. Computers & operations research 34 (12), 3516–3540.

[3] Diaby, M., Martel, A., 1993. Dynamic lot sizing for multi-echelon distribution
systems with purchasing and transportation price discounts. Operations Research
41 (1), 48–59

[4] Engebrethsen, E., Dauzère-Pérès, S, 2017. Transportation modes in inventory
models: a literature review. Submitted.
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de Araujo, Silvio, 35
de Saint Germain, Etienne, 9
Doostmohammadi, Mahdi, 27

Engebrethsen, Erna, 93

Fiorotto, Diego, 35
Focacci, Filippo, 41
Friese, Fabian, 13
Furini, Fabio, 41

Germs, Remco, 65
Goisque, Guillaume, 49, 53
Gruson, Matthieu, 77

Hein, Fanny, 85

Jans, Raf, 5, 35, 77

Kedad-Sidhoum, Safia, 45, 81
Kilic, Onur Alper, 65

Leclère, Vincent, 9
Lepelletier, Guillaume, 31

Martin-Barragan, Belen, 17
Meunier, Frédéric, 9

Pascual, Fanny, 81
Phouratsamay, Siao-Leu, 81

Rapine, Christophe, 49, 53
Requejo, Cristina, 57
Rodrigues, Filipe, 57
Rossi, Roberto, 17, 69
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