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HEC Montréal Professorship in Operations Planning

Printed in Montréal — August 2015
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Bienvenue à Montréal!

Dear colleagues,

It is a pleasure to welcome you to the sixth International Workshop on Lot Sizing, which is held at HEC

Montréal. We continue the tradition of the previous workshops to discuss high quality research in a

relaxed atmosphere. As in the previous editions, the aim of the workshop is the following:

“To cover recent advances in lot sizing: new approaches for classical problems, new relevant problems,

integration of lot sizing with other problems, presentation of case studies, etc. The workshop will also

aim at favoring exchanges between researchers and enhancing fruitful collaboration.”

We would like to thank our sponsors for their support in organizing this workshop: HEC Montréal,

GERAD, EURO, the Canada Research Chair in Logistics and Transportation and the HEC Montréal

Professorship in Operations Planning. Special thanks go to the team at GERAD (Marie, Carole and

Marilyne) for their valuable support in organizing this workshop.

We wish you a nice stay in Montréal and hope that you find the workshop inspiring and productive.

Raf Jans, Jean-François Cordeau, Ola Jabali and Yossiri Adulyasak
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A Generalized Dantzig-Wolfe Decomposition
Algorithm for Mixed Integer Programming

Problems

Xue Lu
London Business School
xlu@london.edu

Zeger Degraeve
Melbourne Business School
Z.Degraeve@mbs.edu

Abstract

We propose a generalized Dantzig-Wolfe decomposition algorithm for mixed
integer programming problems. By generating copy variables, we can reformu-
late the original problem to have a diagonal structure which is amendable to the
Dantzig-Wolfe decomposition. We apply the proposed algorithm to the multi-
level capacity constrained lot sizing problem and production routing problem.
Computational results show that, to the best of our knowledge, our algorithm
provides a tighter bound of the optimal solution than all the existing methods.

1 Introduction

A mixed integer programming (MIP) problem is a mathematical optimization problem
in which some but not all of the variables are restricted to be integers. The objective
is a linear function to be minimized or maximized, and the constraints other than
the integer restrictions are linear equalities or/and inequalities. For simplicity, we
assume that the objective function is in minimization form in the reminder of this
paper. The discrete nature of the integer variables greatly expands the application of
MIP. However, the existence of integer variables increases the complexity of a MIP
problem exponentially. Solving MIP problems to optimality using exact algorithms
is not guaranteed. One stream of research focuses on developing efficient heuristics
to generate feasible solutions, which serve as upper bounds of the optimal solution.
Heuristics can be problem specific, and we cannot evaluate the quality of any feasible
solution without knowing the optimal solution. In this paper, we focus on developing
tight lower bounds. A tight lower bound can be used to evaluate the quality of the
existing heuristic solutions. More importantly, exact algorithms for MIP problems
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are lower bound based. Thus a tight lower bound may significantly speed up the
convergence of exact algorithms. When the complicated integrality constraints are
dropped, a MIP problem turns into a linear programming (LP) problem which can be
solved efficiently even with hundreds of thousands of constraints and variables. The
optimal solution of the resulting LP problem serves as a lower bound of the optimal
solution of the original MIP problem. Although some strong formulations have been
proposed in the literature, lower bounds from linear relaxation are generally very
far away from the optimal solution. We will propose a generalized Dantzig-Wolfe
decomposition algorithm as an alternative approach to compute lower bounds in
Section 2, and demonstrate how to apply the proposed algorithm to the multi-level
capacity constrained lot sizing problem in Section 3 and production routing problem
in Section 4.

2 A Generalized Dantzig-Wolfe Decomposition

Dantzig-Wolfe (DW) decomposition is an algorithm developed to deal with constraint
matrix with a special block diagonal structure, where each block is associated with
a subset of variables. The idea of DW decomposition is to reformulate the original
variables as a convex combination of the extreme points of substructures, by keeping
the coupling constraints in the master. When the integrality constraints are dropped
in the master, we will achieve a lower bound of the optimal solution. However, the
key challenge of applying DW decomposition is that the constraint matrix of a MIP
problem does not always have the block diagonal structure. In the following part,
we will demonstrate a generalized DW decomposition algorithm which even works on
MIP problems with non-block-diagonal constraint matrix.

First we decompose the set of linear constraints into a set of subsystems. Note
that the subsystems after decomposition need not be mutually exclusive, i.e., two
subsystems may share some constraints.If the constraint matrix has a block diagonal
structure, each subset of constraints represents one block; otherwise, there exist vari-
ables that appear in multiple subsets of constraints. Next we create a duplicate of
such variables for each subset of constraints in which they appear, and add equality
constraints to the master to ensure the new generated duplicates have the same value
as their original one. For example, if variable x1 appears in both subset 1 and 2, we
will generate a duplicate xd

1, replace x1 with xd
1 in subset 2 of constraints, and add

x1 = xd
1 to the master. By doing so, each subset of constraints shares no variables

with other subsets, and thus a block diagonal constraint matrix is created. We can
prove analytically that the lower bound generated by the proposed generalized DW
decomposition is at least as tight as and generally much tighter than that from lin-
ear relaxation. Moreover, we can therefore construct a generalizable formal solution
procedure, branch-and-price, to solve MIP problems to optimality.
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3 Multi-level Capacity Constrained Lot Sizing Prob-

lem

We consider the multi-level capacity constrained lot sizing problem (MLCLSP), where
the objective is to minimize the total cost, subject to satisfying the demands of mul-
tiple products over multiple periods with limited resources. In the literature, DW
decomposition has been applied to the single-level capacity constrained lot sizing
problem (CLSP): the capacity constraints are kept in the master and each subprob-
lem represent an uncapacitated single item lot sizing problems. After adding the
constraints to capture the multi-level product structure, MLCLSP cannot be tackled
by the classic DW decomposition any longer. In the following part, we will illustrate
two ways to implement the generalized DW decomposition on MLCLSP.

Horizon Decomposition (HD): the whole time period is decomposed into a set of
contiguous horizons, with the chosen horizons length and overlapped periods. For
example, HD 2-0 represents a HD with horizon length = 2 and no overlaps. The
subproblems have the same structure as the original MLCLSP but with shorter time
horizons. Equality constraints are added to the master to ensure that any variable
in the overlapped periods between two subproblems are equal to each other. We test
HD on instances with 10 products over 24 periods. As shown in Table 1, HD with
longer horizon and overlapped periods tends to generate tighter lower bound. An
explanation is that subproblems with longer horizons and overlapped periods may
capture more information of the original problem since more integrality constraints
are preserved in the subproblems. The best performing HD 6-1 generates a lower
bound that is 50% tighter on average than that from CPLEX within the same CPU
time, and 70% tighter than that from linear relaxation of the strong formulation.
Note that a tight lower bound is rather expensive in term of CPU time.

Production Decomposition (PD): the multi-level product structure is decomposed
into a set of sub structures. The resulting subproblems have the same structure as
the original MLCLSP but with fewer products. We test PD on instances with 40
products over 8 periods. Equality constraints are added to the master to ensure that
any variable of the overlapped products between two subproblems are equal to each
other. As shown in Table 2, the best PD 1-3 achieves a much tighter lower bound
within less CPU time than CPLEX. In addition, PD with more products in each
subproblem does not necessarily generate tighter lower bound. 1-3, 1-1-3 and 1-1-1-3
are three different ways to decompose the product structure, that 1-3 has 4 products
in each subproblem while 1-1-3 has 5. Note that PD 1-1-3 requires almost 10 times
as much on the average CPU time as PD 1-3 but fails to generate a tighter lower
bound. An explanation is that overlaps on product structure between subproblems
might lead to degeneracy during the computing process.
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Intergrality Gap CPU Time
No Overlap 1 Period Overlap No Overlap 1 Period Overlap

Horizon
4 9.26% 7.22% 59s 479s
5 8.05% 6.42% 177s 1204s
6 6.92% 6.37% 429s 1210s

Table 1: MLCLSP with Horizon Decomposition (CPLEX Gap = 13%, 1200s)
Integrality Gap CPU Time

1-3 1-1-3 1-1-1-3 1-3 1-1-3 1-1-1-3
Mean 8.09% 8.32% 8.51% 220s 2095s 299s

Table 2: MLCLSP with Product Decomposition (CPLEX Gap = 12%, 1200s)
Integrality Gap No. of Customers = 4,6,8,10

Linear Relaxation Dantzig-Wolfe Decomposition
No. of Periods
= 2,. . . ,100

Miller-
Tucker-
Zemlin

Subtour
Elimina-
tion

One-
Commodity
Flow

B&N
(2010)

HD 1-0 HD 2-0

Mean 48.29% 26.95% 20.86% 16.91% 9.68% 7.72%

Table 3: Production Routing Problem with Horizon Decomposition

4 Production Routing Problem

The production Routing Problem (PRP) combines the lot sizing problem and vehicle
routing problem, and jointly optimize the supply chain over production, distribution
and inventory. [1] gives a detailed review on PRP discussing various formulations and
solution algorithms. Bard and Nananukul (B&N) proposed a DW decomposition in
which the production planning and vehicle routing are separated [2]. We apply HD to
PRP, and test instances with 4 to 10 customers over 2 to 100 periods. Computational
results are summarized in Table 3. On average, HD 2-0 generates a lower bound with
7.72% integrality gap, 20% tighter than that from HD 1-0. This confirms our finding
in Section 3 that HD with longer horizon tends to generate tighter lower bound. On
average, the lower bound generated by HD 2-0 is 54% tighter than the lower bound
from the decomposition approach proposed by B&N [2]. Moreover, we provide the
benchmark lower bounds generated by linear relaxing different formulations.

References

[1] Adulyasak, Y., Cordeau, J.F., Jans, R., The production routing problem: A re-
view of formulations and solution algorithms, Computers & Operations Research,
55, 141-152 (2015)

[2] Bard, J.F., Nananukul, N., A branch-and-price algorithm for an integrated pro-
duction and inventory routing problem, Computers & Operations Research,
37(12), 2202-2217 (2010)
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New Lower Bounds for Single-Item Lot-Sizing

Grigori German, Hadrien Cambazard, Bernard Penz, Jean-Philippe Gayon
Univ. Grenoble Alpes, G-SCOP, F-38000 Grenoble, France
CNRS, G-SCOP, F-38000 Grenoble, France
firstname.name@grenoble-inp.fr

Abstract

This paper presents a generic new way of computing lower bounds for the different
costs of the single-item lot-sizing problem with production capacities and bounded in-
ventory. The lower bounds can be computed the same way for the production setup
cost and the variable production and storage costs, based on a decomposition of the
horizon into sub-problems and the use of the Weighted Interval Scheduling Problem.
Experimental analysis show that the bound on the global cost can be higher than the
ones given by linear programming solvers.

Keywords: lower bound, single-item lot-sizing.

1 Introduction

These lower bounds are motivated by the work currently in progress on a Constraint Pro-
gramming global constraint for lot-sizing problems by [3].
The single-item lot-sizing problem aims at planning the production of a single type of item
over a finite horizon of T periods in order to satisfy a demand dt at each period t. The
production cost at t is defined by a unitary cost pt (cost per unit) and a setup cost st paid
if at least one unit is produced a t. The holding cost ht is paid for each unit stored at the
end of period t. Furthermore the production (respectively the inventory) is bounded by
minimal and maximal capacities αt and αt (respectively βt and βt) at each period t. The
goal is to determine a production plan that satisfies the demands, respects the capacities
and minimizes the global cost. The following variables are used to model the problem:

• Xt, It ∈ N: Quantity produced at t and quantity stored between t and t+ 1.

• Yt ∈ {0, 1}: Equals 1 if at least one unit is produced at t, 0 otherwise.

• C ∈ R+: Global cost.

• Cp,Ch,Cs ∈ R+: Sum of the variable production and holding costs and of the setup costs.

A mathematical model for that problem (L) can be written as follows:
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Minimize C = Cp + Ch + Cs

(L.1) It−1 +Xt − It = dt ∀ t = 1 . . . T

(L.2) Xt ≤ αtYt ∀ t = 1 . . . T

(L) (L.3) Cp =
∑T

t=1 ptXt

(L.4) Ch =
∑T

t=1 htIt

(L.5) Cs =
∑T

t=1 stYt

(L.6) Xt ∈ {αt, . . . , αt}It ∈ {βt, . . . , βt}, Yt ∈ {0, 1} ∀ t = 1 . . . T

(L.1) are the flow balance constraints for each period, (L.2) are the setup constraints
and (L.3), (L.4) and (L.5) are the expressions of the different costs.

Particular cases of (L) have been broadly studied in the literature depending on the pa-
rameters taken into account. In 1958, Wagner and Whitin introduced the original uncapac-
itated problem in [5] and solved it using dynamic programming in O(T 2). The single-item
lot-sizing problems with time-varying production capacities and setup costs are however
NP-hard [1].

2 The new lower bound

The general idea of the bound is to decompose (L) into sub-problems then to compute
a lower bound on each of them and finally combine them ’at best’ to find a global lower
bound.

2.1 Production sub-problem

∀u, v ∈ {1, . . . , T}, u < v, we define a sub-problem Luv as (L) with:

• ∀t /∈ {u, u+ 1, . . . , v}, dt = 0

• ∀t < u, st = 0

Hence Luv is equivalent to determine a lower bound of the cost needed to satisfy all the
demands in Duv = {du, . . . , dv}. The set of solutions satisfying these demands is dominated
by the solutions where Iv = 0 – every solution has a lower cost if nothing is stored at the end
of period v. Moreover, some demands in Duv can be satisfied by a production previous to the
period u. Yet computing the optimal cost of obtaining a given storage level (in the interval
{0, . . . ,min(

∑v
t=u dt, βu−1)}) for Iu−1 can be achieved with an easy greedy algorithm: we

just have to determine the cheapest periods – without the setup cost – in order to produce
the given quantity of units and store it until u. Finding an optimal production plan – or a
lower bound on its cost – of Luv gives a lower bound on the cost needed to satisfy all the
demands in Duv in (L).

We define the size of a sub-problem by suv = (v− u+ 1)Iuvmax where Iuvmax = max{βt|t ∈
{u, . . . , v}}.
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2.2 Weighted Interval Scheduling Problem: a generic way to combine
sub-problems

We propose here a dynamic programming approach to compute bounds on the cost variables.
Let Cv be a cost variable of (L) (Cp, Ch, Cs, or C). The idea is to associate a lower bound
of that cost to each sub-problem and find a set of disjoint sub-problems that maximizes the
sum of these values.

All the sub-problems (there are T (T−1)
2 of them) are ordered by increasing end times

first, then by increasing start times: [1, 2], [1, 3], [2, 3], [1, 4], [2, 4], [3, 4], . . . , [T − 1, T ]. For
the ith sub-problem corresponding to the interval [u, v], we denote wi the lower bound of
its cost, i.e. wi = wu,v. Let’s note that any set of disjoint sub-problems gives a lower bound
of Cv by considering the sum of the wi associated to these disjoint sub-problems.

By this principle, in order to determine the best lower bound on Cv, we want to deter-
mine a set S of disjoint sub-problems that maximizes

∑
k∈S wk. That is precisely

the Weighted Interval Scheduling Problem [4], solved polynomially in the general case in
O(n log(n)) (n being the number of intervals), using a sort on the intervals in O(n log(n))
and a dynamic programming algorithm that runs in O(n). In our case, the intervals are
already sorted and the dynamic programming algorithm runs in O(T 2). We consider the
given order of the intervals and denote f∗(i) the maximal weight that can be achieved using

the i first intervals. With f∗(0) = 0, we have ∀i = 1, . . . , T (T−1)
2 :

f∗(i) = max(f∗(i− 1), f∗(pi) + wi)

where pi is the biggest integer, smaller than i (pi < i), such as the intervals pi and i are
disjoint. Hence pi is the first interval before the ith one that is time-compatible with it. For
instance, [3, 4] is the 6th interval and p6 = 1 since [1, 2] is time-compatible with [3, 4] and

[1, 3] is not. Therefore the value Cdyn = f∗(T (T−1)
2 ) is a lower bound of Cv.

2.3 Examples of lower bounds on C

Any bound that can be computed on a sub-problem can be of use. Especially bounds that
are too time-consuming to compute on the whole horizon can be restricted to smaller sub-
problems. Here a two examples of bounds that can be used:

LBDyn: The dynamic programming algorithm of [2] runs in O(TIuvmax) which is not
polynomial and thus cannot be used to find a lower bound on each sub-problem. However,
solving it on all the sub-problems of reasonable size gives the best lower bound on these
sub-problems.

LBFlow: Solving the linear relaxation of (L) – Yt ∈ [0, 1], ∀t = 1 . . . T - can be shown
to be equivalent to a flow problem that can be solved in polynomial time and without the
use of a linear programming solver. Solving it on the sub-problems for which the dynamic
programming algorithm is too slow gives lower bounds on the global cost of these sub-
problems.
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3 Experimental analysis

The following experimentation was conducted on the set of instance classes introduced in
[3]. Table 1 compares the linear relaxation, and the root node bound of the aggregated
linear programming model solved with Cplex to our bound. The latter has been computed
four times. The lower bound used for the smaller sub-problems (suv < sMax) is LBDyn and
LBFlow was used on the bigger sub-problems. The gap to the optimum has been averaged
for each class and is compared here. The second column is the size of L1T for the class of
instances. We can see that if all the sub-problems use only LBFlow (i.e. sMax = 0), we
obtain the same bound as the linear relaxation. The execution time for the linear models
are under 1s. The computation times (in seconds in table 1) are quite high, however it gives
an idea of what bounds could be obtained using good efficient bounds on only the smaller
sub-problems.

AGG RNB AGG LR sMax = 0 sMax = 2.104 sMax = 3.104 sMax = 5.104

Class Size Gap Opt Gap Opt Gap Opt CPU Gap Opt CPU Gap Opt CPU Gap Opt CPU

C1 1.105 3.13% 10.67% 10.67% 0.62 7.91% 21.47 4.81% 52.91 1.77% 135.22

C2 1.105 1.43% 8.83% 8.83% 0.43 5.46% 21.88 2.93% 51.21 1.23% 119.33

C3 2.105 2.32% 9.79% 9.79% 2.60 8.28% 46.13 4.30% 116.95 2.12% 262.06

C4 2.105 1.77% 9.03% 9.03% 2.79 6.04% 45.03 3.60% 131.82 1.79% 256.75

C5 2.105 1.43% 9.37% 9.37% 4.00 5.99% 47.89 3.46% 141.25 1.59% 263.00

Table 1: Experimental results

4 Conclusion

We presented here a generic way to compute lower bounds on each cost of the single-item
lot-sizing problem with production capacities and bounded inventory. The use of this bound
in Constraint Programming is double since, not only it provides good lower bounds, the
way it is computed might allow an efficient filtering of the variables.
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Stochastic Capacitated Lot-Sizing under
Consideration of Customer Order Waiting Times

Timo Hilger and Horst Tempelmeier
University of Cologne

Abstract

We consider a stochastic dynamic capacitated lot-sizing problem with a
constraint on the customer order waiting times. We propose a MIP model that
allows to study the effect of the lot-sizes on the probability distribution of the
waiting times. A numerical study outlines that the costs and inventory levels
as well as the capacity requirements are significantly driven by the customer
order waiting time constraints. Additionally, it is shown that the waiting time
distribution in a supply chain may have a significant impact on the performance
of downstream nodes in a supply chain.

1 Introduction

A key success factor for managing supply chains efficiently is a controllable lead time,
respectively customer order waiting time. The customer order waiting time is defined
as the time interval between order arrival and its delivery from the warehouse to
the customer (see [5]). The waiting time distribution of a manufacturer significantly
affects the performance of downstream nodes within a supply chain, influences the
customers’ evaluation of the service offered by a company and can be used to manage
logistical processes in supply chains more efficiently. Lot-sizing problems with a con-
strained customer order waiting time is not covered by the existing literature. The
present contributions on customer order waiting time focus on inventory management
topics. Therefore, a mixed integer approximation model of the Stochastic Multi-Item
Capacitated Lot-Sizing Problem (SMICLSP) is proposed that allows to constrain the
customer order waiting time and to quantify the monetary consequences.

