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Foreword

At Erasmus University Rotterdam, we are very pleased to welcome you to the 3rd Inter-
national Workshop on Lot-Sizing. The workshop has been organised after the excellent
examples set by the Ecole Nationale Supérieure des Mines de Saint-Etienne in Gardanne,
France (2010), and Ozyegin University in Istanbul, Turkey (2011).

The goal of the workshop is to cover recent advances in lot-sizing in order to facil-
itate the exchange of research ideas, promote collaboration among researchers from all
over the world, and contribute to the further development of the field. With more than
20 presentations, the workshop programme shows that lot-sizing is indeed an active and
diverse research area. With more than 40 participants, these presentations will unques-
tionably generate interesting discussions and stimulate new research ideas.

I would like to thank Wilco van den Heuvel who, with the assistance of Mathijn Retel
Helmrich and Ursula David, did most of the organisational work for this workshop. We
would also like to acknowledge the financial support by ERIM, the Tinbergen Institute
and the Econometric Institute.

I wish you all a fruitful workshop and an enjoyable stay in Rotterdam.

Albert Wagelmans
Chair, Organizing Committee

xi



xii



Extended Abstracts






Incorporating Consumer Purchasing Behaviour on the
Production Planning of Food Goods

Pedro Amorim

INESC-TEC, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n,
4600-001 Porto, Portugal

amorim.pedro@fe.up.pt

Gongalo Figueira

INESC-TEC, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n,
4600-001 Porto, Portugal

goncal.figueira@fe.up.pt

Alysson Costa

Instituto de Ciéncias Matemidticas e de Computagdo, Universidade de Sdo Paulo, Av. do
Trabalhador Sio-Carlense, 400, CP. 668, Sio Carlos, SP 13560-970, Brazil
alysson@icmc.usp.br

Bernardo Almada-Lobo

INESC-TEC, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n,
4600-001 Porto, Portugal

almada.Lobo@fe.up.pt

Abstract

In this research, we assess the impact of consumer purchasing behaviour on the production plan-
ning of perishable food products for companies operating in the fast moving consumer goods
using direct store delivery. We build on previous marketing studies related to the effects of ex-
piry dates, in order to derive mathematical formulae, which express the age dependent demand
for different categories of perishable products. These demand expressions take into account both
customer willingness to pay and product quality risk. A deterministic and a stochastic produc-
tion planning model, which incorporate the customer’s eagerness to pick up the fresher products
available, are presented. Results point out that not considering the decreasing customer will-
ingness to pay has an important impact both on the profit losses and on the amount of spoiled
products. On the other hand, it was concluded that neglecting the fact that customers pick up
the fresher products and the assumption that all products have the same production quality risk
have a reduced impact on profit losses.

1 Introduction

The focus of this research is on the fast moving food consumer goods that are subject
to physical spoilage. Examples of these products are found in the catering, dairy and
processed food industries. The production systems related to these industries involve
complex setup sequences that are often decided by specialized planners according to
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natural constraints. These characteristics together with high inventory rotation levels
force the collapse of traditional tactical and operational planning levels [2]. Within this
scope we consider that the producer (that ultimately sells perishable food products to
final customers) has no control over the pricing of the products, which is assumed to be
tixed within the considered planning horizon. In this setting, we propose mathematical
models that are able to differentiate between different functions of the age dependent
demand and/or between products with or without a stamped best-before-date. Our aim
is to bridge the gap between consumer purchasing behaviour and production planning
of perishable products by addressing the producers” problem arising from an increas-
ing control over the downstream supply chain. This is indeed the case of many food
industries that use direct store delivery and of companies that produce and sell in the
same establishment (such as bakeries, for example). Hence, we extend the production
planning formulations dealing with perishable products by incorporating the consumer
purchasing behaviour. This is done by adjusting products” demand and inventory deple-
tion to reflect the consumer’s attitude towards perishability. We consider that demand
is influenced by two distinct factors: the decreasing consumer willingness to pay for
products with an increasing age and the different demand shapes that are related to the
product quality risk. Moreover, we acknowledge that customers, having the opportunity
to choose between equivalent products with different ages, will pick the fresher ones. In
Figure 1 an example of a demand curve for lettuce throughout its shelf-life is presented.
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Figure 1: Example of the demand for lettuce over its shelf-life of 10 days, starting at 100
units.

2 Computational Study and Results

The computational study aims at understanding the impact of the consumer purchasing
behaviour on the production planning of perishable food goods through several perspec-
tives. Hence, we focus on:

1. the importance of considering age dependent demand as theorized in the consumer
purchasing behaviour literature;
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2. the importance of considering customer’s eagerness to pick up the fresher products
available;

3. the impact of neglecting different product quality risks, assuming a medium prod-
uct quality risk for every product;

4. the amount of spoiled products due to not considering age dependent demand.

Overall the results point out that neglecting the age dependent demand resulted in
a significant profit loss. As it is expected, more sensible customers yield higher losses
and products with lower perceived risk, such as vegetables have a lower impact on the
profit. Thus, if producers are able to reduce the perceived quality risk, this may have
an important impact on the potential revenue. Most of these gains are achieved through
an augmentation of the total demand throughout the product’s shelf-life. It is also im-
portant to note that there is a considerable interaction between product quality risk and
customer exigency. Hence, as customers get more sensible to perishability, the impact of
product perceived risk tends to augment. Therefore, for example, if the producer is serv-
ing a retailer with very demanding customers, it is very important to decrease as much
as possible the product quality risk (besides delivering very fresh products). In case of
package food goods, such as yoghurt, this can be achieved by filling the product in glass
containers instead of plastic ones [3]

Moreover, results point out that the profit loss of considering the fact that customer
pick up fresher products is less significant than the loss coming from not considering
the age dependent demand. In fact, while acknowledging the decreasing willingness
to pay we are implicitly assuming consumers preference for fresher products. This will
drive production plans towards a leaner strategy and, therefore, implicitly incorporate
this characteristic of consumers. Hence, these results point out that despite the fact these
constraints have a small impact on the profit loss, the solution structure may differ con-
siderably as only the fresher products may be used to satisfy demand. Moreover, these
constraints yield a greater reduction of the solution space for instances having products
with longer shelf-lives. This is reflected in the higher profit losses.

Regarding the possibility of assuming a linear willingness to pay for all products. in
all instance, a profit loss inferior to 1.3% was obtained. This indicates that differentiating
between different production quality risk is not as important as differentiating between
the remaining inputs for the age dependent demand. Our conclusion is that, in practical
applications, planners of food products should focus on understanding both the initial
willingness and the sensibility that customers have towards a decreasing shelf-life.