2 Problem Statement and Modeling Approach

The objective is to generate a production plan that minimizes the sum of the ex-
pected setup and inventory holding costs over the planning horizon of T periods
(t ∈ {1, 2 . . . , T}) and for K products (k ∈ {1, 2 . . . , K}) by guaranteeing a minimum
service level supplied within a predefined customer order waiting time. The expected
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demands E{Dkt} as well as the variances V AR{Dkt} are known as a result of the
applied forecasting system. It is assumed that the static uncertainty strategy (see [1])
is applied. At the beginning of the planning horizon the complete production plan is
fixed, including the period and the amount of the production quantities.

Figure 1 illustrates the relationship of the duration of a stock-out situation and the
waiting time. The production quantity q raise the physical inventory Ip, which is used
to fulfill the customer demand. If the physical inventory is not sufficiently high, the
customer demands cannot be served and are backordered until the arrival of the next
replenishment. Thus, the occurring backorders are characterized by different discrete
waiting times. For instance, the backordered demand in period four can be served
with the production quantity q in period seven. Therefore, the resulting waiting time
is wt = 3. Hence, the waiting time for the backordered demand in period five and
six is wt = 2, respectively wt = 1. In case of multiple replenishment cycles, different
waiting times wt can be observed repeatedly. The customer order waiting time can be
controlled in stochastic lot-sizing models by determining the lot-sizes and the length
of the production cycles.

1 2 3 4 5 6 7 8 9 10
t

0

If ,Ip

qk,t

Dk,t

Duration of a stock-out

wt = 3

wt = 2

wt = 1

Figure 1: Duration of a stock-out and the customer order waiting time

An approximation of the probability distribution of the customer waiting time
for a discrete time model and a given production plan has been proposed by [2]. It
is assumed that the management can specify the maximum of the accepted waiting
time, wtmax, and set minimum service levels for the proportion of the demand that
is fulfilled without any delay directly from stock and the service supplied after wtmax

periods. The formulation of these conditions specify a lower bound, as only one of
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the service-constraints may be binding for the optimization. The non-linear model
formulation containing the customer order waiting time constraints is solved by a
deterministic mixed-integer linear program using a piecewise-linear approximation of
the non-linear functions of the expected values (see [3], [6] and [4]).

3 Numerical Results

A simulation study indicate the high approximation quality and shows that 100% of
the simulated production plans miss one or both of the predefined service conditions
by at most 0.5 percentage points.

Further, a numerical study reveals that the local costs and inventory levels as well
as capacity requirements of the manufacturer are significantly driven by the customer
order waiting time distribution. The lower the agreed service conditions and the
longer the accepted limits of the customer order waiting time are, the higher are the
cost saving potentials of the manufacturer. A remarkable result is that the total costs
can be reduced significantly for the service supplied within the maximum accepted
waiting time if the service agreement for direct demand fulfillment is reduced. Addi-
tionally, it is shown that the waiting time distribution of a manufacturer significantly
affects the performance of downstream nodes in a two-level supply chain. The longer
the observed average waiting time and the greater the randomness of the lead time,
the higher are the safety stock requirements of the inventory node. It is shown that
the total costs in a centrally controlled two-level supply chain can be reduced. How-
ever, the manufacturing costs typically tend to outweigh the inventory holding costs
if the inventory holding costs of both echelons are similar.
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Dynamic Demand
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Abstract

We consider the problem to schedule production lots for multiple products
that compete for a common production resource which processes the product
units serially. The demand for each product and period is given, but the yield
per production lot is random as the process can go out of control while pro-
cessing each single product unit of a lot. A δ-service level constraint is used to
limit the backlog in the presence of this yield uncertainty. We address the ques-
tion how to schedule production lots over the discrete periods of the planning
horizon. To this end, we consider different approaches ranging from stochastic
dynamic programming over a flexible lot scheduling heuristic to a rigid robust
planning approach. In an extensive numerical study, we compare the different
approaches to assess the cost of operating according to a robust plan as opposed
to a flexible policy.
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Abstract

We presents a column generation (CG) approach for a multiple product
dynamic lot-sizing problem on a production resource modeled as an M/G/1
queue. A master problem allocates limited capacity among n different prod-
ucts and sub-problems perform the lot sizing for each product subject to the
capacity allocation from the master problem. The sub-problems use clearing
functions that capture the non-linear relationship between expected throughput
and expected WIP level in a planning period.

1 Introduction

Most deterministic lot sizing models such as the classic Wagner-Whitin model [1]
focus on the trade off between the fixed cost of setup that is independent of the lot
size, and the holding cost of the cycle stocks due to production occurring in batches.
However, in many industrial contexts the actual cash cost of a setup is quite low; the
main cost of setups is the opportunity cost of lost capacity. [2] present a multiproduct
dynamic lot sizing (MDLS) model where the machine is modelled as an M/G/1 queue
that captures the relationship between the expected throughput of each product as
a function of the expected WIP level and lot size of all products. Computational
experiments show that this model yields superior performance in terms of total costs
than a model that does not consider queueing.
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2 Multi-Product Dynamic Lot Sizing Model

[2] study a single machine MDLS problem where lots arrive according to a Poisson
process and their processing time has a general distribution. We define the notation
in Table 1, where i is the product index and t is the time period index. The lot
processing time, Tit; waiting time Tqt; and utilization, ρit can be computed using the
decision variables and parameters in Table 1.

Decision Variables Parameters
Rit: Released quantity of product i at
period t

Dit: Demand of product i in period t

Qit: Lot size of product i at period t hit: FGI cost of product i in period t
Yit: Lots of product i at period t wit: WIP cost of product i in period t
Wit: WIP level of product i at period t bit: BO cost of product i in period t
Iit: Finished goods inventory (FGI) of
product i at period t

Tit: Lot processing time of product i in
period t

Bit: Backorder (BO) of product i at
period t

Tqt: Waiting time in queue in period t

ρit: Utilization of product i in period t

Table 1: Notation.

The clearing function (CF) giving the expected output of i in t derived in [2] as:

f(Qit, Yit,Wit, Qjt, Yjt) = Wit

Tit+
YitT

2
it

+
∑

j 6=i YjtT
2
jt

2(1−ρit−
∑

j 6=i ρjt)

= (Wit+Wi,t−1)/2

(s
′
i+p
′
iQit)+

Yit(s
′
i
+p
′
i
Qit)

2
+
∑

j 6=i Yjt(s
′
j
+p
′
j
Qjt)

2

2[1−Yit(s
′
i
+p
′
i
Qit)−

∑
j 6=i Yit(s

′
i
+p
′
i
Qit)]

(1)

where ρj is the utilization due to product j and Tjp its lot processing time;
∑

j 6=i ρj is
the portion of utilization allocated to products. The model (IM) of [2] is given by:

Integrated Model:IM

min
∑

i

∑

t

hitIit +
∑

i

∑

t

witWit +
∑

i

∑

t

bitBit (2)

s.t

Wit = Wit−1 +Rit −QitYit ∀i, t (3)

Iit −Bit = Iit−1 −Bit−1 +QitYit −Dit ∀i, t (4)

QitYit = f(Qit, Yit,Wit, Qjt, Yjt) ∀i, j, t (5)
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∑

i

Yit(s
′
i + p

′
iQit) ≤ 1 ∀t (6)

Qit, Yit ∈ Z+ and Iit,Wit, Rit, Bit ∈ R+ ∀i, t (7)

The objective function (2) minimizes the sum of WIP holding, FGI holding, and
backorder costs. The constraints consist of WIP balance (3), FGI inventory balance
(4), the CFs (5), and the utilization constraint (6).

3 Column Generation Approach

The CG approach uses a master problem that allocates capacity among products,
and a sub-problem that determines lot sizes for each product subject to this capacity
allocation. Let τ ki denote a column vector with T entries representing a complete
production schedule for product i over the periods t = 1, ..., T such that each entry
τ kit = Y k

it (s
′
i+p

′
iQ

k
it) where Qk

it denotes the lot size of product i in period t in schedule k
and Y k

it the number of lots of product i produced in period t in schedule k. Note that
there are a very large number of potential schedules k. Define V k

i as a column vector
with T entries, such that V k

it = hitI
kit + witW

kit + bitB
k
it. Let γki = 1 if schedule k

is selected for product i and zero otherwise. We consider a restricted LP relaxation
of the master problem, (RRMP), with a limited number of columns and 0 ≤ γki ≤ 1,
∀i, t is as follows:

Restricted Relaxed Master Problem:RRMP

min
∑

i

Ki∑

k

V k
i γ

k
i (8)

s.t

Ki∑

k

τ kitγ
k
i ≤ 1 ∀i, t (9)

Ki∑

k

γki = 1 ∀i (10)

0 ≤ γki ≤ 1 ∀i, k (11)

Let αk
it and µk

i be the dual variables associated with (9) and (10), respectively.
The reduced cost for a new column is then εi = V k

it +
∑T

t=1 α
k
it(s

′
i + p

′
iQ

k
it)Y

k
it + µk

i

where V k
it = hitI

kit+witW
kit+ bitB

k
it. We identify an entering column by solving the

sub-problem for each product i :

min V k
it +

∑T
t=1 α

k
it(s

′
i + p

′
iQ

k
it)Y

k
it + µk

i (12)

s.t

W k
it = W k

it−1 +Rk
it −Qk

itY
k
it ∀i, t (13)

Ikit −Bk
it = Ikit−1 −Bk

it−1 +Qk
itYit −Dit ∀i, t (14)
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Qk
itY
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it = f(Qk

it, Y
k
it ,W

k
it, Q

k
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k
jt) ∀i, j, t (15)

∑

i

Y k
it (s

′
i + p
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k
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Qk
it, Y

k
it , I

k
it,W

k
it, R

k
it, B

k
it ∈ R+ ∀i, t (17)

4 Numerical Experiments

Due to the non-convexity of the feasible region, the CG solution is approximate.
Our experiments consider a four product system with planning horizon of 10 periods.
All products have the same costs and unit processing time, with setup costs of 20,
40, 60 and 80. The experimental design is summarized in Table 2. For each factor
combination, 10 random instances are generated, yielding a total of 80 instances.

Demand mix Demand mean Demand coefficient of variation
0.25/0.25/0.25/0.25 100 0.1
0.10/0.20/0.30/0.40 300 0.5

Table 2: Experimental Factors and Levels.

Results indicate that the CG approach results in improvements of up to 55 %
over the RIM model for some instances, although providing quite poor solutions in a
limited number of instances.

5 Summary and Conclusions

We have presented a CG heuristic for the MDLS problem with queueing. Compu-
tational results show that the approach is promising. Directions for future research
include examining how to further improve the computational efficiency of the CG
procedures, computational testing on larger data sets, and further exploration of the
implications of this analysis for cost estimation.
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Abstract

We present modelling approaches for a dynamic capacitated lot-sizing prob-
lem with sequence-dependent setups, linked lot-sizes, multiple machines and a
common setup operator. Multiple lots for the same product per macro-period
are possible. A Variable Neighborhood Search procedure solves the underlying
problem.

1 Introduction

We found a special lot-sizing problem in a German food company. A complex cleaning
machine performs sequence-dependent setups on multiple machines. A unique assign-
ment of products to machines exists which would usually allow the isolated solution
of the simultaneous lot-sizing and scheduling problem for each machine. However,
the cleaning machine can perform only one setup on one machine at a time. To take
this common setup resource into account, the simultaneous lot-sizing and scheduling
problem must include a synchronization of all setups to avoid overlapping

Only a small number of publications exists for this problem. [1] present a model
based on the Proportional Lot-Sizing and Scheduling Problem (PLSP) for one com-
mon setup resource. [2] propose a big bucket model formulation for the CLSD (Ca-
pacitated Lot-Sizing Problem with Linked Lot-Sizes and Sequence-Dependent Setups)
based on the model formulation by [3] and add a common setup resource. Numerical
results show that their formulation is superior to the model by [1]. [4] present a GLSP
(General Lot-Sizing and Scheduling Problem) and a CLSD formulation extended by
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tools which are shared by multiple machines and attached to a machine during the
whole production process. As the CLSD based formulation of [2] delivers the best
results and represents the problem aspects more precisely, we use this formulation as
basic model for new problems.

For the CLSD formulation, it is assumed that the triangular inequality holds and
only one setup and one production operation can be performed per product and
period. A second setup would be associated with unnecessary costs as two lots of the
same product within a period could be merged to one lot. In some cases, the triangular
inequality may be violated for example if a product with a cleaning function exists and
accepting multiple setups can lead to a better solution. Considering high utilizations
and/or long setups in combination with an additional resource as the common setup
resource can provide another reason for multiple lots. Due to the complex and limiting
technical constraints, splitting production quantities and accepting additional setups
can help to generate feasible production plans. [5], [6], [7] and [8] present CLSD based
model formulations allowing multiple lots due to violated triangular inequalities.

However, these approaches cannot be adapted to the problem with a common
setup operator because of its additional constraints. Therefore, we presented a model
formulation considering a common setup operator and allowing multiple lots by using
a modified time structure (see [9]). In this presentation, we propose an alternative
approach to accept multiple lots. In addition, a Variable Neighborhood Search solves
the underlying problem.

2 Modelling approaches

The Capacitated Lot-Sizing Problem with Sequence-Dependent Setups and Linked
Lot-Sizes (CLSD) by [4] is used as basic model to handle the common setup operator.
New variables documenting starting and ending times for setup operations are in-
troduced and additional constraints coordinate the corresponding operations on each
machine. An additional new binary variable defines the sequence of setups on all
machines.

Two modelling approaches are used to allow multiple lots of the same product per
macro-period. First, a new time structure is introduced. For each macro-period t, a
set of sub-periods Pt is given. Considering the capacity constraints of a macro-period,
each product can be produced once per sub-period. The number |Pt| of sub-periods
per macro-period defines the maximum number of lots allowed to be produced per
product in the same macro-period. Variables are modified and additional constraints
coordinate operations over all sub-periods. This approach was presented by [2] and
[9].

Another way to allow multiple lots is the introduction of virtual products. For
each additional lot per (end-)product k, a new virtual product is introduced. The
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set Rk links the virtual products to the (end-)product k. The set Km defining the
product-machine association, now uses virtual products. Also, the inventory balance
equations have to be modified since the demand can be fulfilled by all corresponding
virtual products. This approach offers an easy way to accept multiple setups as only
the data and the inventory balance equations have to be modified. The remaining
model can be used in its original form. Hence, other problems and model formulations
can use this simple approach without changing the underlying structure.

3 Solution approach

Both models are solved with IBM ILOG CPLEX 12.6 and the optimization lan-
guage OPL. Results of the models are compared. The basic problem presented by [2]
becomes more complex with increasing problem size. Enabling multiple setups com-
plicates the underlying problem even more and solution times increase. Therefore, a
General Variable Neighborhood Search using a Variable Neighborhood Descent based
approach (see [10]) is developed to solve the simultaneous lot-sizing and scheduling
problem with a common setup operator allowing multiple lots of the same product
per macro-period. The results are compared with the exact solutions calculated by
CPLEX.
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Abstract

We present a new formulation for a capacitated lotsizing problem with an
integrated coordination of a common setup resource, based on given schedules
of the setup ressource. Furthermore, we propose a heuristic to effectively find
a feasible schedule for the setup ressource. Finally we introduce a tailor-made
tabu search algorithm that enhances the initial feasible schedule.

1 Introduction

A common setup operator or setup resource for a dynamic lotsizing problem was
recently often found in practical cases (see for example [1] and [2]). The usual setting
in industry allows setup carryovers and involves sequence dependent setup costs and
times. A common setup resource requires a simultaneous lotsizing and scheduling of
the setup operator.
The problem was formulated as an extension of the Capacitated Lotsizing Problem
and solved by a Fix-and-Optimize (see for example [3]) approach in [1]. Even though
the Fix-and-Optimize heuristic usually performs good even for large instances of the
CLSP it is not a tailor-made algorithm for the particular problem. Therefore, we
propose a tabu search that schedules the common setup resource efficiently.
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2 Problem description of the solution approach

The overall problem is split up into two phases. In the first phase a schedule for the
setup operator is determined in form of a list: Here the l − th element of the list I,
(il, tl), symbolizes the set-up operation to product il, that is carried out in period tl.
This particular set-up operation is carried out on the unique machine product il is
produced on exclusively. Thus, the predecessor of il is determined by I. It is the last
element (ik, tk) with k <= l and ik is a product produced on the same machine as il.
This information allows to determine the setup variables xl,t and binary order vari-
ables Γl,l̃,t as follows.

xl,t =

{
1 if t = Il2
0 else

Γl,l̃,t =

{
1 if xl,t = xl̃,t = 1 and l < l̃

0 else

This reduces the optimization problem to a polynomial linear problem.

3 Tabu search

3.1 Initial solution

The start heuristic determines a list of setup operations and the periods they are
carried out in. During preliminary tests with practical case data the following start
heuristic always found a feasible solution. However, in more general tests, it could be
shown that for certain instances it does only create ”‘nearly feasible”’ setup lists.

• During a set-up operation the considered machine m cannot work and any other
machine cannot be set up since the set-up operator can only serve one machine
at a time. Therefore, on each machine m set-up operations should consume
as few time as possible. Since set-up times are sequence dependent, on each
machine m the set-up time minimal set-up sequence has to be found.

• Since both the set-up operator and the machines are capacitated, not all nec-
essary set-ups might be feasible in the period of demand. In this case, the
infeasible set-ups of period t (and corresponding production) have to be shifted
to an earlier period t−n in order to prevent backorders. Therefore, we designed
a backward oriented heuristic.

Due to the complex inter- and intra-period interdependences between sequencing and
lot sizing decisions it is hard, if not impossible, to find a holistic solution procedure
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that creates a feasible set-up sequence. Thus the problem is decomposed into two
subproblems that are solved consecutively for each period t, beginning in the last
period T .
The first subproblem, SUBm, is to identify the set-up time minimal set-up sequence
on every single machine m. Afterwards, the second subproblem, SUBt, generates the
set-up sequence over all machines, based on the results of the M subproblems SUBm.
SUBm can be formulated as an asymmetric Travelling Salesman Problem with a
weighted complete digraph where the nodes represent the products with positive
demand in period t (occuring in t or deferred from a later period t+n), V = {k | d̃kt >
0, k ∈ Km}, and the weights assigned to the arcs, E = {(i, k) | i, k ∈ V}, represent the
set-up times, c (i, k) = trik i, k ∈ V . The asymmetric Travelling Salesman Problem
is solved by the Fastest Insertion heuristic, which led to the best results during tests.
After all SUBm are solved for period t, the second subproblem SUBt is tackled.
Therefore, a Metra Potential Method Network consisting of a source, a sink and the
M sequences obtained from the preceding step is created. The objective is to find the
shortest possible project duration, i. e. performing all set-ups, under presence of a
constrained resource, i. e. the set-up operator. In contrast to the classical Resource-
Constrained Project Scheduling Problem (RCPSP), the maximal project duration is
given by the period length, i. e. the machine capacity. Consequently, the project
duration has to be minimized starting from a given endpoint. Since the RCPSP is
known to be NP-hard as well a well performing priority rule is applied: Minimum
Late Finish Time (LFT).
If there is a feasible set-up sequence obtained for period t, the next period is planned.
Else, a Simualted Annealing (SA) approach inspired by [4] is applied.

3.2 Neighborhood structure

Given a sequence L, we define N(L) as being the set of all sequences which can be
obtained from L by using one of the following 2 schemes:

1. Swapping : Given a sequence L, let l and ĺ be two positions in the sequence with
Ll = (k1, t1) and Lĺ = (k2, t2). A neighbor of L is obtained by interchanging
the products of the two setup operation, such that position l of L is changed
to Ll = (k2, t1) and position ĺ is changed to Lĺ = (k1, t2). The positions l and ĺ
are selected randomly.

2. Deletion: Given a sequence L the l-th element of the sequence Ll is deleted.
The index l is again selected randomly.
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3.3 Selecting the best neighbor in the candidate list

The objective function is the minimal total of holding an setup costs. Thus, we define
the sequence with the minimal resulting objective function, which is not on the tabu
list, as the best neighbor. However, to allow our candidate list to be smaller and thus
the algorithm to perform better, we do not undertake a full search of the list, but
instead accept the first non-tabu move that improves the current solution. If there is
no candidate move that improves the solution, then we consider the whole candidate
list to select the best solution found.

3.4 Working with infeasible initial solutions

In case the initial solution is infeasible, the solution will be manipulated by a similar
tabu search with a modified objective function. In almost all cases this results in a
feasible solution which is then being used as the initial solution of the above described
tabu search.
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Abstract

This work addresses the well-known capacitated lot sizing problem (CLSP)
which is proven to be an NP-hard optimization problem. Simple period-by-
period heuristics are popular solution approaches due to the extremely low
computational effort and their suitability for rolling planning horizons. The aim
of this work is to apply genetic programming (GP) to automatically generate
novel rules for those heuristics that establish a new state-of-the-art in the field.
Preliminary tests show that we are able to obtain better solutions when using a
GP-based priority rule for ranking the products, compared to the Dixon-Silver-
criterion [1]. Developing heuristics for the CLSP with uncertain demand is an
interesting direction for future work.

1 Introduction

We study the dynamic capacitated lot sizing problem (CLSP), a standard optimiza-
tion problem and one of the most critical in production planning. Since the CLSP is
NP-hard, solution methods for large instances are mostly heuristic. Simple period-
by-period approaches, like Dixon-Silver [1] and ABC [4], are widely-used in research
and in practice. In addition to not requiring commercial solvers, these heuristics
are radically faster than mathematical programming (MP) and MP-based heuristics,
which allows the approximate solution of large problem instances in real-time or their
resolution as a sub-problem of a more complex problem (e.g. production routing,
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27



stochastic lot sizing). However, new constructive heuristics specific for the CLSP
have not been developed since the 80s.

These heuristics comprise three main steps: (i) ranking products according to
their estimated impact on the total cost; (ii) deciding if a current production lot is
extended or a new lot has to be set up; (iii) a feasibility check ensuring that stocking
up takes place if capacity limitations require it.

Genetic programming (GP) has been already applied to a variety of problems, but
applications in operations management, except production scheduling, have not yet
received attention. Our goal is to use GP to automatically generate novel decision
rules to construct advanced lot sizing heuristics. We can include any problem-specific
characteristics (e.g. cost ratios, current capacity utilization, demand variability) in
the GP-optimization, leading to sophisticated rules that adapt to the problem envi-
ronment.

2 A Genetic Programming Approach

Evolutionary computation (EC) applies the biological mechanisms of evolution to
solve continuous or combinatorial optimization problems. Genetic algorithms (GAs)
and GP lie at the heart of EC and, although employing the same type of evolu-
tionary operators (e.g. reproduction, crossover, mutation), these approaches work
on completely different representations. GAs [2] encode solutions in strings of 0’s
and 1’s or real values. Each of these individuals represents a well-defined solution
to the optimization problem. GP [3], on the other hand, evolves computer programs
or mathematical functions which can be used to solve the problem. Solutions are
represented as parse trees. The terminal nodes of the tree contain bits of information
(parameters or variables) specific to the problem, whereas the internal nodes operate
the former with functions (arithmetic, conditional, etc.). To provide an example, let
us consider the Dixon-Silver [1] priority index u defined in (1).

ui =

(
SCi + HCi,T

Ti

− SCi + HCi,Ti+1

Ti + 1

)
/kiDi,Ti+1 (1)

SC refers to the setup costs, HCT and HCT+1 refer to the total holding cost from
period 1 up to period T and T + 1, respectively, T denotes the number of periods
covered in the current lot, and kDT+1 expresses the additional capacity requirements
needed to include the demand of period T + 1 in the current lot. Finally, the priority
index u indicates the decrease of the average costs per period per capacity unit. Figure
1 depicts u as parse tree.

In an iterative procedure, a population of expressions is transformed into a new
generation of expressions by applying a combination of genetic operators. According
to Koza [3], GP consists of four main executional steps:
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Figure 1: Dixon-Silver criterion as parse tree

Step 1: Initial population Create the initial population consisting of either ran-
domly generated or manually defined individuals or a combination of both. In order
to be able to construct individual programs, the pool of available operators and ter-
minal nodes needs to be determined first. We consider more than 40 terminal nodes
ranging from static input parameters (e.g. setup cost, capacity) to dynamic variables
(e.g. cumulated remaining demand, current capacity utilization).

Step 2: Evaluate the fitness Each program is executed and evaluated according
to a problem-specific fitness measure. In our tests, the fitness reflects the relative
deviation between the objective value obtained by our algorithm and by CPLEX.

Step 3: Create new individuals With a probability based on its fitness value, an
individual is selected to be involved in genetic operations. Steps 2 and 3 are repeated
until the termination criterion is satisfied.

Step 4: Find best solution Identify the best expression found so far.

3 Preliminary Results

As a starting point, we have utilized the Dixon-Silver heuristic and replaced the
priority rule for ranking the products defined in equation (1) by a GP-evolved rule.
Note that the decision on lot extension further relies on index u as suggested in the
original Dixon-Silver heuristic. The modified Dixon-Silver heuristic is in the following
referred to as Dixon-Silver-GP.
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For our preliminary tests, we used 751 test instances designed for the CLSP and
introduced by Trigeiro et. al [6]. Setup times were ignored and set to zero. ABC,
Dixon-Silver and Dixon-Silver-GP were implemented in C++ using Visual Studio
Express 2013. For the GP-part, we used Paradiseo-EO [5], a C++ compliant evolu-
tionary computation library. Besides, all instances were solved with CPLEX Opti-
mization Studio 12.6. Within the limited runtime of two hours, more than 90% of
the instances were solved to optimality. Table 1 denotes the relative deviation of the
heuristic solution from the CPLEX solution averaged over all 751 instances.

ABC-heuristic Dixon-Silver Dixon-Silver-GP
Avg. deviation from CPLEX 6.0% 7.2% 6.3%

Table 1: Average relative deviation from the CPLEX solution

Without extensive computational testing, we were able to promptly find a better
priority rule than proposed by Dixon-Silver. Despite the large gap to CPLEX, we
believe in the potential of GP to generate promising lot sizing rules outperforming
ABC and even CPLEX for large instances. The ultimate goal is to establish rules for
the CLSP with uncertain demand.
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Abstract

In this paper, we introduce a first link between tactical production planning
and the financial aspects of working capital requirement (WCR). The concept
of WCR is widely used in practice to assess the financial situation at a certain
moment. We propose a new generic WCR model which allows us to evaluate
the company’s financial situation during the horizon studied. In addition, we
develop a dynamic lot-sizing-based model with WCR modeling for single-site,
single-level, single-product and infinite capacity cases. An exact algorithm is
also presented with numerical tests in order to compare our approach with the
traditional dynamic lot-sizing model.

1 Introduction

Serving the business strategy, a good production plan should make the decision of
production at the right time and lowest cost. Such a plan should also include planning
for the acquisition of resources, raw materials and all necessary production activities
of intermediates and final products manufacturing. It naturally implies a problem
which is to determine the best lot sizes to meet demand at the lowest cost, known
as the lot-sizing problem. This problem aims to determine the timing and quantity
of production lots with a total cost minimization objective. This total cost generally
includes production, set-up and inventory cost in lot-sizing problem.

On the other hand, companies also need to cautiously manage their cash flow to
ensure financial liquidity in the development phase or risk economic hardship. The
working capital requirement (WCR) metric is known as a key indicator to monitor
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and control the financial situation of a company. We consider only the operations-
related working capital requirements (OWCR) in this work. The OWCR includes all
financial needs generated in the operation cycle which contains steps from receiving
order to final product distribution.The OWCR is generated due to the fact that,
in practice, there is a mismatch between the essential cost for production operations
(i.e., accounts payable) and client payments (i.e., accounts receivable). Thus, positive
OWCR represents the need for fund raising in order to cover the negative cash flow
generated by the operating cycle. In contrast, a negative OWCR only appears when
the operating activity generates a positive cash flow. It also represents company’s
financial health which ensures the capability of settling payments and a sustainable
business development. In other words, a lower OWCR gives the company better
liquidity and helps to ensure solvency.

2 Generic OWCR modeling

In practice, the OWCR is usually calculated by method ”Accountants” and presented
as normative WCR in number of days of annual revenue, see [2]. The normative
WCR presents the financial need at the day of balance sheet calculation. However,
we cannot track the evolution of OWCR during the considered horizon by using this
method. Therefore, we propose a new generic model of the OWCR in a tactical plan-
ning context. The objective is to ensure the clear traceability of our investments in
the operating cycle for tactical planning.

In order to acquire the exact amount and timing of revenues, the facility location-
based formulation (FAL) is chosen as the base of our OWCR model. In this formula-
tion, the main variable, wtk represents production quantity in period t for satisfying
a part of demand in period k. With these disaggregated variables, we are able to de-
termine the total quantity produced in each period, xt =

∑T
k=t wtk, and the number

of periods to finance, k − t, (i.e., we need to finance all related cost from period t to
k − 1). However, by following the above concept, a non-linear formula is naturally
involved. The decision variables and parameters are given in Table 1.

For each wtk, related production, inventory, purchasing costs can be easily written
as products of unit cost, disaggregated production quantity and number of periods
to be financed :

Production cost = pwtk(k + rc − t) (1)

Purchasing cost = awtk(k + rc − t− rf ) (2)

Inventory cost = hwtk(k − t) (3)

In this model, the costs per item in production, purchasing and inventory are given
as parameters. In contrast, the setup cost per product depends on different production
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Parameters Definition Variables Definition

n Number of periods. xt Total production quantity
dt External demand in period t. in period t.
h Unit inventory cost. wtk Production quantity in
p Unit production cost. period t to satisfy the demand
q Unit setup cost per time. in period k (k ≥ t).
a Unit raw material cost. yt Binary variable which indicates
rc Delay in payment from client. whether indicates whether a setup
rf Delay in payment to supplier. occurs in period t or not.

Table 1: Parameters and decision variables for OWCR modeling

quantities in the planning horizon; it must be calculated for each production lot.
Thus, a non-linear formula of setup cost for each wtk can be written as :

Setup cost =
qyt

xt + (1− yt)
wtk(k + rc − t) (4)

Therefore, total OWCR (TO) consists in summing up all costs for all periods,
which can be formulated as follow :

TO =
n∑

t=1

n∑

k=t

[awtk(k + rc − t− rf ) +
qyt

xt + (1− yt)
wtk(k + rc − t)

+pwtk(k + rc − t) + hwtk(k − t)] (5)

3 Dynamic LSP based model

A mixed-integer production planning model for the OWCR minimization problem,
ULS OWCR, is formulated as follows :

Min TO (1.1)
s.t. xt =

∑n
k=t wtk ∀t (1.2)

dkyt − wtk ≥ 0 ∀t, k (1.3)
yt − xt ≤ 0 ∀t (1.4)∑k

t=1wtk = dk ∀k (1.5)
wtk ≥ 0, yt ∈ {0, 1} ∀t, k (1.6)

Constraints (1.2) indicate that xt is the total quantity of production that occurs
in period t. Constraints (1.3) ensure that a setup is executed before production.
Constraints (1.4) prevent a setup from occurring in a period with no production.
Finally, constraints (1.5) assure all demands are satisfied.
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4 Resolution method and numerical tests

We have demonstrated that the property ZIO (Zero-Inventory-Ordering) remains
valid for the ULS OWCR problem in [3]. Therefore, we only examine plannings
in which production would only occur when there is no product remaining in the
inventory. Thus, the problem can be formulated with the acyclic oriented graph
G = {V,E}. The nodes Vt represent the n periods in planning horizon with a dummy
node at the end. Then, an arc Etk denotes a production in period t planned to satisfy
the demands between periods t and k − 1. Therefore, the arc value represents the
total cost to finance for such a production. This batching approach benefits from
the ZIO property which means that production quantity can only be the sum of de-
mands in following periods. Therefore, we avoid the difficulty caused by the nonlinear
formulation of setup cost. The arc values are presented as follows :

Etk =
k−1∑
m=t

[pdm(m + rc − t) + q(dm/
k−1∑
j=t

dj)(m + rc − t)

+adm(m + rc − t− rf ) + hdm(m− t)]

To solve the problem, a dynamic programming algorithm is established which
solves the problem in O(n2). The recursive formulation is presented as follows :

TO[t] = min
j∈[1,t−1]

{TO[j] + Ejt}

with TO[t] representing the minimal total cost to finance to satisfy all demands until
period t.

In order to show the interest of the ULS OWCR model and the difference with the
classical ULS model in terms of results, we compare the total OWCR obtained with
the optimal solution of ULS model to the optimal OWCR obtained by ULS OWCR
model. This study is conducted on a test instance of 30 periods proposed by Trigeiro
(G-72, demand 7) [4]. Overall, the average reduction in total OWCR by applying
our model is approximatively 8.7%. However, a global consideration integrating the
increase of logistic costs in ULS model by applying our model will be taken in account
in future work.
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Abstract

We study a two level Uncapacitated Lot-Sizing (2ULS) problem representing
a supply chain with two actors (a supplier and a retailer) and a single product.
We drive an experimental analysis to study the impact of cost transfer between
the actors on their respective profit. The experimental analysis shows that it
is possible to improve the supplier’s profit with a holding cost transfer.

We also consider that either the supplier or retailer or both of them may
have a limited storage capacity implying Inventory Bounds constraints for the
2ULS problem (2ULS-IB). We prove that with the No Lot-Splitting (NLS)
constraint which means that each demand is satified by one order at the retailer
level, the 2ULS-IB-NLS problems are strongly NP-hard. Finally, we propose
a polynomial dynamic programming algorithm to solve the 2ULS-IB problem
where the inventory bounds are at the retailer level.

1 Introduction

The optimization of the supply chain consists of determining an optimal production,
transportation and distribution planning within the supply chain in order to satisfy
the client demand at a minimal cost. In practice, it is difficult for the actors of the
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supply chain to make a decision that is optimal for the entire supply chain. Each
actor of the supply chain wants to minimize his cost independently of the others.
But, making their own decision based on local incentives can lead to an even worst
situation for some actors of the supply chain. Thus, in order to improve the cost of
the supply chain, we propose to coordinate the production and distribution planning
decisions by ensuring that each actor have benefits to follow the proposed planning.

Thereafter, we consider a supply chain consisting of two actors (a supplier and a
retailer) and a single product. The retailer has to satisfy a demand dt at each period
t of a planning horizon of T periods. In order to satisfy the demand, the retailer has
to determine a supply plan over the horizon, i.e.when to order and how many units
to order, that minimizes his total cost. The supplier has to determine a production
plan in order to satisfy the retailer’s supply plan so as to minimize his total cost.
Each actor has a fixed ordering cost, a unit ordering cost and a unit holding cost.
The supply chain cost is given by the sum of the supplier and the retailer costs.
Minimizing the supply chain cost is equivalent to study a two-level Uncapacitated
Lot-sizing (2ULS) problem where the first level is the retailer level and the second
level is the supplier level.

In order to improve the cost of the supply chain, we propose to study the problem
by allowing or not a cost transfer between the actors of the supply chain. Considering
that the actors may have a limited storage capacity, we study the complexity of
2ULS problems with inventory bounds and demand lot-splitting constraint which
imposes that each demand has to be satisfied by a unique order. Finally, we propose
a polynomial algorithm to solve the 2ULS-IBR problem.

2 Coordination of the planning decisions

Li and Wang [5] propose a review about coordination mechanisms of supply chain
systems in a framework that is based on supply chain decision structure and nature
of demand. The majority of papers cited in [5] are applied to the Economic Ordering
Quantity (EOQ) which considers a constant demand. The analysis of supply chain
coordination has lead to several coordination mechanisms that are efficient in practice
[2] for the EOQ problem. In our case, we consider a dynamic demand over a planning
horizon of discret periods.

In order to minimize the cost of the supply chain, we have studied the impact
of cost transfer between the actors on their respective profit. Minimizing the supply
chain cost is equivalent to solve a 2ULS problem. We propose to coordinate the actors
decisions by allowing a total cost transfer including fixed ordering cost, unit ordering
cost and holding cost, or by allowing a holding cost transfer, or by considering that
any cost transfer is allowed between the supplier and the retailer.

An experimental analysis on more than 100000 instances considering different
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cost structures show that the supplier profit can be improved when the holding cost
transfer is allowed. However, transfering the holding cost implies in some cases to
store the produced quantities. A limited storage can be assumed at some levels of the
supply chain. Thus, we propose to analyse the complexity of 2ULS problems with
inventory bounds.

3 2ULS problems with inventory bounds

We consider that either the supplier or retailer or both of them may have a limited
storage capacity implying Inventory Bounds (IB) constraints for the 2ULS problem.
Let us call 2ULS-IBR the problem where the retailer has an inventory bound uR,
i.e.at each period t ∈ {1, . . . , T}, the inventory level at the retailer has to be at most
uRt . Similarly, the 2ULS-IBS problem corresponds to the case where the supplier has
an inventory bound uS. Finally, 2ULS-IBSR is the problem where both the supplier
and the retailer have an inventory bound. We will also consider the case where both
actors share the same storage facility. In this case, the total inventory level of the
supplier and the retailer does not exceed the inventory bound uS,R.

The single-level ULS problem with inventory bounds (ULS-IB) was first intro-
duced by Love [6]. He proves that the problem with piecewize concave ordering
and holding costs, inventory bounds and backlogging can be solved with an O(T 3)
algorithm. Atamturk et al.[1] study the ULS-IB problem under the same cost struc-
ture assumed in Love’s paper [6], considering in addition a fixed holding cost. They
improve Love’s algorithm and propose an O(T 2) algorithm to solve the problem. Re-
cently, Hwang et al.[3] improve the algorithm proposed by Love [6] from O(T 3) to
O(T 2) with concave costs.

A few papers deal with the two-level uncapacitated lot-sizing problem with inven-
tory bounds. Jaruphongsa et al.[4] propose anO(T 3) algorithm to solve the 2ULS-IBS

problem with demand time window constraints. They consider that the supplier hold-
ing cost is lower than the one of the retailer and that the fixed ordering costs and the
ordering costs are decreasing.

3.1 Complexity analysis

We consider at the retailer level a constraint where demand lot-splitting is not allowed,
called No Lot-Splitting (NLS). This constraint implies that each demand has to be
satisfied by one order. In the case where the inventory capacity is not limited, the ZIO
property induces that there exists an optimal solution that satisfy the NLS constraint.
We set the complexity status of some problems summarized in Table 1:
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Problem Complexity
ULS-NLS strongly NP-hard

2ULS-IBR-NLS strongly NP-hard
2ULS-IBS-NLS with NP-hard [4]
demand time window

2ULS-IBS-NLS strongly NP-hard
2ULS-IBSR-NLS strongly NP-hard

2ULS-IBSR-NLS with strongly NP-hard
shared inventory

Table 1: Complexity results assuming NLS constraint

3.2 Inventory bounds at the retailer level

We propose an O(T 5) dynamic programming algorithm to solve the 2ULS-IBR prob-
lem. The algorithm is based on subplans decomposition induced by some structural
properties of the optimal solution.

The ZIO property holds for the supplier level but does not hold for the retailer
level because of the inventory bounds. We propose a block decomposition similar
to the one proposed for the ULS-IB problem [1]. We denote by sRt the retailer
inventory level at the end of the period t. We say that two periods i and j define a
block denoted by [i, j]αβ if sRi−1 = α ∈ {0, uRi−1}, sRj = β ∈ {0, uRj } and 0 < sRt < uRt for
all t ∈ {i, . . . , j − 1}. We know that the order quantity in a block [i, j]αβ is given by
dij − α + β. We show that that there is at most one ordering period in every block.
The principle of the algorithm is to compute the ordering period if there exists for
each block of an optimal solution.