Finally, the results indicate that the amount of spoilage is severely impacted by the ac-
knowledgement of a decreasing demand throughout the age of the product. The poten-
tial savings in product spoilage ascends to a complete reduction in the spoiled inventory.
In an era of strong environmental awareness both in the civil society and in companies
this is a crucial indicator to be taken into consideration.

3 Conclusions

In this study we first develop a set of age dependent demand functions for products
with different product quality risks based on researches analysing consumer purchasing
behaviour for perishable food products. We propose a deterministic model for the pro-
duction planning of perishable goods that accounts both for decreasing willingness to
pay and customers’ eagerness to choose the product in a fresher state. This deterministic
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model is extended to a stochastic one dealing with demand uncertainty, which is a com-
mon characteristic of the fast moving food consumer goods markets. The computational
study focuses on a sensitivity analysis where the main parameters related to the novel-
ties introduced are varied. Results pointed out that extending food production planning
models to deal with an age dependent demand is of great importance both in terms of
profit and product spoilage.

References

[1] Abad, P, Optimal price and order size for a reseller under partial backordering,
Computers & Operations Research, 28, 53-65 (2001)

[2] Bilgen, B., Giinther, H.-O., Integrated production and distribution planning in the
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32, 927-955 (2009)

[3] Dyllick, T., Ecological marketing strategy for Toni yogurts in Switzerland, Journal of
Business Ethics, 8, 657-662 (1989)
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In recent years, more industries have been experiencing non-stationary (time-varying)
stochastic demand with higher frequency. This can mainly be attributed to the fact
that product life cycles are getting increasingly shorter in response to fast technological
progress and rapid changes in consumer preferences. The life cycle of a product typically
involves a series of phases, and demand rate changes radically when product moves
from one phase to another. This immediately suggests that demand is never stationary.
However, when product life cycle spans a relatively short period of time, the extent of
non-stationarity becomes drastic since demand rate changes very rapidly within time.
Furthermore, in most environments demand is often heavily seasonal and has a signifi-
cant trend. Therefore, demand rate also changes within the phases of product life cycle.
In this context, firms must employ inventory control policies which can effectively handle
non-stationary demand to match their supply to demand [3].

Managing inventories is more demanding when demand is non-stationary. The dif-
ficulty mainly springs from the fact that fluctuations in demand must be reflected in
replenishments. In other words, non-stationary demand necessitates non-stationary in-
ventory control. Notwithstanding, probably the most challenging non-stationary inven-
tory control problems arise when replenishments require fixed freight fees. This is often
the case for companies using distant offshore suppliers. Here, the non-stationarity of
demand affects not only the size but also the timing of replenishments. This leads to a
very sophisticated inventory problem where replenishment decisions must be dynami-
cally determined considering possible future demands as well as impending inventory
needs.

This paper addresses the inventory control problem in a finite-horizon periodic-review
system with non-stationary stochastic demands, fixed replenishment costs, and linear
holding and backorder costs. The relevance of the problem is evident, since it appears
in many retail, wholesale, and industrial environments. The problem is well addressed
in the literature. It is known that the non-stationary (s, S) policy is optimal to control in-
ventories [5]. The (s, S) policy is a min-max policy characterized by a re-order level — s,
and an order-up-to level — S, for each review period n throughout the planning horizon.
At the beginning of period 7, if the inventory position is below s;, then a replenishment
order is placed for a quantity that will bring the inventory position up to S,,.

Despite the structure of the optimal policy has already been established, finding the
optimal parameters of the policy still remains a challenging problem [4]. This paper seeks
to address this issue. We propose a new heuristic to compute near-optimal parameters
of the non-stationary (s,S) policy. The heuristic relies on the idea of establishing pol-
icy parameters by making use of individual cost functions associated with prospective
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replenishment cycles. This allows us to take advantage of convexity, and compute near-
optimal policy parameters by using a dynamic programming algorithm. The proposed
algorithm is very efficient since the state space of the dynamic program is independent
from possible demand realizations and inventory positions.

We conduct an extensive computational study involving a variety of cost parameters
and demand characteristics. We mainly follow the numerical setting in [2], and in addi-
tion we make use of the empirical demand patterns reported in [3]. We design three sets
of experiments which are respectively based on seasonal, trend and empirical demands
patterns. We compare the new heuristic with the ones developed in [1] and [2], as well
as the optimal dynamic program. The results show that the new heuristic significantly
outperform the earlier heuristics proposed in [1] and [2]. It yields an average optimality
gap of 0.1% for seasonal and trend patterns, and 0.5% for the empirical pattern.

References

[1] R. Askin, A procedure for production lot sizing with probabilistic dynamic demand,
IIE Transactions, 13(2):132-137, 1981
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Abstract

We introduce the horizon decomposition, a novel application of Dantzig-Wolfe decomposition in
the context of the capacity constrained lot size problem with setup times. The problem horizon is
partitioned in contiguous overlapping time intervals that create subproblems identical to the orig-
inal problem, but of smaller horizon length. The master problem includes linking constraints that
determine the amount of shared information across the subproblems. By introducing a family of
reformulations of the original problem, the user has the flexibility to determine the subproblem
size and the master size almost independently. An empirical investigation of different combina-
tions of master and subproblem sizes gives insights on how to select an efficient horizon partition
for various problem classes. Computational experience with a branch-and-price algorithm shows
that the horizon decomposition approach is competitive or outperforms state of the art branch-
and-cut solvers, depending on the problem structure. Finally, we show how this methodology
can be extended to problems with generic constraint structure.

1 Introduction

The capacity constrained lot size problem with setup times (CLST) is a natural extension
of the single-item uncapacitated lot size problem studied by Wagner and Whitin in their
seminal paper [1]. The extension involves multiple items which share common time ca-
pacity in each period. Each item consumes time capacity for setup and for production.
Given a fixed time horizon, a feasible production plan satisfies (i) the per item demand
requirements of each period (ii) the setup restrictions and (iii) the time capacity restric-
tions. The goal is to find the production plan that minimizes the inventory holding cost
and setup cost of all items in the given horizon.

This paper introduces a novel way of applying Dantzing-Wolfe decomposition in lot
sizing problems and demonstrates its application to the CLST. By introducing linking
constraints for a set of variables, the problem is decomposed in several subproblems that
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may share common periods and are short horizon CLSTs. The computational benefit of
this approach does not stem from the specialized structure of the subproblem but from
the reduction of its size. Since the subproblems do not have the integrality property,
the resulting lower bound is better than that of the LP relaxation [2]. Two important
characteristics of the horizon decomposition approach is that (i) it can be applied to more
general classes of lot sizing problems and (ii) the user can control the size of the master
problem and of the subproblem with two parameters which are almost independent.