4 Conclusion

By analysing the impact of the cost tranfer between the actors on their respective
profit, the retailer cost can be improved when the holding cost transfer is allowed. We
prove that lot-sizing problems with NLS constraint are strongly NP-hard. Finally, we
show that the 2ULS-IBR problem is solvable in polynomial time. It can be interesting
for a future work to study the 2ULS-IBSR problem by considering or not that the
storage is shared between the actors. We will then analyse the profit of the actors
with inventory bounds when the holding cost can be transfered between the actors.
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Abstract

The purpose of this research is to analyze the behavior, robustness and
price of the robust counterpart formulation of the Generalized Lot-Sizing and
Scheduling Problem with sequence-dependent setup times (GLSP) under the
assumption that demands and production times are only partially known. More
precisely, we assume that these parameters are bounded random variables in a
given uncertainty set, but we do not know their probability distributions. The
resulting problem is a mini-max formulation whose goal is to choose the best
uncertainty-immunized solution. This approach is often recognized as robust
optimization (RO) in the literature. Our goal is to investigate whether or
not robust GLSP models produce high-quality solutions, i.e., optimal or near-
optimal production and scheduling decisions at the expenses of a minor lost
of performance. Moreover, it is desirable that the more operational decisions
do not change too much in order to generate “stable” production plans despite
the data variability. The performance of the robust counterpart formulation is
assessed against three distinct stochastic programming approaches.
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1 Introduction

Most of the efforts to tackle lot-sizing and scheduling problems use deterministic
mixed-integer programming models [5]. In practice this means that the inventory
levels that are implicitly found in these decision models are not strictly used for
demand fulfillment due to demand uncertainty. Therefore, usually a stochastic inven-
tory management model is used afterwards to tackle the uncertainty issue. There are
contributions which focus on the stochastic counterpart of the lot-sizing and schedul-
ing problem with sequence dependent setups. By incorporating explicitly uncertainty,
these models end up merging the realistic planning of both lot-sizing and scheduling,
and inventory management. Despite the relatively few contributions in this field, the
lot-sizing and scheduling problem under uncertainty has been tackled using several
different approaches [14].

Using stochastic programming, [17] address a production planning and scheduling
problem, but more focused in the chemical industry. Uncertainty is tackled with a
multi-stage stochastic programming model. In this case the production planning and
the scheduling problems are solved in a hierarchical framework instead of integrating
both problems.

[13] proposes a multi-level lot-sizing and scheduling problem with random de-
mand that is solved using chance-constrained programming. After developing several
solution methods, the computational results show the efficiency of the hybrid meta-
heuristic against a exact solution algorithm and heuristics. [6] study the dynamic
capacitated lot-sizing problem under random demand and a new service level mea-
sure, which reflects both the size of the backorders and waiting time of the customers.
Although demand is in most of the cases the uncertainty source, there are also ex-
amples in which the stochastic lot-sizing and scheduling problem has as uncertainty
source the processing time [3]. In a more recent work by [9] the uncertainty source
is demand, but the processing times are controllable at a certain cost.

There are other works that assume an infinite planning horizon for a similar prob-
lem – stochastic economic lot-scheduling problem (SELSP). The literature on the
SELSP is reviewed in [15] and [16]. Motivated by several practical process in-
dustries that have limited degrees of freedom when changing over between product
families, [10] analyze the case of a SELSP with restrictions in the production se-
quence by modeling this problem as a Markov decision process. More recently, [11]
relax these assumptions on the changeovers and solves this problem with a simulation-
optimization approach.

Robust optimization has never been used to solve a lot-sizing and scheduling prob-
lem with sequence dependent setups. However, this approach has been used in more
tactical and theoretical production planning problems. For example, [8] proposes a
robust minimax model for solving a single-item lot-size problem. The effectiveness
of the model is validated by numerical experiments. Moreover, the authors proved
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that under certain conditions the robust model converges to the more traditional
stochastic model.

Our contribution addresses the gap indicated by [18] about the necessity for
studying models that acknowledge the uncertain nature of operations and integrate
lot sizing issues with scheduling in finite planning horizons. Notice that in other
production planning problems the trend towards models that incorporate uncertainty
started long before [12, 1]. In this research, we use as basis a well-known deterministic
lot-sizing and scheduling model – the GLSP [4] to shed light on the differences
between using a robust optimization based approach or a stochastic programming to
incorporate uncertainty in processing times and demand.

2 GLSP and Uncertainty

Despite the great application in different industrial settings, the most studied GLSP
assumes that input data are precisely known, or it can be reasonably approximated
by expected or worst-case values, thus leading to simpler deterministic formulations.
However, practical problems are subjected to both environmental and system uncer-
tainty [7, 12]. The first case includes uncertainties that arise beyond the produc-
tion process, such as demand and supply. For example, in consumer goods industry
demand is commonly dependent on market factors, seasonality effects, changing cus-
tomer preferences, product life cycles, and so forth. The second case includes uncer-
tainties within the production process, such as operation yield, production and setup
times, quality of raw material, etc. Uncertainty in production/setup times may arise
in manufacturing plants where the production process is partly comprised by manual
operations that depend on the skills of the workers, or as a consequence of machine
failure.

Although stochastic programming is one of the most successful methodologies in
optimization under uncertainty, this approach is sometimes criticized for being com-
putationally prohibitive for combinatorial problems, especially for a large number of
scenarios. At the same time, designing a plausible set of scenarios is often difficult
due to the lack of historical data and/or to the excessive theoretical requirements for
using the available scenario generation methods. These two drawbacks can be easily
overcame by using RO with a polyhedral uncertainty set. Although [2] suggested
that polyhedral uncertainty might result in overly conservative formulations, polyhe-
dral sets provide tractable robust counterparts. Thus, efficient methods to solve the
nominal problem may adapt well in solving the robust counterpart.

In traditional two-stage stochastic approaches, uncertainty is handled via a finite
set of outcomes or scenarios in some probability space. These scenarios represent
the realizations of the random variables. In this research, we consider independent
realizations for production times and demands.
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The flexibility to react to the uncertainty outcomes is tightened to several factors,
such as the production technology/ capital insensitivity, the planning horizon and
the planner attitude towards risk. In this research we extensively cover the different
possibilities of reacting to uncertainty by decoupling differently the decisions to be
tackled in the first and second-stage in three models.

The first model considers that both production quantities and production se-
quences have to be defined before uncertainty unveils. Therefore, in the second stage,
the model is only able to react to the uncertainty outcomes by adjusting the de-
mand fulfillment. This model may apply to a more conservative planner and in rigid
production environments, such as the steel production planning.

The second model considers that the sequences have to defined a priori and that
in the second stage the planner is able to adjust the production lots. For example, in
the pulp and paper industry the production sequence for the upcoming days/weeks is
fixed before the production lots as the yield of the paper machine and the adjustments
of the several upstream processes is mainly dependent on it.

Finally, the third model is more in line with the traditional hierarchical planning
process. Therefore, in the first stage the lot sizes are defined and their specific pro-
duction sequence is left for the second stage. This case is more common in industries
in which sequence dependent costs are not so crucial. For example, this model would
be suitable for the production process of consumer packaged goods in which cleansing
the production lines is mandatory after each production lot.
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48



Flexible Multi-Product Lot Sizing with a
Static-Dynamic Uncertainty Strategy

Svenja Lagershausen
Leibniz Universität Hannover
svenja.lagershausen@prod.uni-hannover.de

Stefan Helber
Leibniz Universität Hannover
stefan.helber@prod.uni-hannover.de

Abstract

We present a stochastic single-level, multi-product dynamic lot-sizing prob-
lem subject to a production capacity constraint. The production schedule is
determined such that the expected costs are minimized. The costs considered
are set up and inventory holding costs as usual and additionally backlog costs
and costs for overtime. The backlog is limited using a δ-service-level constraint.
The expected backlog and physical inventory functions subject to the cumu-
lated production quantity lead to a non-linear model that is approximated by
a linearization approach.

1 Introduction

Lot sizing problems have been addressed in literature considering many different as-
pects such as period-overlapping set up times, common set up operators, perishable
goods and many more. The majority of the lot sizing literature focusses on the sit-
uation in which the demand is deterministically known in advance. However, in the
industrial planning procedure, the demand is usually forecasted such that determin-
istic values are provided.

In this paper, we address the problem of stochastic demand which is given by the
expected value and the standard deviation in a stochastic capacitated lot-sizing prob-
lem (SCLSP). We consider a single machine which has a strict capacity limitation,
however, a limited amount of overtime can be imposed. In this SCLSP, we assume
that unmet demand can be back-ordered. The model contains a constraint on the re-
sulting expected backlog, i.e., the cumulated yet unmet demand, to provide a specific
service level to the customers. The service level used is the δ service level introduced
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by Helber, Sahling, and Schimmelpfeng (2013). Both the expected physical inventory
and the backlog in the SCLSP are non-linear functions of the cumulated production
quantity. We first provide a non-linear model formulation and then use a linearization
approach such that a linear program can be used to solve the problem. The modeling
approach is solved using a specific fix-and-optimize algorithm as introduced in Helber
and Sahling (2010).

Bookbinder and Tan (1988) described three fundamental strategies for probabilis-
tic lot-sizing problems subject to a service-level constraint for a single product. In
the “static uncertainty” approach, both the timing and the size of production quan-
tities are determined in advance of the demand realizations. In the other extreme it
is assumed that all production decisions for each period are made when the period
demands are finally known which is the “dynamic uncertainty” approach. To strike a
compromise between the extremes, Bookbinder and Tan (1988) proposed the “static-
dynamic uncertainty” approach in which the production periods are fixed beforehand
by a given set up pattern, however the production quantities are determined after the
demand has been realized. In this paper, we use an adapted version of the “static
uncertainty” approach.

2 The non-linear stochastic capacitated lot sizing

problem with a δk service level constraint

We consider the following problem:

• The objective is to find a production plan for k = 1, . . . , K products in t =
1, . . . , T periods sharing a single machine which has a time-wise limited pro-
duction capacity for each period t, Ct.

• The total overtime per period over all products is allowed to the extend of Omax

time units on the machine. Each time units has oc product-unspecific overtime
costs per time period.

• The stochastic demand Dk,t is described by the expected value E(D)k,t per
period and product and a standard deviation σkt for each product k and time
period t.

• The realization of the demand, dk,t, is known at the beginning of the period.

• The target service level per product is δk.

Next to the expected value and standard deviation, the model contains the further
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parameters which are listed in Table 1. There are product-specific holding and set
up costs for each product k denoted by hck and sck. The product specific processing
times and set up times for each product k are tbk and trk.

Ct capacity in period t
E(D)k,t expected demand of product k in period t
dk,t demand realization for product k in period t
δk target service level for product k
hck holding cost for product k
oc overtime costs per unit of any product in any period
Omax Maximum amount of overtime per period
sck set up costs for product k

σk,t
standard deviation of the demand for product k in
period t

tbk processing time for one unit of product k
trk set up time for product k

Table 1: Parameters of the mathematical model

The model is subject to the decision variables given in Table 2.

• The set up variable Xk,t indicates whether the machine is set up for product k
in period t.

• Overtime is utilized in the amount of Ot time units per period.

• The production quantity of product k in period t is Qk,t.

• The physical inventory amounts to Y Pk,t in period t for product k. It is given
by

Y Pk,t = max

(
0,

t∑

τ=1

(Qk,τ )− dk,τ
)

∀k, t. (1)

• The service-level-conformal backlog level BLk,t is

BLk,t = max

(
0,

t∑

τ=1

(dk,τ −Qk,τ )

)
∀k, t. (2)
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Xk,t ∈ {0; 1} binary set up variable that is equal to 1 if the machine
is set up for product k in period t

Ot ≥ 0 overtime in period t for all products
Qk,t ≥ 0 production quantity of product k in period t
Yk,t inventory of product k in period t
Y Pk,t ≥ 0 physical inventory of product k in period t

BLk,t ≥ 0
backlog of product k in period t allowed by the service
level constraint

Table 2: Variables of the mathematical model
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Abstract

In this paper, we present an extended MIP formulation of the stochastic
lot-sizing problem for the static-dynamic uncertainty strategy. The proposed
formulation is significantly more time-efficient as compared to existing formu-
lations in the literature and it can handle variants of the stochastic lot-sizing
problem characterized by penalty costs and service level constraints, as well as
backorders and lost sales. Also, besides being capable of working with a pre-
defined piecewise linear approximation of the cost function – as is the case in
earlier formulations, it has the functionality of finding an optimal cost solution
with an arbitrary level of precision by means of a novel dynamic cut generation
approach.

1 Background

The lot-sizing problem aims at determining a minimum cost inventory plan so as
to meet demand over a finite discrete planning horizon. The lot-sizing problem and
its variants are traditionally studied under the assumption of deterministic demands.
However, there is a growing body of work on more realistic lot-sizing problems where
demands are assumed to be random variables. This assumption has a significant
impact on lot-sizing problems since the inventory position as well as the costs incurred
in later periods now become random variables following random demands. As a
result, if demands are random, then the solution to a lot-sizing problem is no longer
a deterministic inventory plan but an inventory policy. This policy defines, for any
given period and inventory position, whether to order, and if so how much to order.
Bookbinder and Tan [1] provide a broad classification of such policies that can be
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employed in stochastic lot-sizing problems. Among these, is the so-called static-
dynamic uncertainty strategy. Following this strategy, one sets the number as well as
the timing of all orders at the very beginning of the planning horizon, and then, at each
replenishment epoch decides the order quantity upon observing the inventory position.
The static-dynamic uncertainty is an appealing strategy since it eases the coordination
between supply chain players [2, 7], and facilitates managing joint replenishments [5]
and shipment consolidations [3]. As such, an expanding line of research has been
emerged on computational methods for the static-dynamic uncertainty strategy.

2 Contribution

An important direction of research is to develop computationally efficient formula-
tions of the stochastic lot-sizing problem under the static-dynamic uncertainty strat-
egy. Tunc et al. [8] recently proposed such a MIP formulation that make use of the
network flow structure of the problem. This formulation has a tighter linear relax-
ation as compared to earlier formulations, and in turn it has a superior computational
performance. However, their formulation is designed solely for problems character-
ized by α service levels. The work we carry out in the current paper extends their
approach so as to capture more general variants of the problem. We contribute to the
literature by presenting a new MIP formulation of the stochastic lot-sizing problem
for the static-dynamic uncertainty strategy. The proposed formulation is significantly
more time-efficient as compared to existing formulations in the literature and it can
handle variants of the stochastic lot-sizing problem characterized by penalty costs
and service level constraints, as well as backorders and lost sales. Also, besides being
capable of working with a pre-defined piecewise linear approximation of the cost func-
tion – as is the case in earlier formulations, it can find a minimum cost solution with
an arbitrary level of precision by means of a novel dynamic cut generation approach.

3 Computational Results

The purpose of the computational study is the demonstrate the efficiency of the
extended formulation with and without the dynamic cut generation approach. We
are interested, in particular, to analyze how the extended formulation performs as
compared to existing formulations in the literature and whether the dynamic cut
generation approach scales well.

In the first part of the computational study, we assess the computational per-
formance of the extended formulation against a benchmark formulation employed by
Tarim and Kingsman [6] and Rossi et al. [4]. We abbreviate the extended formulation
and the benchmark formulation as PM and BM, respectively.
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Table 1 presents the results of the computational study for different planning
horizon lengths. Here, S-GAP is the % integrality gap, E-GAP is the % optimality
gap at termination (with a time limit of half an hour), TIME is the solution time
in seconds, and NODES is the number of explored nodes. The results demonstrate
without doubt that PM is more time efficient than BM. This finding is consistent
under all parameter settings. PM solves all instances to optimality in 1.31 seconds on
average. BM, on the other hand, fails to solve 1 out of 10 instances within the time
limit, and averages a solution time of 261.35 seconds. The dominance of PM stems
from its tight linear relaxation. PM averages an S-GAP of 0.11% and a NODES of
0.09. As such, most of the time an optimal solution can be found at the root node.

BM PM

S-GAP E-GAP TIME NODES S-GAP E-GAP TIME NODES

N
20 52.18 0.00 0.69 3.6 103 0.00 0.00 0.24 0.02
30 62.58 0.01 55.85 2.1 105 0.01 0.00 0.95 0.13
40 68.25 6.93 727.50 1.1 106 0.01 0.00 2.73 0.12

Average 61.00 2.31 261.35 4.2 105 0.01 0.00 1.31 0.09

Table 1: The solution statistics of BM and PM

In the second part of the computational study, we conduct further experiments to
analyze how the dynamic cut generation approach scales as compared to the stand-
alone extended formulation. We will abbreviate the dynamic cut generation approach
as Cuts. Table 2 presents the average computation times of PM and Cuts in seconds for
planning horizon lengths up to 120 periods. The results show that both PM and Cuts
solve all problem instances to optimality in less than quarter of an hour. Thus, it is fair
to say that both methods can solve realistic-sized instances to optimality in reasonable
computational times. We also observe that Cuts is around two times faster than PM in
finding an optimal solution. This highlights that one can bypass the off-line piecewise
linearization of the cost function and establish an even more precise approximation
on-the-fly without sacrificing computational efficiency. The importance of this result
becomes more evident if we recall that finding a good piecewise linear approximation
is a challenging optimization problem itself.

N 50 60 70 80 90 100 110 120

PM 9.09 25.77 47.51 84.09 192.80 298.06 519.73 865.71
Cuts 6.14 14.69 22.86 38.29 108.57 123.61 248.80 431.41

Table 2: The computational times of PM and Cuts
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Abstract

Shipment consolidation is typically performed according to the origin of
orders, and once the assignment of orders to containers is made, it may remain
the same over the planning horizon. However, consideration of order due dates
is also important. We iterate between a bin-packing problem that determines
order-container assignments, and a joint replenishment problem that specifies
the size and shipment date of each order. Our heuristic allows order-container
assignments to change over time so that container utilization is maximized and
ordering and shipment costs are lowered.

1 Introduction

We consider a shipment consolidation problem where order consolidation is done
proactively at an earlier stage of the replenishment cycle, as in Crainic et al. [2]. If
consolidation strategies are determined based on forecasted demand, it is possible to
consider each container as a “family” of orders. Once orders are grouped into families,
the volume of each order to ship can be determined. This inbound consolidation
problem can then be viewed as a lot-sizing problem, specifically a multi-family joint
replenishment problem: Given the assignment of orders to containers, the demand
of each order in every period (expressed in volume), and the capacity of all the
containers, find the volume of each order to ship in any period that will minimize the
cost of order setups plus holding costs. To the best of our knowledge, only Erenguc
and Mercan [3, 4] study the multi-family version of the joint replenishment problem.

The bin-packing problem (BPP) and multi-family joint replenishment (MFJRP)
share characteristics, where the output of one model can be used as the input for
the other. Ben-Khedher and Yano [1] solve a sequential joint replenishment problem
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(JRP) and BPP to determine the optimal delivery schedule of orders that minimizes
the number of truckloads. The JRP provides the lowest-cost delivery schedule to meet
demand, while the BPP optimizes the loading configuration. Remaining capacity in
each truck is computed, and along with orders that have not yet been assigned to
trucks, a single-item lot-sizing problem is solved to maximize container utilization.

Unless demands are constant, order due dates will be time-varying. If we allow
orders to be grouped based on their due dates, this will influence the way in which
order families (containers) are defined. Rather than force order-container assignments
to remain static over a planning horizon, we show how dynamic family assignment can
help carriers and third-party logistics providers achieve greater cost savings, either
through reduced transportation or inventory holding costs. We adopt the framework
of [1] in the context of our problem. In each period, a BPP is solved to provide order-
container assignments along with order-volume to ship. The MFJRP then “freezes”
these order-container assignments over the planning horizon and treats the shipment
sizes as forecasted demand.

2 Problem Formulation

A firm serves multiple customer zones, shipping to each zone numerous orders that
are sourced from one common geographical region. Customer orders (demands) are
known for each order i = 1, 2, . . . ,m in every month s = 1, 2, . . . , S, and are expressed
in terms of volume. The firm must determine which orders to fulfill each week along
with the lowest-cost consolidation plan; this means that the firm must communicate
to its suppliers the orders it wishes them to send, and must specify how to group the
orders so that customer demands are met while not exceeding container capacities.

Monthly demand can be viewed as an aggregate of several weeks’ demand and
should be more accurate to forecast. This allows for some flexibility in the weekly
shipment of material: as long as orders arrive within the month they are required,
they will not need to be backordered (though inventory holding costs will still apply).

Since orders are shipped on a weekly basis, weekly demand is determined from
the monthly demand. We let Dis be the monthly demand of item i in month s.
Weekly demand is then generated by applying an appropriate probability distribution,
resulting in dit, demand for order i in period t = 1, 2, . . . , n.