2 Computational Experiments

A computational study is utilized in order to investigate three main research questions.
Initially, the focus is on determining the best performing combination of subproblem
size and master problem size, in terms of CPU time and lower bound quality. The main
finding is that a small number of overlapping periods is often sufficient to drastically
improve the lower bound quality. Large overlaps result in degenerate master programs
which induce poor convergence of column generation and deliver a small bound im-
provement. Moreover, the number of items and the horizon length of each instance can
be used to determine a more informed horizon partition. Second, we focus on how useful
this idea is in the development of heuristic approaches. Specifically, we utilize a column
generation algorithm that applies the relaxation induced neighborhood search heuristic
at termination [3]. This approach outperforms the best heuristic found in terms of aver-
age gap quality, while it is competitive in finding heuristic solutions. Finally, we develop
a branch-and-price algorithm that we test in a new challenging set of instances that we
generated. For problems with few items, the horizon decomposition approach greatly
outperforms branch-and-cut. As the number of items increases it remains competitive
and it consistently delivers better lower bounds.

3 Generalizations

The principle of horizon decomposition can be viewed as a particular application of La-
grange decomposition [4]. However, it is different from lagrange decomposition in two
ways. First, it does not consider existing sets of constraints whose combinatorial nature is
“easy” but it rather creates new linking constraints and the resulting subproblems are of
the same structure. Second, the user has the flexibility to select among a family of differ-
ent reformulations. We demonstrate how this idea can be generalized to mixed integer
linear programs with generic structure. Two extensions are presented. First, we con-
sider non-overlapping sets of constraints and partition the original problems by creating
copies of certain variables. In this formulation,the subproblems are defined over mutu-
ally exclusive sets of constraints. Second, an extension is presented that introduces new
variables and partitions existing constraints in such a way that the subproblems have the
same set of constraints, but different variables. We discuss potential applications of each
formulation.

4 Conclusions

This work introduces the principle of horizon decomposition in the context of lot sizing
problems. A implementation on the CLST and a computational study show the potential
benefits of this approach. The computational study gives empirical evidence on which
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horizon partitions are efficient for certain problem classes and investigates the trade-off
between lower bound quality and CPU time. A heuristic approach based on horizon de-
composition outperforms the best approach found in the literature in terms of integrality
gap. Moreover, a branch-and-price algorithm is competitive or outperforms state of the
art branch-and-cut software in terms of integrality gaps, while it almost always delivers
a better lower bound. Finally, two potential extensions of this principle on generic MIPs
are presented.
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Abstract

The multi-item multi-period capacitated lot sizing problem with setups (CLST) is a well known
optimization problem with wide applicability in real-world production planning problems. Based
on a recently proposed Dantzig-Wolfe approach we have presented a novel math-heuristic algo-
rithm for the CLST. In this paper, we provide reasoning that the approach may be beneficial when
additional constraints like perishability constraints are added. From an algorithmic standpoint
this also constitutes an important extension when looking at it from the point of view of solution
methods. Adding a hierarchy of related constraints may be seen as defining specialized problems
to be solved. In doing so we may even benefit when going back to solving the original problem.

1 Introduction

In recent years, a lot of attention has been devoted to the integration, or hybridization,
of metaheuristics with exact methods. This exposition also relates to the term math-
heuristics [4] describing works which are, e.g., exploiting mathematical programming
techniques in (meta)heuristic frameworks or on granting to mathematical programming
approaches the cross-problem robustness and constrained-CPU-time effectiveness which
characterize metaheuristics.

Based on a recently proposed Dantzig-Wolfe approach of [2], in [1] we presented a
novel math-heuristic algorithm for the CLST. The major contribution of this paper lies in
the presentation of an algorithm exploiting exact techniques (Dantzig-Wolfe) in a meta-
heuristic fashion. To measure the effectiveness of the proposed approach, we have tested
the algorithm to solve standard benchmark instances from [6]. Here we extend in two
directions. We add considerations with respect to perishability or hop constraints. And
we add very interesting observations on hierarchical relaxations within our approach
exemplified by means of those constraints.

2 The CLST

The Multi-Item Multi-Period Capacitated Lot Sizing Problem with Setups (CLST) is a
well known problem finding a wide variety of real-world applications. The CLST is N/'P-
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hard [6]. A mixed-integer formulation of the CLST is:

T

n
21 (fityje =+ cjexje + jesji) + ) hjosjo
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= I

(e + mjpyje) < by Vi
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Sjt-1 +Xxjr = djs +sjp Vj,t
xjip < My Vj,t

yir €{0,1} Vj,t

Xjt, Sjt > 0 Vjt

where items j = 1,...,n should be produced over time periods t = 1,...,T. In the
CLST formulation, fj, cjt, and hj; indicate the fixed cost, the unitary production cost and
the unitary inventory holding cost for item j in period f, respectively. Parameters m;;
and aj; indicate the setup time and the unitary production time, respectively, while b;
stands for the production capacity in period t. Parameter dj; indicates the demand of
item j in period ¢. Finally, in the model, three sets of decision variables are employed, i.e.,
yjt € {0,1}, which takes value 1 if there is a setup for item j in period t; as well as x;; > 0
and sj; > 0, indicating the production volume and the inventory level for item j in period
t, respectively. Note that sy is given as data indicating initial inventory.

Due to its vast industrial applicability, researchers have devoted special attention to
the CLST. Since the CLST is still difficult to solve to optimality, many researchers have
tried to tackle the problem by working on relaxations of the same. A good description
of some well studied relaxations of the CLST is provided by [5]. A recent discussion of
solution approaches for the CLST can be found in [3].

3 Solution Approaches

Starting from an observation of [2], in [1] we presented a Dantzig-Wolfe reformulation in
which the setup variables and the production variables are dealt with separately. More
specifically, for any given setup plan, we generated columns in which the production
plan needed not be a dominant plan, i.e., we introduced into the master problem columns
corresponding to solutions in which, for certain periods, there might be a setup without
having a production. Thus, a single setup plan induces a number of non-dominant pro-
duction plans. However, due to the large size of the set of non-dominant plans induced
by each setup plan, we designed a mechanism inspired by the corridor method to bound
the search of non-dominant production plans in the neighborhood of the Wagner-Whitin
dominant plan associated to the current setup plan. By adding an exogenous constraint
to the pricing problem, we collected a set of new columns and, subsequently, we priced
into the master problem those columns with negative reduced costs. Finally, the column
generation approach was repeated until no new columns with negative reduced costs
were found.

In this paper, the controlled addition of hop constraints is explored to become a hi-
erarchical relaxation scheme. Table 1 presents some results, in terms of solution quality
and running time, of the use of CPLEX 12.1 over the problem obtained after the inclusion
of hop constraints into the standard CLST model (i.e., the Dantzig-Wolfe algorithm has
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: /
Instance Hop constraints value T C‘um CPLEX
1 2 3 4 5 Time

z* | 40155 38599 37767 37721 - - 37721
Tr6-15

T 0.49 3.84 0.59 1.28 - 6.21 1.24
Te6-30 2 62979 61784 61746 - - - 61746

T 0.06 29.1 62.9 - - 92.1 126.2

z* | 80904 76052 74752 74702 74634 - 74634
Tr12-15

T 0.54 5.1 3.35 5.54 3.05 17.7 2.67
Tr12-30 2 142097 131673 130600 130596 - - 130596

T 0.44 49.71 45.16 136.8 - 26192 | 15441
Teoa15 2 142847 137506 136678 136509 - - 136509

T 1.04 497 18.9 5.4 - 30.31 23.70
T04.30 2 302472 289099 287929 - - - 287929

T 049 23.18 76.67 - - 10034 | 11099

Table 1: Results on six instances from [6] with incremental use of hop constraints.

even not been used in this phase of the computations; for results with the Dantzig-Wolfe
algorithm see [1]). In the table, the first column presents the instance name. For each
instance, we record the optimal value obtained by the MIP solver along with the running
time (see column CPLEX; all times on a dual core pentium 1.8GHz Linux PC). The header
of each column indicates the value of T’, i.e., the maximum number of time periods an
item is allowed to remain in inventory. For example, considering instance Tr6-15 within
the column with a hop constraint value of 1, we observe that the optimal solution when
the hop constraints are defined for " = 1 has a value of 40155, and the running time
of CPLEX 12.1 is of 0.49 seconds. Columns regarding a hop constraint value of 2 to 5
provide similar information for increasing values of T’. Thus, we iteratively solved the
problem each time enhancing the hop constraint, i.e., increasing the value of T', until the
known optimal value of the original CLST is obtained. In the case of instance Tr6-15,
the known optimal value of 37721 was obtained when T’ = 4. Thus, the iterative process
stops at T = 4, since larger values of T’ would lead to the same optimal solution. Note
that in the current settings we know the optimal values and our primary interest is in
investigating the behaviour of hierarchically changing the hop constraint. This changes
once we investigate on how to avoid solving each model with a slightly modified hop
constraint from scratch and also incorporate a stopping criterion regarding extending the
hierarchy.

Column Cum Time of Table 1 presents the cumulative running time of the iterative
process. That is, this column shows the total running time for all values of T’ until the
known optimal solution is reached for the first time. Again, with respect to instance
Tr6-15, the cumulative running time of the iterative approach is 6.21 seconds, while
CPLEX reaches the optimal solution for the original CLST in 1.24 seconds. Interestingly
enough the cumulative running times may even be smaller than those of CPLEX when no
hop constraints are considered at all (this is the case for instances Tr6-30 and Tr24-30).
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Abstract

In this paper we investigate the integrated optimization of production, distribution and inventory
decisions in a simple supply system, where retailers have to be restocked from a central produc-
tion facility. We propose an iterative two-phase heuristic approach to solve our problem. The
main advantages of our approach are its simplicity and efficiency. Some experimental results are
reported to show the effectiveness of our method and its limits.

1 Introduction

We investigate the integrated optimization of production, distribution and inventory de-
cisions in a simple supply system, where retailers have to be restocked from a central
production facility. A single-item uncapacitated lot-sizing problem is defined for repre-
senting production in the facility and inventory management. Daily distribution is mod-
eled using a vehicle routing problem framework. Such a problem is challenging since it
integrates two decisions, namely: lot-sizing and vehicle routing.

The problem of integrating production and routing decisions was introduced by [4].
Most of authors used heuristic methods to solve the problem of integrating production
planning and vehicle routing ([3], [1]), while few authors used exact methods ([2]). In
this paper we propose an iterative two-phase heuristic method that iteratively focuses on
the lot-sizing or distribution parts of the system.

We consider aset M = {1,...,|M|} of retailers and a single product sold by these re-
tailers along a discrete time horizon T = {1, ..., H}. Consumption rate for retailer i € M
during time period ¢t € T is denoted r;;. Retailers can be restocked from a common pro-
duction facility. Products are then kept in retail stores, with an inventory limit U; and ata
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unitary cost h;;, dependent of the retailer and of the time period. The central production
facility is identified with index 0. No limit is assumed on production. A maximal in-
ventory level Uy of finished products is however defined. Unitary inventory costs in the
facility are assumed to be constant over time and are denoted k. A fixed production cost
K and a variable cost p proportional to the number of items produced, are also considered
at each producing period for the facility. A set of vehicles V = {1,...,|V|} of capacity C
is considered for distribution. Travel costs c;; are defined between every pair (i, j) of loca-
tions, including the production facility and the retailers. Wenote A = MU {0} x MU {0}
the set of these pairs. No limit is imposed on vehicle tour duration.

The aim of the problem is to simultaneously optimize production, inventory and rout-
ing so that final demands of customers and inventory limits in production facility and
retailers are satisfied, while minimizing all types of costs.

2 An iterative two-phase method

We propose to solve our problem using an iterative two-phase method. The general
scheme of the method is presented in Algorithm 2 where sol stores the best solution
found so far.

Algorithm 1 General scheme of the two-phase method

sol — @
Initialize SC};, foreachi € M,v € Vandt € T
repeat

repeat

// Intensification phase

Solve the Lot-sizing Problem (SC7;,) and get 7}, foreachi € M,v € Vandtc T

Solve the Routing Problem (vy};,)

Update sol if necessary

Update SC;;,
until a stopping criterion is met
Update SC;;, // Diversification phase

until a stopping criterion is met

In the first phase of the method, routing costs incurred when visiting a retailer 7 at
a given period t using a vehicle v are approximated and denoted SC,;;. When the SC,;;
are fixed, the initial problem can be transformed into a Lot-sizing Problem that aims at
optimizing production and inventory levels. Distribution costs only interfere with this
model in the form of setup costs SC,j;, taken into account in the value of the solution
when retailer i is replenished at period t using vehicle v. From now on the first phase
will be called Lot-sizing Problem (SCyt ).