These demands are used in a dynamic family assignment (DFA) heuristic, which
consists of two main routines: (i) a bin-packing problem to assign orders to containers;
and (ii) a multi-family joint replenishment problem to determine shipment volumes
in each period. Each routine will now be discussed in further detail.
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2.1 Bin-Packing Problem

Based on the given weekly demand (determined from the monthly forecasted de-
mand), we solve a bin-packing problem [BPPt] for every t. Orders may be divided
across multiple containers. For orders shipped in full containers (i.e. all container
capacity is used), we consider those demands to be satisfied and fix those shipment
quantities. The remaining demand in each period can then be calculated.

From the partially-filled containers, we determine a fixed assignment of orders
to containers based on the maximum volume shipped over all containers and time
periods from the [BPPt]. Remaining demand to be shipped is expressed as dijt, the
volume of order i to be shipped in container j in period t. These assignments and
demands are used in the [MFJRP ] heuristic, discussed next.

2.2 MFJRP Heuristic

Each partially-filled container can be viewed as a family, and we must determine in
which periods to ship the remaining required demand. The MFJRP is formulated as a
transportation-type problem (as in [5, 6]), where we minimize the total costs of major
and minor setups and the associated unit cost of shipping, holding, and “penalties”.
Earlier, we noted that as long as orders are delivered within the month, backorders
will not be needed. Here, we introduce backlogging penalties to discourage shipments
from being postponed too far into the month, but to also allow for flexibility in the
schedule. Constraints ensure that demand is met, capacity is not exceeded, and that
shipments are dispatched only if the proper order and family setups have occurred.

[MFJRP ] is solved using a Lagrangian heuristic, combined with a genetic algo-
rithm enhanced with variable neighbourhood search. In each period, we will have ob-
tained the volume of order i to ship in container j, which can be added to the quantity
of fixed orders shipped that was determined from [BPPt]. An updated value of dit is
calculated, and we solve [BPPt] again for each period t. Order container-assignments
may be different now due to the updated demand values, and may affect container
utilization.

The DFA heuristic iterates between [BPPt] and [MFJRP ] until order-container
assignments stabilize.

3 Solution Approach

Computational experiments are derived from data sets used in Trigeiro et al. [7]. A
full factorial analysis is conducted using the number of orders m = 4, 6, 8, 10, and
number of months S = 3, 6, 8. We allow the number of periods within a month to
vary, giving n = 2S, 4S (i.e. either 2 or 4 periods each month). We generate five
different instances for each problem size, for a total of 120 test instances.
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The performance of the DFA heuristic is measured against the Ben-Khedher and
Yano methodology [1] (when multiple families are not considered in their joint re-
plenishment problem). As well, we compare our DFA results to the case where the
bin-packing problem alone determines how orders are consolidated and shipped.

References

[1] N. Ben-Khedher and C.A. Yano. The multi-item joint replenishment problem
with transportation and container effects. Transportation Science, 28(1), 37–54
(1994).

[2] T.G. Crainic, S. Marcotte, W. Rei, and P.M. Takouda. Proactive order consolida-
tion in global sourcing. In J.H. Bookbinder (Ed.), Handbook of Global Logistics,
501–530. Springer, New York (2013).

[3] S.S. Erenguc and H.M. Mercan. A multifamily dynamic lot-sizing model with
coordinated replenishments. Naval Research Logistics, 37(4), 539–558 (1990).

[4] H.M. Mercan and S.S. Ereguc. A multi-family dynamic lot-sizing problem with
coordinated replenishments: a heuristic procedure. International Journal of Pro-
duction Research, 31(1), 173–189 (1993).
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Abstract

In this paper, we focus on the single-level, multi-item capacitated lot sizing
problem with setup carryover, setup splitting and backlogging. Although the
capacitated lot sizing problems have been investigated with many different fea-
tures from researchers, the simultaneous consideration of setup carryover and
setup splitting is relatively new. This consideration is beneficial to reduce costs
and produce feasible production schedule. In this research, we use a simple
plant location reformulation of the original mixed integer programming model
to obtain a tighter formulation. We also add valid inequalities to further tighten
the formulation. A fix-and-optimize heuristic with two-stage product decompo-
sition and period decomposition strategies is proposed to solve the formulation.
The computational results show the capability, flexibility and effectiveness of
the approaches, achieving 6% and 8% average optimality gap for data without
and with backlogging, respectively.
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1 Introduction

One of the recent research trends on big bucket capacitated lot sizing problem (CLSP)
is to include setup carryover, setup splitting and backlogging. Considering setup
splitting in the formulation either generates a better production schedule in terms
of lower costs or removes infeasibility from models with setup carryover only [4]. A
possible condition for infeasibility is when the length of setup time is substantially
long and might even surpasses the capacity of the time period. Long setup time
is ubiquitous in some process manufacturing industries and automobile production
processes. Therefore it is necessary to take setup splitting into account in order to have
a feasible production schedule. In this research, we first study the single-level, multi-
item, capacitated lot sizing problem with setup carryover and setup splitting (CLSP-
SCSS) and then incorporate demand backlogging in the model. As an extension of
the basic CLSP, the CLSP-SCSS is also NP-hard. It is unlikely to solve the problem
within reasonable time limit by traditional exact methods such as branch-and-bound
when problem size is getting larger. To address this problem, the goal of this research
is to focus on developing an efficient solution procedure for the CLSP-SCSS.

2 Solution Approach

The CLSP-SCSS is reformulated by using simple plant location formulation (SPL-
SCSS) to generate a tighter lower bound and formulation such that computational
burden can be reduced. Three types of valid inequalities [1]: pre-processing inequali-
ties, inventory/setup inequalities and single-item production inequalities are added to
the model at the beginning. Then a fix-and-optimize heuristic [2, 3] is adopted to solve
the proposed formulation. This generic heuristic solves a small portion of binary vari-
ables, that is, the binary setup state variables and all the other continuous decision
variables are optimized together rapidly in each subproblem. For constructing the
initial solution, we also used rounding heuristic to round up all the fractional setup
variables after LP relaxation and obtain corresponding setup carryover and setup
splitting to generate an initial setup pattern. In some small size problems, this ini-
tialization with the fix-and-optimize heuristic could reach the true optimal solutions.
In addition, we incorporated the case with demand backlogging to demonstrate that
making additional assumptions to the model does not require to completely altering
this heuristic.

3 Computational Result

We took the data used in [5] to test the capability of the proposed solution method.
Each test data set has 270 data instances with number of products range from 5 to 15
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and the length of the planning horizon ranges from 20 to 40 periods in our test prob-
lems. In each data set, the average setup time of all items is fixed to 40%, 70% or 120%
of period capacity (400, 700 and 1200 since period capacity is 1000). The proposed
formulation, valied inequalities, rounding heuristic and fix-and-optimize heuristic are
coded by AMPL and solved by IBM ILOG CPLEX 12.0.6.1. A Dell Precision T7500
Workstations is used to perform all the computational test. The processor of the
workstation is dual six-core Intel Xeon Processor X5690 (4.46 GHz, 12M L3, 6.4
GT=s). The memory of the workstation is 48 GB, 1,333 MHz, DDR3RDIMM, ECC
(6DIMMS).

Here we give the result summary of data without backlogging in Table 1, while
the result of data with backlogging is presented in Table 2. From the experiment
result, setup splitting variables is essential for finding feasible solution when long
setup time exists and problem size become bigger. When backlogging is not allowed,
the performance of algorithm tends to be stable in terms of average optimality gap
regardless of the number of periods. This property can be beneficial for company to
extend the planning horizon, which is more common and practical in reality compared
to increase product types. The result of data with backlogging is in general harder
to solve, yet the fix-and-optimize heuristic still provides competitive results in terms
of optimality gap.

Time (s) Gap (%)
Maximum 439.8032 35.43
Average 73.555 5.56
Product

5 30.56 4.17
10 69.525 5.93
15 120.58 6.58

Period
20 37.397 5.23
30 64.473 5.54
40 118.79 5.91

Setup Time
40 51.186 1.91
70 69.255 3.63
120 100.22 11.14

Table 1: Summary of Optimality Gap and Time for SPL-SCSS
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Time (s) Gap (%)
Maximum 5473.788 29.38
Average 135.782 8.00
Product

5 32.75 6.26
10 98.61 7.99
15 275.98 9.74

Period
20 56.67 7.22
30 101.37 8.31
40 249.30 8.46

Setup Time
40 73.06
70 112.30 7.98
120 221.99 13.30

Table 2: Summary of Optimality Gap and Time for SPL-SCSS-BL

4 Conclusion

Modeling setup features in lot sizing problems is usually using binary variables.
Adopting fix-and-optimize heuristic to solve the problem is advantageous as the
heuristic mainly decomposes binary variables, resulting in smaller subproblems. We
also demonstrate the effectiveness of combining other mathematical programming
based approaches including rounding heuristic, reformulation as well as valid in-
equalities. Another advantage of fix-and-optimize heuristic would be the easiness
to implement and flexibility when other features are included in the model, such as
backlogging in our case. A comprehensive evaluation with more instances and other
potential algorithms would be beneficial. We are currently extend this model with
parallel parallel machines as well as multi-level production structures.
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Abstract

In this research, Profit maximization General Lot sizing and Scheduling
Problem with demand choice flexibility (PGLSP) is studied. To solve this
problem, different heuristic algorithms based on proposed mathematical models
are presented and compared against the exact method. These algorithms are
classified into two categories, Rolling Horizon, and Fix and Relax. While these
algorithms reduce the execution time reasonably, their solutions have a good
quality.

1 Introduction

Lot sizing and scheduling are two important problems in the field of production
planning. Despite the fact that these problems are dependent to one another, in
most researches they are analyzed separately and hierarchically [1]. Considering the
interactions, the General Lot sizing and Scheduling Problem (GLSP) considers these
two issues as one problem [2] .

The basic assumption in most researches in the field of lot sizing and scheduling
and specifically in GLSP models is that companies should respond to all predeter-
mined demands. However in a business with the goal of maximizing benefits, fulfilling
all demands may not be the best solution. In this research, Profit maximization Gen-
eral Lot sizing and Scheduling Problem with demand choice flexibility (PGLSP) is
studied. This problem is an extension of the GLSP by adding demand choice flexi-
bility. In other words, the amount of demand accepted in each period, lot sizing, and
scheduling are problems which are considered simultaneously. Accepted demand is
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between the upper and lower bounds in each period. With regard to this assumption,
the traditional objective function of the model, i.e., minimizing costs is changed to
maximizing net profit.

PGLSP is an NP-Hard problem and the execution time increases quadratically
with increase in the size of the problem [3]. In this research, different heuristic algo-
rithms based on mathematical models are proposed. These algorithms are classified
into two categories, Rolling Horizon, and Fix and Relax. The main focus of this
research is on these algorithms and their comparisons.

2 Problem Definitions and Assumptions

Profit maximization in General Lot sizing and Scheduling Problem (PGLSP) is an
extension to GLSP problem by adding flexibility in choosing demand. PGLSP is
described as follows: Having P products and T planning periods, the decision maker
wants to define: (1) the accepted demand of each product in each period which is
between upper and lower bounds, (2) the quantity of lots for each product, and (3)
the sequence of lots. The objective function is maximizing the revenue of sales minus
production, holding, and setup costs. Assumptions of the model are as follows:

• Backlog is not allowed;

• Setup times and costs are sequence-dependent. The triangular inequality holds
between setup times;

• The model has the characteristic of setup preservation, which means that if we
have an idle time, setup state will not change after it;

• The breakdown of setup time between two periods is not allowed and the setup
is finished in the same period in which it begins” [3].

3 Mathematical Models

Four mathematical models have been proposed for this problem [4]. These models are
different in the method of lot sizing and scheduling. The first two models use micro
periods for product sequencing [5]. These micro periods do not exist in the third
and fourth models, which consider the sequencing problem as a Traveling Salesman
Problem (TSP) model [6]. Lots in the first and third models are determined by the
unit of products which are produced in each period, while in the second and fourth
models they are separated by the period in which they will be used. Based on the
experimental results two of the methods which use TSP formulation for scheduling
have superior performance to the other two models which use small buckets [4].
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4 Heuristic Algorithms

Heuristic methods based on mathematical models. Based on the two superior math-
ematical models seven different methods are presented. These methods are based on
Rolling Horizon and Fix and Relax algorithm.

4.1 Fix and Relax (FR)

The number of binary variables in Mixed Integer Problems (MIP) has a considerable
impact on solution time. The FR algorithm is an iterative procedure which breaks
down the original MIP to smaller sized MIP to reach the near optimal solution in a
reasonable time [7]. In this research, the break-down in done based on the planning
periods. For example, in the first iteration only the original binary variables in the
first period remain binary and the rest of variables are relaxed. In the next iteration,
the binary variables in the first period are fixed based on the solution, in the second
period defined as binary variables, and in the next periods they remain relaxed. This
process will continue until the last period.

4.2 Rolling Horizon (RH)

In many companies, planning is done based on a rolling horizon as they need to
adjust their plans to new demands and prices and only the first period of planning is
implemented [8]. In addition, the optimal solution of the problem based on predicted
data is not an optimal solution with the real data. The RH algorithm is based on
this concept. Similar to FR algorithm, three sections can be defined based on the
planning periods.

• The first section includes n-1 periods in which some of the decision variables
are fixed based on previous iterations.

• The second section is the nth period in which the problem is considered com-
pletely.

• The last section is from (n+1)th period to the end of the planning horizon
which includes a simpler form of the problem. In PGLSP the simple form only
considers lot sizing and there are no binary variables for scheduling [9].

The original PGLSP formulation is modified. Similar to the FR algorithm, this
algorithm is an iterative procedure. In the first iteration, the modified mathematical
model is solved for n=1. In the second iteration, the binary variables are fixed based
on the first iteration and the modified model is solved for n=2. This process will
continue until n is equal to the last period.
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In this research different heuristic methods based on RH and FR are presented and
their efficiencies are investigated against each other as well as the exact mathematical
models.
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Abstract

We present a new model formulation for a multi-product economic order
quantity problem with product returns and reprocessing option (OORPP, Op-
timal Order and Reprocessing Planning Problem). The optimization comprises
the limited shelf life of sterile medical devices as well as capacity constraints
of reprocessing and sterilization resources. The time-varying demand is known
in advance and must be satisfied by purchasing new medical devices and/or by
reprocessing used and expired ones. The objective is to determine a feasible
procurement and reprocessing schedule that minimizes the incurring costs. For
the solution of the OORPP, a heuristical approach based on column generation
is proposed and first numerical results are presented.

1 Introduction

Because of rising costs and competitive pressure, hospital managers are often forced
to develop strategies for process optimization and cost reduction. One possibility for
cost reduction can be identified within non-medical, so-called secondary processes.

The preparation of hospitals with sterile, reusable medical devices represents one
of these secondary processes. This process is particularly economically relevant, since
this process is related to a substantial portion of total costs. Since medical devices
are not manufactured in hospitals, procurement processes are necessary. Large hos-
pitals often possess specialized reprocessing and sterilization sections that enable the
re-usage of medical devices. This reprocessing option results in a material cycle in
which returns of medical devices from the operating theaters and wards must be con-
sidered. Obviously, decisions concerning the timing of placing orders and of reprocess-
ing medical devices interact directly. Thus, it is necessary to consider procurement
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71



and reprocessing activities simultaneously. An additional challenge represents the
limited shelf life of sterile medical devices.

The reprocessing cycle is identical for all re-usable medical devices and can be de-
scribed as follows: After using the medical devices in the operating theater, they are
pre-cleaned to remove major contaminations. Additionally, a pre-screening of medi-
cal devices with uneven surfaces is necessary because contaminations are difficult to
remove. Damaged medical devices are disposed of and thus leave the reprocessing
cycle directly. The subsequent decontamination includes the cleaning, disinfection,
rinsing and drying. Afterwards, the cleaning results are controlled and the function-
ality is tested. All medical devices are packed into surgical- or department-specific
sets. These sets are then sterilized in order to kill remaining microorganisms. Dif-
ferent time-temperature combinations can be used to sterilize the very same medical
devices. Since the sterilization resource represents the bottleneck of the overall pro-
cess, we merely focus on its capacity since the remaining resources for reprocessing
are not scarce. If the medical devices are not provided directly in operating theaters,
they can be stored. However, the shelf life of sterilized medical devices depends on
the type of package and storage conditions.

2 Model assumptions

In the OORPP, the planning horizon is devided into T periods (t = 1, . . . , T ). K dif-
ferent medical devices (k = 1, . . . , K) can be ordered or reprocessed. The product
flow is illustrated in Figure 1.

Expired & 
used de-

vicesSterilization

Usage in the
operation theater

Sterile de-
vices

Procurement of
sterile devices

Provision in the
operation theater

Figure 1: Product flow within the central sterile service in hospitals

In the following, the underlying assumptions for procurement, sterilization, storage,
and demand fulfillment are introduced briefly:

• A procurement process causes fixed ordering costs and variable material costs.
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• In each period, the ordering capacity is limited. In addition, a minimum order
size must be met.

• Several sterilization types are available to reprocess medical devices. Medical
devices can be sterilized by different types.

• For each sterilization process, fixed costs occur. Furthermore, variable unit
costs are also taken into account.

• The capacity of the sterilization resource is restricted in each period.

• The storage time of sterile medical devices is restricted by legal requirements.
Therefore, the storage time is recorded and the maximal storage time must be
taken into consideration.

• The distinction between sterile and used medical devices requires a two-stage
storage system.

• The storage capacity is restricted for both sterile and used/expired devices.

• An external demand dkt for medical device k in period t has to be satisfied
completely while backlogging is not allowed.

• A device-specific safety stock must be taken into account due to legal require-
ments.

• A portion (1−βk) of medical device k returns defectively and must be disposed
of.

• Medical devices return with a time-lag of two periods. Thus, the returns rkt of
medical device k in period t are equal to rkt = βk · dk,t−2.

The objective of the OORPP is to determine ordering and reprocessing quantities
that minimize the total sum of procurement and sterilization costs.

3 Outline of the Solution Approach

Following [3], the problem is solved in a heuristic fashion in two steps. First, we
reformulate the underlying problem as a set partitioning problem and a column gen-
eration approach is applied to tighten the lower bound, see also [1] and [2]. In the next
step, the obtained lower bound is transferred into a feasible solution by a truncated
branch-and-bound approach using CPLEX.
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4 First Numerical Results

To test the quality of the proposed solution approach, four problem classes (PC) were
generated by varying the number of devices, periods and sterilization types. In total,
768 test instances were tested. Table 1 gives an overview of the numerical results of
our solution approach.

TCPUCG KFixed TLimB&B IntGAP
PC 1 (K = 10, T = 12) 45s 35, 1% 100s 0, 64%
PC 2 (K = 20, T = 24) 237s 33, 0% 200s 2, 13%
PC 3 (K = 40, T = 24) 455s 55, 3% 400s 2, 99%
PC 4 (K = 80, T = 24) 811s 74, 4% 800s 3, 83%

Table 1: Numerical results of the upper bounds

First, the average solution time in seconds to generate a feasible lower bound for
the OORPP is reported in column “TCPUCG”. The entries in column “KFixed” show
the portion of medical devices with an integer solution in the lower bound. The given
time limit for the branch-and-bound approach is shown in “TLimB&B”. Finally, the
average integrality gap compared to the lower bound obtained by column generation
is reported in “IntGAP”.

The average solution time required for generating lower bounds is quite low. As
expected, the computational effort increases with respect to the rising number of
medical devices. The portion of medical devices with an integer solution is quite high
with 35, 1% for PC 1. This portion rises to more than 70% for PC 4. We observe that
the average integrality gap does not exceed 4% for all PC. Consequently, the results
of this numerical study underline the high solution quality of the proposed solution
approach.
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1 Introduction

Silicon wafers are extensively used in semiconductor manufacturing to produce mi-
croelectronic components such as chips and integrated circuits. However, some de-
vices require higher performance which cannot be delivered by traditional silicon-
only wafers. Components built on Silicon-On-Insulator (SOI) wafers offer much more
performance while consuming less energy compared to components on silicon-only
wafers. SOI wafers may be produced using different technologies. The production
system studied in this paper concerns a type of wafer bonding technology called the
Smart-CutTM Technology. Using this technology, a thin layer of crystalline material
is transferred from a donor substrate to another substrate using bonding and layer
splitting processes. The used donor substrate can be processed later to be reused
again as the donor substrate to produce another SOI wafer. Here, the used donor
wafer is considered as a “by-product”, i.e. it has been generated during production.

The studied manufacturing system in this paper has similarities to a Closed-Loop
Supply Chain (CLSC ). In order to classify our problem, we define a Closed-Loop
Manufacturing System as a system in which by-products, co-products and/or com-
ponents can be returned to the manufacturing system after a process called product
recovery. Product recovery aims at restoring products while eliminating waste to a
large degree. Here, we consider a specific type of by-product recovery. The industrial
jargon of the company Soitec with for this type of recovery is refreshing.

The abstract is organized as follows. The main aspects of the Smart-CutTM Tech-
nology and the studied manufacturing system are briefly described in Section 2, to-
gether with a short literature review. The main characteristics of the proposed math-
ematical model for planning production are summarized in Section 3. This model
has been validated on test instances which have been generated from industrial data.
Numerical experiments and managerial insights will be discussed in the workshop,
together with some conclusions and perspectives of this study.
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2 Problem Descrition and Literature Review

We consider the supply chain of a Silicon-on-Insulator (SOI) Wafer production unit
using the Smart-CutTM Technology. In SOI Wafers, a thin layer of silicon is laid
on a silicon Wafer which serves only as a physical support (or handle). These two
silicon layers are separated by an insulator: The oxide. Once Wafer A is oxidized
and implanted, it is ready to be bonded with Wafer B. After the Wafers are bonded,
they are split to form the SOI Wafer. Wafer A is the “donor” Wafer in the sense
that a thin silicon layer of this substrate is deposited on Wafer B. In the industrial
jargon, Wafer A is called “Top” while Wafer B is called “Base”. As only a thin layer
of the Top Wafer is deposited on the Base Wafer, it is possible to reuse the Top Wafer
several times to produce other SOI Wafers. This is one of the main advantages of the
Smart-CutTM Technology which makes the process cost competitive.

A “used Top Wafer”, called “Negative Wafer”, must be reworked before returning
to the SOI fabrication process. This remanufacturing process is called the refresh
process or shortly refresh. In the industrial terminology, a new Top Wafer used for
the SOI fabrication is called a “Fresh Wafer” and is purchased from silicon Wafer
suppliers. A Wafer may be refreshed only a maximum number of times (called the
“maximum refresh level”). It is economically interesting to refresh a Top Wafer as
many times as possible.

Yield and quality constraints or specific customer specifications complicate the
SOI-Refresh planning. The refresh process, of limited capacity, can be done internally
or externally. Internal refresh may also be performed in a different site than the one
where the SOI Wafers are produced. Therefore, the increased cycle time (shipping and
extra packaging) and possible deterioration must be considered. The studied problem
is related to different domains of lot-sizing. We consider the production planning of a
multi-item and multi-level manufacturing system. In our research, the raw material
once used for production is considered as “by-product”. This by-product cannot fulfill
any demand and must be reworked before coming back to the manufacturing cycle.
The process of restoring the generated by-products makes them reusable again as raw
materials. Therefore, this process can be considered as a “remanufacturing process”.
In the literature, remanufacturing concerns the returned products from the customers
whereas, in our case, the customer is not involved.

A multi-item uncapacitated lot-sizing problem in which co-products are produced
at each production run is treated in [1]. In this paper, it is considered that the co-
products have their own demand and cannot fulfill the demand of the main product.
Note that in our case, by-products do not satisfy directly any demand. Besides, they
are mostly used as newly purchased raw materials in the final product fabrication.

Remanufacturing in reverse logistics is considered in [3]. A closed-loop supply
chain with setup costs, product returns and remanufacturing is considered in [5]. The
study is inspired from the paper manufacturing industry in which both virgin and
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deinked pulps are used to make papers. Several studies use the term remanufacturing
to denote the recycling of products or generated by-products ([2], [4]).

Our problem is different from the mentioned problems. It is bi-level, the by-
products are generated when manufacturing the final products. Therefore, the gener-
ated quantities of by-products are deterministic. Moreover, there are multiple reman-
ufacturing cycles, which depend on the raw material or the final product. Therefore,
the decisions of purchasing, manufacturing and remanufacturing are connected.

3 Summarizing the Mathematical Model

To solve this complex industrial problem, we proposed a closed-loop lot-sizing model
on a discrete finite time horizon. Because it is quite heavy, this model cannot be
presented in this abstract. Instead, its main characteristics are discussed. This model
uses big time bucket periods as multiple items can be produced in the same time
period. The objective of our model is to decide when and how much to produce final
products (SOI), when and how much to purchase raw materials, when and how much
to refresh used Top Wafers in order to satisfy demand.

General parameters include the number of final products, Top (Fresh and Refresh)
Wafers, Base Wafers, periods in the horizon and production or refresh sites, the
demands of final products in each period, the maximum refresh level of each Top
Wafer, the lead time of the refresh process, and the yield of the refresh process for
each Top Wafer at each site. Parameters related to the bill-of-materials linking the
different wafer types are required. Resource parameters include the refresh resource
capacity at each site in each period, the process time of refreshing one unit of each Top
Wafer at each site, the production capacity in each period and the process time of one
unit of each product. Parameters related to initial inventory levels are also necessary
for Base Wafers, Top Wafers, Negatives of Top Wafers (used Fresh or Refresh Wafers)
and of final products. Finally cost parameters include inventory costs (for all wafer
types), purchase costs (for Top Wafers and Base Wafers), refresh costs (for Top Wafers
and Negatives), production costs (of final products) and setup costs (for purchasing
Fresh Wafers and Base Wafers, for refreshing and for producing).

General variables include the production quantities of final products in each pe-
riod, the ordered quantities of Base Wafers and Fresh Wafers in each period, the
refreshed quantities obtained from Negatives at each site and in each period and the
used quantities of Base Wafers and Top Wafers in each period. Inventory variables
model the inventory levels of the final products, Base Wafers, Top Wafer and Neg-
atives. Finally, setup variables are used to model if production occurs for each final
product in each period, if procurement occurs for each Base Wafer and each Fresh
Wafer in each period, and if the refresh process is performed in each site and in each
period.
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The objective function minimizes the total cost which is the sum of multiple types
of purchase costs, production costs and setup costs. Flow conservation constraints are
necessary for finished goods, based on the inventories of Base Wafers and Top (either
Fresh or Refresh) Wafers, Base Wafers, Negative Wafers, Fresh Wafers and Refresh
Wafers. These last flow conversation constraints include a yield factor since all of
the Negative Wafers are not transformed into Refresh Wafers. Capacity constraints
are used to respectively limit the production line and refresh line capacities in each
period. Setup constraints are included to respectively model the production setup
cost, raw material (Base Wafers and Fresh Wafers) procurement cost and refresh
setup cost.

The primary novel feature of the problem is the refresh process. The remanufac-
tured by-products (Refresh Wafers) and the newly purchased raw materials (Fresh
Wafers) play the same role, i.e. they satisfy the raw material requirements for man-
ufacturing the final product. Note that what makes the refresh process economically
interesting is the lower cost of Refresh Wafers in comparison to purchasing Fresh
Wafers.
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Abstract
JDA provides a production planning software for large companies that have

global supply chains. At the heart of it is an optimization algorithm that must
handle a wide variety of different features and constraints while optimizing on
a large number of different competing objectives. The JDA Innovation Labs
in Montreal is investigating new approaches such as column generation based
on an hypergraph modelisation of the supply chain network to solve larger and
larger real life instances.

1 Introduction

JDA offers software to help supply chain planners to plan the production at a high
level. As supply chains grow more complex and need to handle more and more
products, there is a need for algorithms that can scale and handle a large number
of different features. Algorithms that can perform well on very different business
needs coming from a wide variety of domains such as automotive, electronics, retail,
food industry, etc. Production planning must be done on multiple products at the
same time with production networks than span on multiple levels. Production is also
constrained by resources that can be shared between operations. Safety-stock levels
must also be sastisfied at each inventory point to ensure certain service levels. Many
different objectives are also competing and must be handled simultaneously. The list
of features goes on.

At JDA Innovation Labs in Montreal, we are investigating new ways to solve such
large real life problems. We are investigating using a column generation approach to
solve an hypergraph model of the problem.
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2 Problem

The goal of the problem is to determine the flow of products or items inside the
supply chain. Those products can be consumed at assembly plants to produce new
intermediate or finished products. They can also be transported from one location
(warehouse, supplier, assembly plant, etc.) to the other or kept in inventory at a given
location. Given multiple suppliers for raw materials, different assembly plants with
production rates, inventory policies, capacities and so on, the problem is to determine
the optimal production to meet the demands of finished products.

A given inventory for a given product at a specific location can be refered to as a
buffer. Buffers can have multiple safety stock levels defined. Operations consume ma-
terials from one or more specific buffers and produce new materials into new buffers.
Example of operations can be to assemble two materials at an assembly plant and pro-
duce a new item. The operation would consume from the two buffers corresponding
to the initial products and produce into the buffer corresponding to the product that
was created. Transporting a product between two locations can also be represented
as an operation consuming from a buffer and producing into another buffer of the
same product at a different location. Operations can also have lot-sizing constraints
such that products can only be produced in batches.

Operations consume resources that have a limited capacity at each time period.
Resources can be machines or employees performing the operations. They can be
shared between operations and some operations can have a choice of alternative re-
sources if their primary resource is not available. Some resources are flexible, meaning
that their capacity can be exceeded with a cost. For instance, if an employee were to
work overtime can be modeled with a flexible resource.

An input to the problem is a hierarchical list of objectives. The first objective
on the list being infinitely more important than the next ones and so on. The list
is different for each instance and depends on the business needs of the supply chain
planner. Here is a list of some of the objectives than can be configured:

• Satisfy demands as much as possible

• Minimize backlogged demands

• Satisfy safety stock levels

• Favor just-in time operations

• Minimize use of alternative resources

• Minimize use of exceeded resource capacities

• Etc.
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3 Approaches

The supply chain network can be modeled as an hypergraph. Each node in the
hypergraph is a buffer at a specific time period. The graph is thus a copy of the
supply chain network for each time period in the planning horizon. For each buffer,
there are arcs that link between each node of a time period to the node corresponding
to the next time period. These arcs represent inventory that is carried over from
one period to the next. Operations can be represented as hyperarcs that may have
multiple in or out nodes depending on from how many buffers they are consuming
and into many buffer they are producing. We get the following formulation:

min
∑

b∈B

∑

t∈T
cbtsbt +

∑

o∈O

∑

t∈T
cotxot +

∑

d∈D

∑

t∈T
cdtqdt (1)

sb,t−1 − sbt +
∑

o∈O
a+obxo,t−l−

ob
−
∑

o∈O
a−obxo,t+l+

ob
−
∑

d∈D
adbqdt = 0, ∀b ∈ B, t ∈ T (2)

∑

o∈O
aorxot ≤ Crt, ∀r ∈ R, t ∈ T (3)

∑

t∈T
qdt ≤ Qd, ∀b ∈ B, t ∈ T (4)

B,O,D and T are the sets of buffers, operations, demands and time periods respec-
tively. We define the variables sbt are the amount of inventory remaining in buffer b
at the end of time period t, xot as the amount of operation o performed at time period
t, and qdt as the amount of demand d satisfied at time period t. We define the costs
cbt, cot and cdt as carryover costs, operation costs and demand costs, respectively. The
value of the costs will depend on what objective is being solved. Other coefficients
include a+ob (a−ob) as the amount of inventory of buffer b produced (consumed) by one
unit of operation o, l+ob (l−ob) is the production (consumption) leadtime of operation o
with respect to buffer b, adb is 1 if demand d can be satisfied by buffer b, 0 otherwise,
and aor is the amount of resource r consumed by one unit of operation o. Finally, Crt

and Qd are resources capacities and demand quantities respectively.
Equation (1) is the objective function, (2) are flow conservation constraints at

each node of the hypergraph, (3) are resource capacity constraints and (4) are demand
satisfaction constraints. Note that one of the objectives is to maximise the amount
of demand satisfied, so equation (4) prevent oversatisfaction of demands.

The JDA Innovation Labs in Montreal are investigating new ways to solve the
problem using decomposition such as column generation. A column generation refor-
mulation of the problem based on hyperpaths was investigated. In that formulation,
an hyperpath, is a path containing arcs and hyperarcs that takes one unit of inven-
tory out of the network by either satisfying one unit of demand or by carrying-over
one unit of inventory out of the planning horizon. The master problem becomes a
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problem of assembling a set of hyperpaths maximising the objective and respecting
the resource and demand constraints. The subproblem generates new hyperpaths in
the network and can be solved by dynamic programming.
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Abstract

In many industries, it is common to face significant rates of product dete-
rioration, referring not only to physical exhaustion or loss of functionality, but
also obsolescence. We study how raw-material perishability and deterioration
enforces specific constraints on a set of production planning decisions, espe-
cially in the case of multi-level product structures. We study three variants of
the two-level lot-sizing problem with raw-material shelf-life and deterioration.
Finally, an extended MIP formulation is proposed and sensitivity analysis is
carried out to better understand the benefits and relevance of our model in
comparison with traditional lot-sizing models.

1 Introduction

A common assumption in most of the production planning literature is that the prod-
ucts involved in the production process have unlimited lifespans, meaning they can be
stored and used indefinitely. However, in practice, most items deteriorate over time,
referring not only to physical exhaustion or loss of functionality, but also obsolescence.
Often, the rate of deterioration is low or can be ignored and there is little need for
considering it in the planning process. Nonetheless, in many types of industries, it is
common to deal with items that are subject to significant rates of deterioration. These
items are referred to as perishable products. The concept of perishability basically re-
lates to items that cannot be stored infinitely without deterioration or devaluation
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[1]. Clear cases of this type of products can be found in the food or pharmaceutical
industries [2, 3]. For instance, in the yogurt industry [4], perishability is found in
different levels of the production process: from the highly perishable raw-material
(milk) that enters the dairy factories, to the finished-products, which are all stamped
with a best-before-date fixing its shelf-life.

As mentioned in [5], perishability and deterioration enforce specific constraints
on a set of crucial production planning decisions, specially in the case of multi-level
production structures, where two or more items are produced, and at least one item is
required as an input (raw-material, component, part) of another. These intermediate
products, either acquired from a supplier or processed internally, can often be inven-
toried, allowing one to produce and consume them at different moments and rates in
time [6]. When dealing with perishability, most of the data associated with invento-
ries has to be extended in order to track the age and usability status of items with
specific time-stamps. Besides the amount of inventory kept in stock, we also need to
know when the material has been acquired and to what level it has deteriorated, as
well as the impact that such deterioration may have in the production process.

In this study, we propose to incorporate raw-material perishability considerations
into classical production planning problems. We evaluate how to integrate restrictions
on shelf-life and deterioration of intermediate items. We formulate such problems as
mixed-integer programs (MIP), and model the impact that perishability may have
in the production process regarding aspects such as: manufacturing, inventory, and
disposal costs; and the quality of the finished-products. We study three variants of
a two-level lot-sizing problem involving different types of perishability, and perform
sensitivity analysis to better understand the benefits and relevance of our models in
comparison with traditional lot-sizing.

2 Lot-sizing with perishable raw material

Consider a production system in which one finished-item is to be produced and an-
other item (raw-material), required as an input of the first, is to be procured from
a supplier. This constitutes the simplest version of a two-level production structure.
In general terms, the two-level lot-sizing (2L/LS) problem is to find the production,
procurement, and inventory plan for the two items over a discretized planning horizon
(divided into n time periods, where T = {1, ..., n}), meeting finished-item demand
in every period, minimizing the corresponding costs. As mentioned above, the core
aspect of the problems under study is the perishable condition of the raw-material. In
this regard, we study three different variants of the 2L/LS problem: (a) raw-material
subject to a fixed shelf-life (FSL), with constant functionality; (b) raw-material sub-
ject to a functionality deterioration rate (FDR) and; (c) raw-material subject to
functionality and volume deterioration rate (FVDR). Each of these cases is described
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in the following sections.

2.1 Fixed Shelf-Life

The first variant of our problem is what we call the two-level lot-sizing problem
with fixed raw-material shelf-life (2L/LS/FSL). Raw-material orders are acquired
in batches from an external supplier under the immediate receipt assumption (no
ordering lead-time). Once the raw-material is received, it is used to satisfy finished-
item production requirements or can be inventoried. However, due to perishability,
on-hand raw-material can only be kept in stock and used for a fixed period of time
(shelf-life). If the material reaches the end of its shelf-life and expires, it will have
to be disposed. This causes additional costs that can vary depending on when the
disposal is made. Raw-material functionality is considered to remain constant during
the entire shelf-life period.

Potential applications of this problem can be found in the production of plastic
films. A plastic film is a thin continuous polymeric material used to separate areas
or volumes, to hold items, to act as barriers, or as printable surfaces. Plastic films
are used in: food and nonfood plastic packaging films, plastic bags, labels, and pho-
tographic films, are some of the applications, among other applications. Depending
on the properties and characteristics of the desired application, plastic films can be
made from a variety of plastic resins and monomers, which are highly reactive and
undergo uncontrolled polymerization (reason why we consider them perishable). As
raw-material for plastic films, these resins and monomers are considered fully func-
tional during their shelf-life and, once they are used in production, they become sta-
ble. Furthermore, the finished-items (the plastic films), even though they may present
sings of deterioration during the storage and handling period, they have shelf-lives
long enough not to be considered perishable.

2.2 Functionality deterioration

The second variant of our problem is the two-level lot-sizing problem with raw-
material functionality deterioration rate (2L/LS/FDR). Here, in addition to having
on-hand raw-material subject to a fixed shelf-life, its functionality, utility or efficiency
level, decreases progressively as storage time passes. In this specific case, although
the shelf-life remains fixed, it is determined by the number of periods it takes for the
material to completely lose its functionality. Progressive decrease in material func-
tionality has a direct impact on production. This impact may be, for instance, on
the quality of the finished-items produced with deteriorated material, or an increase
in the production cost in order to reach the same desired quality or production yield,
using material that is not fully functional. Either way, we represent such impact by an
increase in the production cost. Potential applications of this problem can be found
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in the composite manufacturing and related industries, when producing polyimide
reinforced fiber composites and other products.

2.3 Functionality and volume deterioration

In this specific case, we propose the two-level lot-sizing problem with raw-material
functionality and volume deterioration rates (2L/LS/FVDR). Here, the perishability
nature of the raw-material is biphasic, referring not only to a functionality loss but,
in addition, to a progressive volume loss. In this sense, we have a volume deteriora-
tion rate, representing the fraction of the material that is lost in each period of time.
Applications of this problem can be found in the so-called canning industry, in pro-
duction processes such as: canning fruits, vegetables, juices, fish and seafood, meats;
processing ketchup and other tomato sauces; and producing natural and imitation
preserves, jams and jellies. The primary objective of food processing is the preserva-
tion of highly perishable goods in a stable form that can be stored and shipped to
distant markets. Canning provides a shelf-life typically ranging from one to five years,
although under specific circumstances it can be much longer. However, it is normal
to face considerable levels of raw-material loss throughout the multiple steps of the
production process, which includes preliminary preparation, blanching, and filling.
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Abstract

In this work, we approach the lot-sizing and the cutting stock problems in an in-
tegrated way. We propose different mathematical models for the integrated problem
considering different models for the lot-sizing and the cutting stock problem, in order
to evaluate and indicate the impact of these changes on the models’ performance. An
extensive computational study was done using randomly generated data and as a so-
lutions strategy we used a commercial optimization package and the application of a
column generation technique.

1 Introduction
In industrial sectors such as furniture, paper and aluminum, the lot-sizing and cutting

stock problems are found in consecutive phases. For this reason, the relevance of these
issues in the industrial sectors and the benefits in dealing with problems in an integrated
way makes this an appropriate research topic today. In the literature, integrated problems
are studied for instance in [3], [6], [4]. Motivated by this, the present paper proposes
mathematical models and solution methods for solving the integrated lot-sizing and cutting
stock problem.