On the basis of the solution obtained in the first phase, routing decisions are taken in
a second phase. The second phase will be called Routing Problem (7y,;;) and corresponds
to the solution of the routing problem once the decision variables (7,;;) to visit retailers
are fixed, thus once we know the set of retailers to be visited at each period.

Fixed costs SCy;; play a central role in this approach as they create a connection be-
tween the first and the second phase. The value of SC,;; is initially set to co; + cjp. This
will force the solution of the Lot-sizing Problem (SCy;t) to serve less frequently those retail-
ers which are far away from the supplier and, thus, for which the corresponding trans-
portation cost is high. However, the initial value of SC,;; does not take into account the
clustering of retailers: There is no measure of the proximity among retailers visited in a
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certain day, so retailers that are very far away from each other may be clustered together
and served in the same day. This of course has a very bad impact on the transportation
cost. Thus, in subsequent iterations, the values of SC,;; are updated using the information
provided by the solution of the Routing Problem (7y,;) so that solutions of the Lot-sizing
Problem (SC,;t) are driven to better solutions in terms of retailer clustering.

Once this procedure converges, and instead of using a multi-start procedure, we use
the SC,;; multipliers to diversify local optimum solutions. The SC,;; multipliers are up-
dated according to the best known solution. The goal is to help the procedure exploring
neighbors that are not explored during the intensification phase.

3 Experimental results

In order to evaluate the efficiency and robustness of our algorithm, we perform exper-
iments using 480 instances from Archetti et al. [2]. These instances are classified in 3
sets (A1, A2 and A3) and are characterized by 6 time periods and respectively 14, 50 and
100 customers with constant demand, no production capacity and no plant inventory
capacity, but with initial inventory at the plant and customers. The instance set Al has
a single capacitated vehicle and sets A2 and A3 have unlimited number of capacitated
vehicles. We compare our approach (denoted IM) to the heuristic (denoted H) proposed
by Archetti et al. [2] and the one proposed by Adulyasak et al. [1] (denoted ALNS1000).
In what follows we summarize our experimental results by presenting the average gap
to the best known solution for each method (Table 1). Table 2 reports the number of time
our method outperforms H and ALNS1000 (denoted respectively #BetterH and #Better-
ALNS1000).

Set of instances H ALNS1000 IM

Al 2,99% 1,79% 0,29%
A2 1,104% 0,56% 0,206%
A3 0,85% 0,30% 0,35%

Table 1: Average gaps from best known solutions

Set of instances | #BetterALNS1000 #BetterH Total number of instances
Al 96 96 96
A2 57 88 96
A3 44 70 96

Table 2: Number of best solutions

Tables 1 and 2 show that our method give very good results comparing to H and
ALNS1000. The computing time of our method is relatively high since we use a standard
solver to solve the lot-sizing part (about 100 seconds for instances with 14 customers,
about 300 seconds for instances with 50 customers and about 1000 seconds for instances
with 100 customers).
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Abstract

The integrated lot sizing and cutting stock problem is an optimization problem that considers
simultaneously decisions related to the lot sizing problem and to the cutting stock problem. The
goal is to capture the interdependence between these decisions in order to enable economy of
raw materials and reduction of production costs and inventory. In this work we intend to give
an overview of models that consider the integrated cutting-stock and lot-sizing problem on a
furniture factory. The objective is to identify their abilities and limitations in describing relevant
aspects of this production environment. A new model is proposed and results of a preliminary
computational study are presented and discussed.

1 Introduction

The Furniture industry in Brazil, although spread around the country, is concentrated in
regional centers, mostly situated in the south and southeast regions. Each regional center
includes companies of different sizes and specialties. This study is motivated by a small
scale furniture factory (thereafter called Plant V) located in the northwest region of the
Sao Paulo state and included in the regional center of Votuporanga.

The Plant V is specialized in the production of bedroom furniture which is manufac-
tured using wooden plates of different sizes and types. The production system at Plant
V is very similar to that of other plants in the region. At the beginning of the week the
production manager decides which types of furniture and how many will be produced
during that week. The production line is then fully dedicated to these products. At first
(cutting stage) the rectangular wooden plates in stock (plates) are divided into rectan-
gular smaller pieces (pieces) that will compose a given type of furniture. The pieces are
then manually processed according to the product design and pass through several other
stages (e.g. gluing, drill, painting) before they are grouped to compose a final product,
packed (mounted or not) and stored. There is not much space for storage of the final
product, nor to store the pieces that will not be processed during the working day.
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The process of cutting the plates may involve loss of material, that is, pieces that are
cut and are not part of the demand. The factory is interested in reducing these losses
given that they have a strong impact in the costs of the final product. One way of re-
ducing these losses is increasing the types of demanded pieces and their demand. More
pieces types may allow a better arrangement of the pieces in the plate (cutting pattern).
Moreover, increasing the pieces demand might help to reduce the number of setups due
to the fact that more plates may be cut simultaneously with the same cutting pattern. All
this can be achieved if the industry anticipates the production of some final products.
However, the anticipation of production may incur in additional inventory costs. To cap-
ture all these elements in the decision process, cutting stock and lot sizing, a combined
decision should be taken.

2 Contribution

Few papers have considered the integrated cutting-stock and lot-sizing problem in sev-
eral industrial sectors (e.g. [2], [8], [9], [10], [11]). In the furniture industry we highlight
the papers from [7], [6], [5], [1], [12], [4], [3] and [13]. The models presented in
[1], [12], [3] and [13] were developed considering the production process of Plant V. In
this work the mathematical models for integrating both decisions in the context of Plant
V are presented and their differences and similarities highlighted. Moreover some new
contributions will be presented including a mathematical model for which the column
generation technique is used to solve the associated linear relaxation. The results of a
preliminary computational study, conducted using data collected at the plant, indicate
that it is possible to reduce the total cost of inventory and raw materials when the plan-
ning is done in an integrated manner.

Financial Support: This work received partial support from the Brazilian agencies CAPES,
FAPESP, CNPq and from the European Union (FP7-PEOPLE-2009-IRES n. 246881).
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1 Extended Abstract

In the current competitive world, technological advancement does not guarantee that the
machineries do not break down during their life. A machine’s condition can turn into an
out-of-control condition gradually or at once. This implies that the products would not
have their potential perfect quality. Besides, such situation questions the validity of the
utilized lot sizing model, in that the portion of defective products in each lot increases.
The probability of shifting to an out-of-control condition will be diminished by schedul-
ing periodic inspection and performing cyclic/non-cyclic maintenance.