The lot-sizing problem considers the tradeoff between the setup and inventory costs
to determine at minimal cost the size of production lots to meet the demand of each final
product. In this work, the lot-sizing part is modeled using the mathematical model proposed
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by [7], denoted here by CL. We also considered the variable redefinition strategy ( [1])
which reformulates the lot-sizing problem as a shortest path problem. This reformulation
is called SP.

The cutting stock problem involves the cutting of large objects into smaller items, so
as to minimize the total loss of material. We consider three mathematical models from the
literature to model the cutting stock problem. The first one is the model developed by [5],
here denoted by KT and it determines the best way to cut objects to meet the items demand,
minimizing the number of objects used. The second model dealt with, and perhaps the best
known among the academic community, is the one proposed by [2] denoted here by GG.
The third model was proposed by [8], here denoted VC. The author proposes an alternative
mathematical model for the one-dimensional cutting stock problem based on an arc flow
problem. Furthermore, the cutting stock models above were originally proposed for a single
object type and one time period, in this way they are extended to consider several types of
objects in stock (MO from multi-objects) and multi-periods.

2 Mathematical Models
We consider all possible combinations of lot-sizing formulation (CL, SP) and cutting

stock formulations (KT, GG and GG). We also analyze the cutting stock problem with
several types of objects (MO), which is combined with the uncapacitated lot-sizing problem
( [9]). Again we consider the combinations of various formulations.

In order to illustrate the idea of the integrated models, we present the CLGG integrated
model, that consists in the integration of the CL model and the GG model. The capacity
constraint is considered in terms of end items, which means that the capacity constraints
are related to the final production process to transform the cut items into the final items.

For this consider t = 1, ..., T as the times periods, i = 1, ..., I as the number of items
and j = 1, . . . , J as the set of cutting patterns. We define scit as the setup cost, hcit as the
unit holding cost, co as the cost of the objects, stit as the setup time, vtit as the production
time, Capt as the capacity available and aij as the number of objects i cut in cutting pattern
j.

The decision variables are as follows: Xit is the production quantity of item i in period
t, Sit is the inventory for item i at the end of period t, Yit is a binary variable indicating the
production or not of item i in period t and xjt indicates the number of objects cut according
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88



to cutting pattern j in period t;

min
T∑

t=1

I∑

i=1

(scitYit + hcitSit) +
T∑

t=1

J∑

j=1

coxjt (1)

Subject to :

Xit + Sit−1 − Sit = dit ∀i, ∀t (2)

Xit ≤ sditTYit ∀i, ∀t (3)
I∑

i=1

(stitYit + vtitXit) ≤ Capt ∀t (4)

J∑

j=1

aijxjt = Xit ∀i, ∀t (5)

Yit ∈ {0, 1} ∀i, ∀t (6)

xjt ∈ Z+ ∀j, ∀t (7)

Xit, Sit ∈ R+ ∀i, ∀t (8)

The objective function (1) minimizes the sum of setup costs, inventory costs and the cost
related to the number of objects used in the cutting process. The sets of constraints (2), (3)
and (4) refer to the lot-sizing problem. Constraints (5) link the cutting variable with the
production variable, that is, it is necessary to cut a sufficient amount of items to meet the
amount that is desired to produce. Finally the constraints (6), (7) and (8) are non-negativity
and integrality constraints on the variables.

3 Computational Study
This section describes the solution methods used to solve the proposed models, as well

as a summary of the computational results obtained, which evaluated and compared the
performance of the proposed models. The models are written in the AMPL syntax and the
CPLEX 12.5 was used as solver. All the computational tests were conducted on a 2.93GHz
Intel Core i7 processor with 8GB of RAM memory.

• Solution Strategy: Two heuristic strategies are proposed for solving the formula-
tions described in section 2. The first heuristic consists of solving the models inte-
grated with KT and VC by establishing some stop criteria for the optimization pack-
age. The solver is stopped at the end of 600 seconds or when the gap between the
upper bound and lower bound is less than 0.1%. The second heuristic uses the col-
umn generation technique for the models integrated with VC and GG to obtain a
lower bound. The column generation is stopped when the minimum reduced cost is
non-negative or when the computation time limit is reached. The optimal columns
are fixed and the integer model is solved in order to obtain a feasible solution. For
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the integer problem we set the processing time to 600 seconds and the optimality gap
equal to 0.1%.

• Analysis of the Results: The results showed the clear difficulty of the models to
obtain a feasible solution when considering a capacity constraint in the lot-sizing
problem, and this impact is even greater when the capacity constraint is tight. In-
stances that have an item length considerably smaller compared to the object length
are much more difficult to solve. For the models that consider various object types
in stock, the major fact that influences the performance is the number of items. The
models integrated with the classical lot-sizing problem and the cutting stock problem
model VC based on [8] and column generation obtained the largest number of fea-
sible solutions compared to other mathematical models in all analyzes. The models
that integrate with the model KT proposed by [5] produced bad results in all ana-
lyzes. The use of the shortest path model significantly improved the lower bound and
resulted in gaps smaller when compared to other models, for most classes.

References
[1] Eppen, G. D.; Martin, R. K., Solving multi-item capacitated lot-sizing problems using variable

redefinition, Operations Research, 35, 832848 (1987).

[2] Gilmore, P. C.; Gomory, R. E., A linear programming approach to the cutting-stock problem,
Operations Research, 9, 849 859 (1961).

[3] Gramani, M. C. N.; Frana, P. M., The combined cutting stock and lot-sizing problem in indus-
trial processes, European Journal of Operational Research, 174, 509 521 (2006).

[4] Gramani, M.; Frana, P. M.; Arenales, M. N., A linear optimization approach to the combined
production planning mode, Journal of the Franklin Institute, 348, 1523 1536 (2011).

[5] Kantorovich, L. V., Mathematical methods of organizing and planning production, Manage-
ment Science, 6, 366 422 (1960).

[6] Poltroniere, S. C.; Poldi, K. C.; Toledo, F. M. B.; Arenales, M. N., A coupling cutting stock-lot
sizing problem in the paper industry, Annals of Operations Research, 157, 91104 (2008).

[7] Trigeiro,W.W.; Thomas, J.; McClain, J. O., Capacitated lot sizing with setup times, Manage-
ment Science, 35, 353366 (1989).

[8] Valerio de Carvalho, J., Exact solution of bin-packing problems using column generation and
branch-and-bound, Annals of Operations Research, 86, 629 659 (1999).

[9] Wagner, H. M.; Whitin, T. M., Dynamic version of the economic lot size model, Management
Science, 5, 8996 (1958).

International Workshop on Lot Sizing (IWLS) 2015, Montréal, Canada
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Abstract

We consider a capacitated lot-sizing problem with stochastic setup times. A
mathematical model is described that considers both regular production costs
and expected overtime costs. We propose an effective procedure to compute the
expected overtime for a given production plan and develop several heuristics
to generate efficient solutions. We provide extensive computational results and
confirm that our solution approaches obtain very good solutions.

1 Introduction

In this study, we focus on a Capacitated Lot-Sizing Problem (CLSP) with stochastic
setup times. In the CLSP, several different items can be produced in the same period
where a capacitated single machine is used for all items. In other words, the total
time spent for setup and production activities in each period is limited by the time
capacity of the machine. This problem aims to obtain a production plan with the
minimum total cost which satisfies the demands and respects the capacity of the
machine. In our problem, we consider stochastic setup times at the planning level
to provide efficient production plans to be employed at the operational level. To
have a tractable problem, we assume that the random setup times follow suitable
Gamma distributions. The capacity of the machine is considered as a soft constraint,

International Workshop on Lot Sizing (IWLS) 2015, Montréal, Canada
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which allows overtime usage by incurring some penalty costs. The overtime values
can be thought of as recourse decisions, which are determined after observing the
specific realization of setup times. Note that the production quantities and setups
are decided at the beginning of the planning horizon (frozen schedule). This setting
with no dynamic adjustment corresponds to the static uncertainty strategy given by
Bookbinder and Tan [2]. The objective is to minimize the sum of regular production
costs and expected overtime costs. In our model, regular costs result from three
elements which are the total production quantity, the total number of setup and the
total inventory. In addition, the expected overtime in each period is computed with
respect to the production plan and capacity parameters, i.e., variable production
times, setup times and capacity.

2 Heuristic Methods

Four heuristics are proposed in this study to solve the problem described above, where
each method employs a specific formulation:

• The first heuristic is based on changing certain parameters (such as capacity and
setup times) in a deterministic model with no overtime. More specifically, we
consider both the standard formulation of the CLSP (see Trigeiro et al. [6]) and
the transportation problem reformulation proposed by Krarup and Bilde [8].
The latter provides a better LP relaxation gap compared to the formulation in
the original variables (see Pochet and Wolsey [7]). Note that when modified
parameters are implemented, these models may result in infeasible solutions
due to the production capacity limit.

• The second heuristic uses a model allowing planned overtime (see, e.g., Özdamar
and Birbil [5], Özdamar and Barbarosoğlu [4], and Barbarosoğlu and Özdamar
[1]) and further adjusts problem parameters such as the capacity and setup
times. In these versions, deterministic overtime can be thought of as the amount
added to the original capacity at the planning level. In other words, this method
is always capable of ending up with a feasible solution by exceeding capacity in
case it is needed.

• The third heuristic considers balancing the usage of capacity in each period.
For this method, we propose a new formulation where the aim is to distribute
the production of all items evenly over all periods and to generate a production
plan resulting in a smaller expected overtime compared to that obtained by the
standard formulations of the CLSP.

• The fourth heuristic employs a two-stage stochastic programming model with a
limited number of scenarios. In the proposed formulation, the production and
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setup decisions are the first-stage decisions and the overtime corresponds to the
recourse decision in the second-stage.

All solution approaches are based on solving the considered models (with either orig-
inal or modified problem parameters) and then evaluating the obtained solution with
respect to stochastic setup times.

3 Computational Results

Extensive computational results are obtained by experimenting with data sets given
in Trigeiro et al. [6]. Each model described in Section 2 is coded in C++ and solved
using IBM ILOG CPLEX 12.5 [3]. All experiments are performed on an Intel(R)
Xeon(R) CPU X5675 with 12-Core 3.07 GHz and 96 GB of RAM (by using a single
thread). We set a limit for the total computation time which is equal to 30 minutes.

In the first and second heuristics, problem instances are solved by employing
the parameter settings with: (i) original values given for each problem element, (ii) a
smaller capacity for each period and (iii) larger setup times. In (ii) and (iii), we aim to
provide some buffer capacity to be used in the stochastic environment, which possibly
leads to smaller expected overtime. Results show that changing problem parameters
at the deterministic planning level yields production plans which perform better in
the stochastic environment compared to those obtained by the models with original
problem elements. Specifically, the deterministic model allowing planned overtime
with increased setup times leads to more robust solutions (with an improvement in
the total expected cost by 3.00% on average) with respect to those obtained by the
classical CLSP. Compared to the solution of the standard formulation, (i) when we
increase the variation in setup times, this heuristic leads to an improvement of 11.51%
on average, and (ii) when we increase the cost of overtime, this heuristic leads to an
improvement of 27.75% on average.

Results obtained by the third type of heuristic indicate that balancing the usage of
capacity leads to smaller expected overtime and further smaller total expected costs
compared to the solutions generated by the classical models. However, the overall
performance of this method underperforms with respect to that of the first and second
heuristics.

In the fourth heuristic, the number of scenarios takes values from 10 to 100. We
observe that the final optimality gap and the required computation time increase as
the number of scenarios increases. This approach provides the smallest total expected
cost over all instances, where the provided improvement with respect to the total
expected cost of the classical CLSP model is 3.09% on average. Compared to the
solution of the standard formulation, (i) when we increase the variation in setup
times, this heuristic leads to an improvement of 12.68% on average, and (ii) when we
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increase the cost of overtime, this heuristic leads to an improvement of 27.72% on
average.

Detailed analyses show that the heuristic based on a two-stage stochastic program-
ming (the fourth heuristic) provides very good solutions to be employed in stochastic
settings, especially when we have high variability in setup times. We observe that
the heuristic based on the model with planned overtime where setup times are mod-
ified with respect to the Gamma distribution (the second heuristic) also performs
well in the stochastic environment, especially when exceeding capacity brings a high
violation cost. Finally, overall analyses confirm that these two effective heuristics
provide similar performances in terms of the solution quality and the computation
time for the considered stochastic problem which is a close representation of real-life
applications.
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Abstract

We present a mixed integer linear programming (MILP) approach to in-
tegrate dynamic safety stock planning into the general lot-sizing and schedul-
ing problem (GLSP) model formulation with continuous and non-equidistant
micro-periods. We consider a base stock policy with different service measures.
We implement state-of-the-art univariate and bivariate linearization techniques
for the non-linear first-order loss function. In an extensive experimental study,
we compare our approach to its deterministic counterpart in a rolling horizon
environment.

1 Introduction

The variable nature of the replenishment periods in lot-sizing problems and the non-
linearity and non-separability of the first-order loss function complicate integrating
safety stock approaches directly into lot-sizing problems. Hence, lot-sizing and safety
stock placement problems are generally treated separately (sequentially) in the in-
ventory and operations management literature. There exist integrated approaches
but they are rather complex or usually limited to single item uncapacitated lot-sizing
problems, e.g., see [1], [11], [12], and [10]. To the best of our knowledge, the stochastic
version of the general lot-sizing and scheduling problem (GLSP) has not been prop-
erly addressed in the literature yet. The deterministic GLSP has been studied by [3],
[8], [7], and [13]
In this paper, we develop an equivalent deterministic model to integrate non-stationary
safety stock planning into the general lot-sizing and scheduling problem (GLSP) with
continuous and non-equidistant micro periods. We assume a service level approach by
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taking the non-stockout probability and fill-rate service measures into account. We
introduce a new MILP approach to determine cumulative mean demand and variance
of demand for the time spans between consecutive production events on the contin-
uous micro periods. The order-up-to-level function can arise either as a univariate
or a bivariate non-linear function, depending on the service measure and demand
distribution. Hence, we use an efficient univariate linearization technique as well as a
bivariate linearization technique based on the triangulation method. We conduct an
extensive numerical study based on the randomly generated data sets to show the ap-
plicability of our approach and its superiority over its deterministic counterpart with
stationary safety stock settings in a rolling horizon environment. In the following
sections, we briefly describe our approach and the numerical experiments.

2 Equivalent Deterministic Model

We assume a deterministic single-level general lot-sizing and scheduling problem
(GLSP) with discrete and equidistant macro-periods and continuous non-equidistant
micro periods. Multiple products are produced on a single capacitated machine with
sequence dependent set-up times. We first develop a standard MILP model formu-
lation of the problem (also its reformulation, e.g., see [13]) with the objective of
minimizing the total inventory holding costs under certain constraints. We assume
a base stock policy where demand is non-stationary and independent with a known
probability distribution. We extend the model to an equivalent deterministic model
of a stochastic version of the described GLSP by introducing service level constraints
on the continuous micro periods. Under the base stock policy, the order-up-to-level
depends on the cumulative mean demand between consecutive replenishment periods,
the corresponding variance of demand, demand distribution, and type and size of the
service level.
We add new MILP model formulations to the equivalent deterministic model for-
mulation to determine the cumulative mean demand and the cumulative variance of
demand between consecutive replenishment periods. We further distinguish between
continuous inventory depletion, where final products can be used to fulfill demand
during production time as they are just produced, and closed depletion, where final
products become only available after the whole batch is produced. In case of con-
tinuous inventory depletion, cumulative mean demand and variance of demand are
determined for the time spans from the end of every production period to the start
of the next production period.
In case of a non-stockout probability service level with normally distributed demand,
we face with a univariate non-linear term with the square root of the cumulative
variance of demand. To linearize this square root term, we test several lineariza-
tion techniques like the convex combination, the incremental model, and the multiple
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choice model as given in [2] and choose the one which provides the best computational
performance. The accuracy of the approximation method is improved by determining
appropriate lengths of the approximation segments, e.g., see [6].
In case of considering fill-rate or non-stockout probability with other distributions
than normal, we face a bivariate, non-linear, non-separable first-order loss function
depending on both, cumulative mean demand and cumulative variance of demand.
For the linearization of this function, we use a triangulation method to construct an
approximation grid which is divided into several triangles. The value of the order-
up-to-level is approximated at a certain point by using three weights indicating the
distance of the point to the vertices of its corresponding triangle. The point repre-
sents the combination of the cumulative mean demand and the cumulative variance
of demand, e.g., see [9].

3 Experimental Study

We test the numerical behaviour of the proposed equivalent deterministic model in
comparison to the deterministic GLSP with stationary safety stocks. For the equiva-
lent deterministic model, we assume several service sizes for non-stockout probability
and fill-rate. For the deterministic counterpart, we use different settings of stationary
safety stock levels (high, medium, and low). We generate random data sets mainly
based on the numerical designs which have been presented in [7], [4], and [5]. Both
approaches are tested under a rolling horizon environment for every data set. The
average total cost, including the total inventory costs and the lost-sales costs, as well
as the average actual service sizes are reported. We further investigate the computa-
tional performance of our approach and the proposed linearization techniques which
are embedded in the equivalent deterministic model for both the standard formulation
and reformulations. Finally, we elaborate the consequences of using different initial
inventory levels or capacity levels on the actual service sizes under a rolling horizon
environment.
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Abstract

Economic lot sizing problem (ELSP) is one of the most studied problems
in production planning and it deals with the scheduling of a set of products
in a single machine to minimize the long run average holding and setup cost
under the assumptions of known constant demand and production rates. In this
study, since the traditional deterministic ELSP models neglect the uncertainty
of the demand rates and setup times and so may perform poorly under certain
realizations of the random demand rates and setup times we consider the ELSP
by exploiting the assumption of deterministic demand rates and setup times
and formulate it as a bi-objective optimization problem that aims at providing
solution robust production schedules. To solve the problem, we use a hybrid
approach, combining a genetic algorithm with linear programming. The aim of
this approach is, through K number of possible schedule realizations, to generate
a set of non-dominated solution robust production schedules, i.e., production
schedules with least deviation from the realized schedules in terms of makespan
and total cost.

1 Introduction

Economic lot scheduling problem (ELSP) deals with scheduling of multiple products
in a single given machine to minimize total cost by determining both a production
sequence and a lot size for each product. It is typically assumed that demand rates
and setup times are known. ELSP which is an NP hard problem [1] has been studied
by a large number of researchers for more than 50 years. The methodologies devel-
oped are based on any one of the common cycle, basic period, or time-varying lot
size approaches. The common cycle approach is the simplest to implement when all
products are manufactured in the same period while the basic period approach allows
different cycle times for different products. However, cycle times must be an integer
multiple of a basic period. Unlike the first two approaches, the time-varying lot size
approach is more flexible than the other two approaches since lot sizes may vary for
different in one cycle [2, 3]. Recently, meta-heuristics such as simulated annealing
(SA) [4, 5], genetic algorithm (GA) [6, 7, 8, 9], tabu search (TS) [10] etc. have mo-
tivated the time-varying lot size approach to solve the problem. In this study, since
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the traditional deterministic ELSP models neglect the uncertainty of the demand
rates and setup times and so may perform poorly under certain realizations of the
random demand rates and setup times, we exploit the assumption of deterministic
demand rates and setup times and formulate the problem as a bi-objective optimiza-
tion problem that aims at providing solution robust production schedules. Based
on the solution approach presented in Goncalves and Sousa [9] which propose a GA
combined with linear programming (LP) that considers initial and ending inventory
levels as given and allows backorders, we adopt a hybrid approach, combining a ge-
netic algorithm and linear programming. The aim of this approach is to generate a
set of non-dominated solution robust production schedules, i.e., production schedules
that do not differ much from the actually realized schedules in terms of makespan
and total cost. The details of the solution approach are presented in Section 2. In
Section 3, the details of the experimental analysis are provided. Finally in Section 4,
the paper is concluded with a discussion on the results of the case study, final remarks
and possible future research agenda.

2 Solution Approach

In this section we present a solution approach combining a bi-objective GA with linear
programming based on the formulation presented in Goncalves and Sousa [9]. The
only difference is in the objective functions. While Goncalves and Sousa [9] considers
a single objective (total cost), in the model utilized in this paper, the aim of the
proposed hybrid approach is to generate non-dominated solution robust production
schedules by considering the uncertainty in the demand rates and setup times. So-
lution robustness aims at constructing a production schedule that differs from the
realized production schedule in the least possible amount. Therefore, in our solution
approach we aim to minimize the difference between the makespan and total cost of
the production schedule and actually realized makespan and total cost. This differ-
ence between the production schedule and the actually realized schedule is measured
with the total sum of absolute deviations (TSAD) for both makespan and average
cost of the schedule through K number of possible schedule realizations. Therefore,
the objectives considered in the bi-objective GA are to minimize the average TSAD
of makespan TSADmakespan

avg and average TSAD of average cost TSADavgcost
avg . Pro-

posed bi-objective GA is an adopted version of NSGA-II [11] and GA presented by
Goncalves and Sousa [9]. Chromosome representation, chromosome decoding proce-
dure and schedule generation scheme are exactly the same as presented in Goncalves
and Sousa [9] and population management is the same as of NSGA-II. However,
our bi-objective GA differs in the chromosome evaluation procedure. Initial popula-
tion is comprised of randomly generated chromosomes and we make use of one-point
crossover and swap mutation operators. Therefore, in the following subsections, we
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present only the chromosome evaluation procedure.
Evaluation for a chromosome is based on a set of K realizations reflecting the un-

certainty around the demand rates and setup times. For a given chromosome both the
TSADmakespan

avg and TSADavgcost
avg are assessed through a set of K realizations mimick-

ing the implementation phase, where a realization corresponds to a sample instance
obtained by a simulation run using the demand rate and setup time distributions.
To calculate TSADmakespan

avg and TSADavgcost
avg of a chromosome, first a set of K re-

alizations are performed. For each such realization, production schedule is obtained
with the schedule generation scheme explained in the previous section. Hence, K
production schedules each having its own makespan and average cost are obtained.
Then, using the formula given in Equation (1) and Equation (2), for every realization
of k, TSADk

makespan and TSADk
avgcost are calculated.

TSADk
makespan =

∑

r∈R:r 6=k

|makespank −makespanr| (1)

TSADk
avgcost =

∑

r∈R:r 6=k

|avgcostk − avgcostr| (2)

R is the set of realizations and r is the realization index. These K realizations are
then sorted in their non-domination levels using the corresponding TSAD values and
the schedules that have a rank value of 1 constitute the robust non-dominated schedule
set of the chromosome. Fitness pair of a chromosome (TSADmakespan

avg ,TSADavgcost
avg )

is then simply calculated by taking the averages of fitness pairs of schedules in the
non-dominated schedule set of the chromosome.

3 Experimental Analysis

In this section, we report the results obtained on a set of experiments conducted to
evaluate the performance of the bi-objective GA. In this paper we only present the
experimental results of a pilot study. In this pilot study, we assume that demand
rates and setup times are known in advance. Consequently, we minimize makespan
and average cost of production schedules. Following the same settings as in Goncalves
and Sousa [9], we also impose that the initial inventory be equal to the final inventory
to force the linear programming model to produce a cycle. Analysis is conducted by
generating two sets of problem instances each with 5 randomly generated problems
using the uniform distribution for the parameters given in Table 1.

3.1 Fine-Tuning of the GA Parameters

Since the parameters used in GAs have a direct effect on the performance, there is
a need for a fine-tuning procedure to select the best parameter combinations to be
used in the implementation of the proposed solution approach. The best combination
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# products Production Rate Demand Rate Setup Time Setup Cost Holding Cost
(units) (units/units time) (units/units time) (time) ($) ($)

Set1 5 [1500-5000] [150-1200] [0.10-0.40] [40-160] [0.003-0.010]
Set2 10 [1500-5000] [150-1200] [0.10-0.40] [40-160] [0.003-0.010]

Table 1: Problem parameter ranges for randomly generated test instances

of the parameters to be used in the bi-objective GA are determined through experi-
mentation. For this experiment, two problem instances from each set is selected and
solved with the bi-objective GA. Using each value of the GA parameters that we
tested crossover rate [0.60, 0.75], population size [50,100], mutation rate [0.10,0.15],
population size [50,100], number of generations [30,50]) a total of 24 parameter com-
binations is obtained and tested by solving each of the determined test instances
three times to reduce the undesired effect of randomness. Thus, we have run our
bi-objective four times for each project-parameter combinations, yielding a total of
288 runs.

To compare the performances of the parameter combinations we have used the
following four different performance measures: Scaled Extreme Hyperarea Ratio
(SEHR), Maximum Spread (MS), Number of Non-dominated Solutions (#ND), CPU
Time (CPU). Scaled extreme hyperarea ratio (Scaled EHR) that we use to compare
the performances of different GA parameter combinations is based on the hyper-
volume indicator [12] and extreme hyperarea ratio (EHR) [13] and it measures the
quality of the solutions. The maximum spread metric (MS) [12] shows how much
the non-dominated solutions in the non-dominated front spread. The larger the MS
value, the better the spread the corresponding parameter combination achieves. To
summarize, we prefer parameter combinations with smaller SEHR values, higher MS
values, higher #ND and smaller CPU. To determine the best parameter combina-
tions, non-dominated sorting is applied, then, among the non-dominated performance
quadruples the one with the largest weighted scores is chosen with its corresponding
parameter combination being the one to be implemented in the computational study
to follow.

The results show that the best parameter combination with normalized perfor-
mance measure values and weighted score of 0.81 for these parameter combinations
over the tested 24 parameter combinations obtained after the fine tuning procedure
is with crossover rate as 0.90, mutation rate as 0.10, population size as 50, and the
number of generations as 30. Therefore in the experimental analysis, we make use of
these parameter combinations to obtain the robust production schedules.
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3.2 Computational Results

Our bi-objective GA is implemented in C# and the computational experiments were
carried out on a computer with an Intel i5 1.80 GHz CPU and 12 GB RAM. Table
2 shows the best average cost, best makespan among the non-dominated solutions
of each problem instance with the CPU times and the number of non-dominated
solutions.

Problem Problem Best Avg. Best CPU Time Non-dominated
No Size Cost Makespan (seconds) Solution Count
1 5 209.19 5.59 8.21 1
2 5 1031.96 1.72 9.56 1
3 5 303.55 1.49 10.06 2
4 5 402.17 1.64 10.26 1
5 5 515.66 11.87 7.82 1
6 10 975.39 3.11 34.36 4
7 10 854.81 3.28 35.84 9
8 10 564.27 3.03 44.4 3
9 10 1375.22 3.24 40.72 8
10 10 927.58 3.16 41.86 3

Table 2: Performance results for the problem instances

4 Conclusion

In this paper, we have addressed the problem of scheduling economic lots in a multi-
product single-machine environment and formulated it as a multi-objective optimiza-
tion problem. Demand rates and setup times are taken as random variables from a
known distribution. To solve the problem, we developed a hybrid approach combining
bi-objective GA and LP. Minimization of expected total cost and expected makespan
is aimed to generate solution robust production schedules. These expectations are
calculated through K number of schedule realizations mimicking the implementation
phase where a realization corresponds to a sample instance obtained by a simulation
run using the demand rate and setup time distributions. A pilot study is done for
assuming the demand rates and setup times are known in advance with the objec-
tive of minimizing the makespan and average cost. Results of this pilot study are
presented. Further research might be directed for the case where there are multiple
identical machines.

References

[1] Hsu, W. L., On the general feasibility test of scheduling lot sizes for several
products on one machine, Management Science, 29(1), 93-105 (1983)

International Workshop on Lot Sizing (IWLS) 2015, Montréal, Canada
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Abstract

In this paper, we study two-period subproblems proposed by [1] for lot-sizing
problems with big-bucket capacities and nonzero setup times, complementing
our previous work [3] investigating the special case of zero setup times. In
particular, we study the polyhedral structure of the mixed integer sets related
to various two-period relaxations. We derive several families of valid inequalities
and investigate their facet-defining conditions. We also discuss the separation
problems associated with these valid inequalities.

1 Introduction

In this study, we investigate multi-item production planning problems with big bucket
capacities, i.e., each resource is shared by multiple items, which can be produced
in a specific time period. These real-world problems are very interesting, as they
remain challenging to solve to optimality and also to achieve strong bounds. The
uncapacitated and single-item relaxations of the problem have been previously studied
by [7]. The work of [6] introduced and studied the single-period relaxation with
“preceding inventory”, where a number of cover and reverse cover inequalities are
defined for this relaxation. Finally, we also note the relevant study of [5], who studied
a single-period relaxation and compared with other relaxations.

We present a formulation for this problem following the notation of [2]. Let NT ,
NI and NK indicate the number of periods, items, and machine types, respectively.
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We represent the production, setup, and inventory variables for item i in period t by
xit, y

i
t, and sit, respectively. We note that our model can be generalized to involve

multiple levels as in [1], however, we omit this for the sake of simplicity.

min
NT∑

t=1

NI∑

i=1

f i
ty

i
t +

NT∑

t=1

NI∑

i=1

hits
i
t (1)

s.t. xit + sit−1 − sit = dit t ∈ {1, . . . , NT}, i ∈ {1, . . . , NI} (2)

NI∑

i=1

(aikx
i
t + ST i

ky
i
t) ≤ Ck

t t ∈ {1, . . . , NT}, k ∈ {1, . . . , NK} (3)

xit ≤M i
ty

i
t t ∈ {1, . . . , NT}, i ∈ {1, . . . , NI} (4)

y ∈ {0, 1}NTxNI ;x, s ≥ 0 (5)

The objective function (1) minimizes total cost, where f i
t and hit indicate the setup

and inventory cost coefficients, respectively. The flow balance constraints (2) ensure
that the demand for each item i in period t, denoted by dit, is satisfied. The big bucket
capacity constraints (3) ensure that the capacity Ck

t of machine k is not exceeded in
time period t, where aik and ST i

k represent the per unit production time and setup
time for item i, respectively. The constraints (4) guarantee that the setup variable is
equal to 1 if production occurs, where M i

t represents the maximum number of item
i that can be produced in period t, based on the minimum of remaining cumulative
demand and capacity available. Finally, the integrality and non-negativity constraints
are given by (5).

2 Two-Period Relaxation

Let I = {1, . . . , NI}. We present the feasible region of a two-period, single-machine
relaxation of the multi-item production planning problem, denoted by X2PL (see [1]
for details).

xit′ ≤ M̃ i
t′y

i
t′ i ∈ I, t′ = 1, 2 (6)

xit′ ≤ d̃it′y
i
t′ + si i ∈ I, t′ = 1, 2 (7)

xi1 + xi2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si i ∈ I (8)

xi1 + xi2 ≤ d̃i1 + si i ∈ I (9)
∑

i∈I
(aixit′ + ST iyit′) ≤ C̃t′ t′ = 1, 2 (10)

x, s ≥ 0, y ∈ {0, 1}2×NI (11)
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Since we consider a single machine, we dropped the k index from this formulation,
however, all parameters are defined in the same lines as before. The obvious choice
for the horizon would be t+1, in which case the definition of the parameter M̃ i

t′ is the
same as of the basic definition of M i

t+t′−1, for all i and t′ = 1, 2. Similarly, capacity

parameter C̃t′ is the same as Ct+t′−1, for all t′ = 1, 2. Cumulative demand parameter
d̃it′ represents simply dit+t′−1, t+1, for all i and t′ = 1, 2, i.e., d̃i1 = di1,2 and d̃i2 = di2. We

note the following polyhedral result for X2PL from [1].

Proposition 2.1 Assume that M̃ i
t > 0, ∀t ∈ {1, . . . , NT}, ∀i ∈ {1, . . . , NI} and

ST i < C̃t,∀t ∈ {1, . . . , NT},∀i ∈ {1, . . . , NI}. Then conv(X2PL) is full-dimensional.

For the sake of simplicity, we will drop subscript t and symbol ˜ in the following
notations. In this paper, we investigate the case of ai = 1,∀i ∈ {1, . . . , NI} with
nonzero setups. We establish two relaxations of X2PL and study their polyhedral
structures. For a given t, we define the first relaxation of X2PL, denoted by LR1, as
set of (x, y) ∈ RNI × ZNI satisfying

xi ≤M iyi, i ∈ I
NI∑

i=1

(xi + ST iyi) ≤ C

xi ≥ 0, yi ∈ {0, 1}, i ∈ I

Next, we present a result from the literature [4] concerning this relaxation.

Definition 2.1 Let S1 ⊆ I and S2 ⊆ I such that S1 ∩ S2 = ∅. We say that (S1, S2)
is a generalized cover of I if

∑
i∈S1

(M i + ST i) +
∑

i∈S2
ST i − C = δ > 0.

Proposition 2.2 (see [4]) Let (S1, S2) be a generalized cover of I, and let L1 ⊆
I\(S1 ∪ S2) and L2 ⊆ I\(S1 ∪ S2) such that L1 ∩ L2 = ∅. Then,

∑

i∈S1∪L1

xi +
∑

i∈S1∪S2∪L1∪L2

ST iyi −
∑

i∈S1

(M i + ST i − δ)+yi −
∑

i∈S2

(ST i − δ)+yi

−
∑

i∈L1

(qi − δ)yi −
∑

i∈L2

(ST
i − δ)yi ≤ C −

∑

i∈S1

(M i + ST i − δ)+ −
∑

i∈S2

(ST i − δ)+

is valid for LR1, where A ≥ max(maxi∈S1(M
i+ST i),maxi∈S2 ST

i, δ), qi = max(A,M i+

ST i), and ST
i

= max(A, ST i).
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For a given t, second relaxation of X2PL, denoted by LR2, can be defined as the
set of (x, y, s) ∈ RNI × ZNI × RNI satisfying

xi ≤M iyi, i ∈ I
xi ≤ diyi + si, i ∈ I
NI∑

i=1

(xi + ST iyi) ≤ C

xi ≥ 0, yi ∈ {0, 1}, si ≥ 0, i ∈ I

In this talk, we will present the trivial facet-defining inequalities for LR2, and
then derive several classes of valid inequalities such as cover and partition inequali-
ties. We will also present item- and period-extended versions of some of these families
of inequalities, and we will establish facet-defining conditions for all families of in-
equalities. We will also discuss the separation problems associated with these valid
inequalities.
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Abstract

The multi-item Capacitated Lot-sizing problem with Setup Times (CLST) is
an important problem from both a theoretical and a practical perspective. This
talk is part of a research stream that studies two-period relaxations of CLST.
We present computational experiments that investigate the strength of valid
inequalities that are derived from two-period relaxations. Four families of valid
inequalities are considered, all of which are generalisations of cover inequalities,
as described in Padberg et al., [4]. We present a numerical study in which we
compare the strength of these inequalities with the (l, S) inequalities of Barany
et al. [2]. We find that, for certain instances, some families are very efficient,
and are able to improve the lower bound by a great margin.

1 Introduction

The multi-item Capacitated Lot-sizing problem with Setup Times (CLST) problem
asks for the production decisions that minimise the joint setup and inventory costs
of a given set of items over a given time horizon. Each item should satisfy a demand
quantity in each period, and, whenever it is produced at a positive level, a machine
setups is required. A machine can produce multiple items within a time period, while
machine setups consume production time, which is limited, and also incur known
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costs. Excess production can be carried over to satisfy the demand of subsequent
periods but cannot be used to cover the demand of past periods. The mathematical
formulation of the problem makes use of the following quantities.

Parameters
NT : Number of time periods
NI: Number of items
NK: Number of machines
f it : Setup cost of item i in period t
hit: Inventory cost for carrying one unit of item i through period t
dit: Demand of item i in period t
ST ik: Setup time required for item i in machine k
αik: Unit production time of item i in machine k
Ck
t : Capacity of machine k in time period t

We also define the maximum allowable production quantity of item i in period t

as M i
t = min{∑NT

l=t d
i
l,mink

Ck
t −ST i

αi
k
}

Decision Variables
xit ≥ 0 : Production quantity of item i in period t
sit ≥ 0 : Inventory quantity of item i at the beginning of period t
yit ∈ {0, 1} : One when a setup is scheduled for item i in period t, zero otherwise

The problem can then be formulated as follows.

min
NT∑

t=1

NI∑

i=1

f ity
i
t +

NT∑

t=1

NI∑

i=1

hits
i
t (1)

s.t. xit + sit−1 − sit = dit t ∈ {1, . . . , NT}, i ∈ {1, . . . , NI} (2)

NI∑

i=1

(aikx
i
t + ST iky

i
t) ≤ Ck

t t ∈ {1, . . . , NT}, k ∈ {1, . . . , NK} (3)

xit ≤M i
ty
i
t t ∈ {1, . . . , NT}, i ∈ {1, . . . , NI} (4)

y ∈ {0, 1}NTxNI ;x, s ≥ 0 (5)

The objective function (1) minimizes total cost, that consists of the joint cost of
setups and inventory holdings, respectively. The flow balance constraints (2) ensure
that the demand for each item i in period t is satisfied. The big bucket capacity
constraints (3) ensure that the capacity Ck

t of machine k is not exceeded in time
period t, while constraints (4) guarantee that no production occurs unless a setup is
made. Finally, constraints (5) describe the non-negativity and integrality restrictions.
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2 Two-Period Relaxation

Let I = {1, . . . , NI}. We present the feasible region of a two-period, single-machine
relaxation of the multi-item production planning problem, denoted by X2PL. This
relaxation is introduced in Akartunalı et al., [1], and a polyhedral study for the special
case of zero setup costs is presented in Doostmohammadi and Akartunalı, [3].

xit′ ≤ M̃ i
t′y

i
t′ i ∈ I, t′ = 1, 2 (6)

xit′ ≤ d̃it′y
i
t′ + si i ∈ I, t′ = 1, 2 (7)

xi1 + xi2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si i ∈ I (8)

xi1 + xi2 ≤ d̃i1 + si i ∈ I (9)
∑

i∈I
(aixit′ + ST iyit′) ≤ C̃t′ t′ = 1, 2 (10)

x, s ≥ 0, y ∈ {0, 1}2×NI (11)

Since we consider a single machine, we dropped the k index from this formulation,
however, all parameters are defined in the same lines as before. The obvious choice
for the horizon would be t+1, in which case the definition of the parameter M̃ i

t′ is the
same as of the basic definition of M i

t+t′−1, for all i and t′ = 1, 2. Similarly, capacity

parameter C̃t′ is the same as Ct+t′−1, for all t′ = 1, 2. Cumulative demand parameter
d̃it′ represents simply dit+t′−1, t+1, for all i and t′ = 1, 2, i.e., d̃i1 = di1,2 and d̃i2 = di2.

3 Preliminary Results

We employ the instances of Trigeiro et al. as modified by Sural et al., [5]. It is worth
noticing that the elimination of setup costs increases the integrality gaps of those
instances from 0.97% to 33.86%, where the lower bound is calculated by Lagrange
relaxation and is equivalent to that obtained by introducing the (l, S) inequalities
at formulation (1)-(5). Table 1 reports on the improvement of the integrality gap
obtained by separating two new families of new inequalities (two-period covers and
partition I) in addition to (l, S) inequalities.

The talk will also discuss the separation problem for each family of inequalities
and the challenges in the design of an embedded branch-and-cut framework.
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114



Instance LP Gap LS Gap LS+2PC+PI Gap
G1 99% 99% 48%
G10 0% 0% 0%
G11 89% 89% 28%
G13 74% 19% 10%
G14 77% 13% 3%
G16 60% 24% 13%
G17 55% 10% 9%
G18 43% 5% 4%
G19 82% 22% 13%
G2 100% 99% 59%
G20 56% 17% 9%
G21 97% 97% 96%
G22 98% 98% 98%
G23 98% 98% 98%
G24 99% 13% 13%
G25 98% 97% 97%
G26 99% 99% 99%
G27 94% 94% 94%
G28 99% 47% 47%
G29 99% 99% 98%
G3 100% 100% 58%
G30 99% 99% 99%
Average 82% 59% 47%

Table 1: Improvement of gap with the addition of two-period cover (2PC) and
Partition-I (PI) inequalities.
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