The objective of maintenance scheduling is to achieve the best time to perform the main-
tenance actions in order to minimize the total maintenance cost. On the other hand, the
objective of production planning is to minimize the total production and inventory costs
while satisfying the demand for all products. Since production planning and mainte-
nance scheduling are interdependent they cannot be planned sequentially, though many
companies do it. Albeit the resultant more complicated model, the synchronization be-
tween production planning and maintenance scheduling induces significant reduction in
the total cost incurred by production interruptions, delays, and re-planning. During the
last few decades, exhaustive research has been carried out in the realm of lot sizing prob-
lem and EMQ (Economic Manufacturing Quantity) as a classic model has been exploited
to develop more complicated realistic models by relaxing its underlying assumptions.
Many of the researchers in the literature review have considered cyclic (or periodic)
maintenance in their preventive maintenance models [Aghezzaf et al. (2007)]. In pe-
riodic PM we deal with optimizing how often each task in a set of predefined tasks
should be executed. There is a relatively limited literature on models presenting a general
(not necessarily periodic) preventive maintenance policy [Fituhi and Nourelfath (2012),
Aghezzaf and Najid (2008)]. The objective of these models is to determine either the best
time for doing preventive replacements by new items, i.e., perfect PM [Yao et al. (2004)],or
the optimal sequence for imperfect maintenance actions [Levitin and Lisnianski (2000)].
The authors’ survey of the literature did not discover a study that deals, in particular,
with an efficient formulation for noncyclic PM and the effect of production interruptions
as a result of PM on the lot sizing problem. In this paper we are going to fill this research
gap by developing some efficient models. The existing works in the literature investigate
that, albeit consuming a fraction of the nominal capacity, how PM can be exploited to
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decrease the number of defective products. In spite of the similarity of our work to to
the existing works, in terms of consuming a fraction of the nominal capacity by PM, we
assume that all products always have the same quality regardless of when PM is carried
out. This is a realistic assumption in, for example, lime industry whereby our work is
inspired.

In this paper we consider the integrated problem of cyclic (and noncyclic) preventive
maintenance and production planning for a single machine. We are given a set of prod-
ucts that must be produced in lots on a capacitated production system during a specified
finite planning horizon. The capacity is decreasing over time, unless a preventive mainte-
nance is peformed. The amount of decrease might depend on the production level or the
number of set-ups peformed. The proposed model determines simultaneously the opti-
mal production plan and the timing of preventive maintenance actions. The integrated
problem is used to compare the cyclic and non-cyclic maintenance policies and the value
of using non-cyclic preventive maintenace is illustrated through a numerical example.
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Abstract

We consider the capacitated lot sizing problem (CLSP) with bounded inventory. We show that
the single item CLSP with inventory bounds is polynomial for a stationary production capacity
and under the Wagner-Whitin cost structure. The multi-item CLSP with a dedicated capacity for
each item type and a common capacitated storage shared between the different items is proven
to be strongly NP-hard.

1 Introduction

The CLSP consists in planning production and storage activities with a minimum cost, in
order to satisfy the deterministic demand over a finite horizon under a limited production
capacity. Different extensions are largely studied in the literature (see Brahimi ef al. [3]).
In the classical CLSP, the storage capacity is assumed to be illimited, which is clearly
not realistic in some cases. See for instance Atamtiirk and Kiiciikyavuz [2] or Akbalik et
al. [1] for some emerging industrial applications with limitated storage. In the literature,
the single item uncapacitated lot sizing problem (ULSP) with inventory bounds is largely
studied (see Table 1), but to the best of our knowledge, the problem with a capacitated
production is not yet explored.

Table 1: The ULSP with time-dependent inventory bounds

Articles Cost structure Backlogging | Complexity
Love [7] piecewise concave yes O(T?)
Gutiérrez et al. [4] concave yes O(T?)
Toczylowski [10] linear no O(T?)
Atamttirk and Kiigtikyavuz [2] | linear (+fixed holding cost) no O(T?)
Sedeno-Noda et al. [9] linear (no setup cost) no O(Tlog(T))
Hwang and van den Heuvel [5] concave yes O(T?)
Hwang and van den Heuvel [5] linear and WW yes O(T)
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Multi-item and multi-echelon extensions of the bounded inventory problem are also
studied by different authors. In Jaruphongsa et al. [6], the authors consider a two-echelon
ULSP with delivery time windows and warehouse capacity constraint. Minner [8] con-
siders a problem of replenishment of multi-item in a warehouse having a limited capac-
ity and compares the performance of three heuristics. There exists also some polyhedral
studies on the extensions of the bounded storage problem that we do not cite here.

In this study, we consider both capacitated production and capacitated storage ac-
tivities. We present an O(T?) time algorithm for the single item CLSP with a stationary
production capacity, time-dependent storage capacities and under Wagner-Whitin cost
structure. The second extension studied is multi-item CLSP with a stationary produc-
tion capacity for each item type and a stationary storage capacity shared by the different
items. The multi-item problem we study differs thus from the classical multi-item lot
sizing problem, where the production capacity is shared by different items, which we do
not consider.

2 Single Item Capacitated Lot Sizing

We consider the single item capacitated lot sizing problem with inventory bounds (CLSP-
IB). Demands are known over a time horizon of T periods and are to be satisfied on time
(backlogging is not allowed), either from the stock on hand or from the production at the
current period. A setup cost f; is paid at period t if a production occurs, in addition to a
unit production cost p; per unit produced. A unit holding cost #; is also charged to carry
a unit in stock from period t to t + 1. We restrict to non-speculative motives, also called
Wagner-Whitin (WW) cost structure, which imposes that p; + hy > ps41 for any period
t<T.

In this article, we consider a capacity both on the production and the storage. More
precisely, let x; be the quantity produced at period ¢ and s; the stock level at the end
of period t. We require that for each period ¢, x; does not exceed a given value P;, and
that s; does not exceed a given value H;. Recall that the lot sizing problem with time-
varying capacity is known to be N'P-hard, even with no inventory bounds (H; = +c0).
On the contrary, we establish that CLSP-IB remains polynomially solvable for a stationary
production capacity P and time-varying inventory bounds H;. For this, following Hwang
and van den Heuvel [5], we generalize the classical notion of regeneration point to the
periods where one of the stock constraints 0 < s, or s, < H,_ is saturated :

Definition 1 A period u is said to be an inventory period if its entering stock level is either 0 or
Hufl-

Given a planning, a subplan (u,v) corresponds to the sequence (1 +1,...,v) of pe-
riods such that u and v are inventory periods. We also call a period t fractional if its
production is neither 0 nor at full capacity (thatis 0 < x; < P). Assuming a WW-cost
structure, it is easy to prove the following classical dominance :

Property 1 There exists an optimal planning such that each subplan contains at most one frac-
tional period. If the fractional period exists, it is necessary the first period of the subplan.

The first part of the dominance still holds without non-speculative assumptions, but
the fractional period may eventually appear inside the subplan. Using a dynamic pro-

gramming approach, we derive the following result :
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Theorem 1 The single item CLSP-IB with a stationary production capacity can be solved in time
O(T?) under the WW cost structure.

3 Multi-item Capacitated Lot-Sizing

For the multi-item case, we consider a particular problem where the inventory space is
the only shared resource. More specifically, we consider that we have m different types
of item, with specific demands to satisfy for each item over the time horizon. Each item
i is produced on a dedicated machine, with a stationary capacity. To this point we have
m independent single item lot-sizing problems to deal with, and thus the problem could
be solved in polynomial time. However all the items produced share the same storage
facility, which, due to physical limitations, can not hold more than H units at any point
in time. We have the following result :

Theorem 2 The multi-item CLSP-IB with item dedicated machine is N'P-hard in the strong
sense.

The polynomial reduction is performed from the EXACT COVER BY 3 SETS problem
(X3C). The problem remains N P-hard even with no storage cost, no unitary production
cost and a stationary setup cost.
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Abstract

In this study, we consider the single item capacitated lot sizing problem (CLSP) with piecewise
concave costs for which the computational complexity of the problem is an open question. We
present a polynomial time algorithm for the CLSP with piecewise concave production costs when
the number of breakpoints of the cost function is fixed and these breakpoints are the same for
all periods. A piecewise concave function can be used to represent discounts, subcontracting,
capacity acquisition and overloading decisions. Therefore, the problem we will study and the
algorithm we will present can be applicable to many production systems.

1 Introduction

Although the CLSP is studied since 1960s, most of the studies consider the problem with
concave production costs and there are only few studies on the CLSP with piecewise
concave production costs in the literature. Among these studies, Lippman [1] assumes
that the length of the interval between any two consecutive breakpoints of the production
cost function is the same for all periods and he proposes a polynomial time algorithm.
Swoveland [2] presents an important characteristic of an optimal solution to the problem
which we will make use of in our solution approach. For his solution method, he assumes
that the breakpoints of the production cost function may vary between periods but all
the breakpoints have a common divisor and his algorithm is pseudo-polynomial in this
common divisor, so in the breakpoint levels. Chen et al. [4] and Shaw and Wagelmans [3]
consider the CLSP with piecewise linear production costs, and in both of these studies the
algorithms given are not polynomial. The algorithms proposed in any of these studies
cannot be used to solve the problem that we will consider in polynomial time. Therefore,
computational complexity of the problem we will study is an open question and we will
show that it is polynomially solvable.

2 The Dynamic Programming Algorithm

The single item CLSP with piecewise concave costs can be defined as follows. There is a
planning horizon of n periods for a single item. The demand for the item in period ¢ is
d¢ > 0fort=1,...,n. For each period ¢, the cost of producing x; units is equal to p; (x;),

29



Koca et al.

and holding s; units during period ¢ costs /; (s¢). Production capacity of period ¢ is C;
units.

We assume that the piecewise concave function p;(.) has m; breakpoints, b}, s, b?"
with b9 = 0 and b} = C;, bi’l < bi, and hy(.) is a concave function on [0, ). We obtain
the following property for a regeneration interval.

Property 1 There exists an optimal solution to the problem CLSP such that in each regeneration
interval [j, 1], there exists at most one period period i with j < i < I such that x; = bf for some
z€{0,...,m} forall t € {j,..., I} \ {i}, and x; € [bY, "]\ {¥?,...,b"}. We will call such
a period as a fractional period.

This property is similar to the one in Swoveland [2]. By using Property 1, we can find
a minimum cost solution for the regeneration interval [j,!]. We will develop a dynamic
programming (DP) algorithm for solving the problem.

In order to develop the DP, we assume that the breakpoint levels of the production
cost function are the same for all periods, i.e, bi =b;forallt=1,...,nandi =0,...,m
where m; = mforallt =1,...,n. We assume that the functions p and h can be evaluated
in constant time.

Lett € Z"and t € {j,...,I}. We define Fy (t,T) to be the minimum cost for periods
j up to t during which 7; times b;, for i = 1,...,m, units are produced, no fractional
production is done, s;_; =s; = 0and s, > 0foru € {j,..., min{t,/ — 1}}.

Fori = 0,...,m, we evaluate Fj (j,¢;) and let Fj (j,T) = c0if ;1 T; > 2. For t €
{j+1,...,1},and T € Z!, we compute Fjl(t, T) using the following recursive formula.

0o ify i >t—j+1lor
(U tb < djpand t <1)or (T Tib; # djy and t = I);
mMin;_o,_mze { Fji (t = 1,7 =€) + pi (b;) + he (TTb —djy) }
otherwise.

Fy(t,T) =

For given t and T, Pﬂ(t, T) can be computed in O(m) time. As; <nfori=1,...,m,
we have O(n™) possible T vectors. For a given interval [j, [], the function Fj; can be eval-
uated in O(mn™*1) time.

Lett € Z and ™ € ZT’l. If 7; times b;, for i = 1,...,m, units are produced in
dy— Y ubi— Y b

b

m

periods jup tot — 1 and 7r; times b;, fori =1,...,m —1, J times b,

units are produced in periods ¢ + 1 to /, then the fractional production amount pj; (7, 77)
that is produced in period ¢ is equal to

m m-l dy— Y, b — Y mb;
o jl i=1 tivi i=1 iVi
p]'[ (T,TL') —d]']—izzll’ibi— E ﬂibi— \‘ bm J bm

i=1

Finally, we define Gj (¢, 7, 7) to be the minimum cost for periods j up to ¢ during
which 7; times b; units, fori = 1,...,m, and one time a fractional production is done (in
A=Y wbi— Y b

b

m

any period) given that 77; times b;, fori = 1,...,m —1,and times b,

units are produced after period ¢. Because of the page limit, we do not give the necessary
formulas for calculating this function.

For given t, T and 7, Gjl (t,T, ) can be computed in O(m) time. Therefore, Gﬂ can be
evaluated in O(mn*") time.
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We can find the minimum cost for the interval [j, 1] b

il :TG{I(I)HIL}'”{ l lT ]l lTeO)}

Once pjj, for 1 < j < I < n, are computed we can solve the problem by solving a
shortest path problem in a graph we will construct. As p; can be computed in O(mn*m)
time and there are O(n?) intervals, we require O(mn*"*2) time to construct the graph.
This dominates the time to compute a shortest path. Therefore, the overall complexity is
O(mn2m+2).

We develop this algorithm for the CLSP with piecewise concave costs and constant
capacities. The dynamic programming algorithm has an important implication. By this
algorithm, we show that the CLSP with piecewise concave costs can be solved in poly-
nomial time when the number of breakpoints of the cost function (m) is fixed. Moreover,
with small modifications we can use the algorithm for solving different cases of the prob-
lem. For example, we can solve the problem when backordering is allowed without
changing the computational complexity. Moreover, if there is no production capacity for
any period ie, b, = C; = oo, for all t, we adapt the DP so shat the overall complexity
isO((m—1)n 2er1) Atamturk and Hochbaum [5] consider a special case of this problem
in which they assume m = 2. They solve the problem in O(7°) time, For m = 2, our algo-
rithm also solves the problem in O(n°) time. Lastly, if we consider the problem studied
by Hellion et al. [6], our algorithm also solves the problem in the same time order with
their algorithm.

We implement the proposed DP algortihm in Java. In order to compare the algo-
rithm’s performance we first assume that the production cost function is piecewise linear
and we implement the incremental formulation of CLSP with piecewise linear cost func-
tions in XPressMP. In Table 1, a sample of our computational study can be seen. We are
currently investigating how different MIP formulations, such as incremental, multiple
choice or convex combination models, might affect the computation times.
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n m DP MIP
100 2 0.062 0.078
20 2 2.215 3.729
20 2 2.153 4.04
30 2 29.25 217.194
30 2 28.626 197.103
48 2 680.848 999.811*
48 2 674114 999.858*

* Terminated due to 1000 sec time limit

Table 1: Comparison of the DP with an MIP formulation
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Abstract

Despite the significant attention they have drawn, big bucket lotsizing problems remain noto-
riously difficult to solve. We discuss results indicating that what make these problems difficult
are the embedded single-machine, single-level, multi-period submodels. We therefore consider
the simplest such submodel, a multi-item, two-period capacitated model. We propose a method-
ology that would approximate the closure of this submodel by generating violated inequalities
using a distance function. We present computational results that indicate how useful knowing
the structure of these two-period models could be in solving more complicated problems.

1 Introduction

In spite of extensive research, focus of the mathematical programming community has
been mainly on single-item problems, with some of the single-item problem results ex-
tended to multi-item problems. There are some recent studies providing insight into
some versions of capacitated multi-item problems, and [5, 6] are rare studies investi-
gating the big bucket problems. Previous computational results in the literature have
indicated high duality gaps for big bucket lotsizing problems, even though some strate-
gies can be partially efficient for generating lower bounds and feasible solutions. The
study accomplished in [1] has provided us important feedback on why big bucket lot-
sizing problems are still very hard to solve. More specifically, better approximations for
the convex hull of the single-machine, single-level, multi-period capacitated problems
are necessary to accomplish better results on general lotsizing problems. In this paper,
we investigate the potentials of the simplest such model, a two-period model. In order
to accomplish this, we propose a methodology that does not require reformulating the
problems a priori or predefine valid inequalities. It is important to remark that we are
not aware of strong inequalities or reformulations for these subproblems. Therefore, we
also have the motivation to use the proposed framework to achieve these characteristics.

In a recent study, [3] approaches the single-item capacitated lot-sizing problem by
formulating it as a bottleneck flow network problem, allowing the authors to define facet-
defining inequalities. The extension of this specific formulation to multi-level structure
is a motivation for the simple formulation we use in our framework. Another motivation
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for the proposed framework is that two-period problems are computationally very easy
to solve, as experienced in previous relax-and-fix based heuristics.

In the last decade, there have been a big body of research and promising results on
the “closures” of general cutting planes and some particular polyhedrons, with even par-
tially achieving elementary closures helping to close duality gaps efficiently. We can
define “closure” as the smallest possible polyhedron that includes all the valid inequal-
ities of a type. In our context, we generate valid inequalities for the convex hulls of two
period subproblems and hence approximate their closures, and therefore, we use the ter-
minology “Two-period Convex Hull Closure”. More specifically, our approach cuts off
fractional points of a general lotsizing problem using the characteristics of the convex
hull of a two-period submodel, where column generation is used to generate the extreme
points of these convex hulls, and Farkas” Lemma provides the basis for validity of these
cutting planes. To our knowledge, this is a new methodology in the lotsizing literature,
although similar approaches can be found in the integer programming literature, e.g. the
“local cuts” idea of [2] mapping a fractional solution of TSP into a lower dimension and
searching a cut separating it.

2 The Basic Idea

We define the feasible region of the two-period relaxation, referred to as X2FL:

xl, < My, i=[1,.,NI,t' =1,2 1)
X, <dyl + i=[,..,NI,t' =1,2 @)
X+ < dyh 4+ dhyh + 5 i=11,..,NI 3)
X+ xh <d+5 i=,..,NI (4)
NI o _

Y (x4 ST'yy) < Cy t'=1,2 (5)
i=1

x,5 >0,y € {0,1}>N! (6)

The variables x} and v} represent the production and the binary setup decision of
item 7 in period t, and s’ represents the inventory at the end of two periods. The vector
M consists of sufficiently big numbers, and C and ST indicate capacity and setup times
for various items and time periods. On the other hand, the parameter d represents the
remaining cumulative demand, e.g., cﬁl is the demand for i from period 1 onwards.

This submodel is a multi-item extension of the bottleneck flow formulation of [3]
(when NT = 2) and it also extends the single-period study of [5, 6]. Since we consider
only one stock variable per item, a time subscript ¢ is not necessary for these variables.
Note that the constraints (2) and (3) are simply the (¢, S) inequalities of [4].

Given a fractional solution (X, 7,5), one can define the infinity-norm distance (L) of
this solution to conv(X?'t) using the extreme points of X*’L. As the number of extreme
points can grow exponentially, column generation is used to generate the favorable ex-
treme points of conv(X?'t). Using these favorable extreme points, we check whether a
given fractional solution can be written as a convex combination or not. If not, we can
generate a valid inequality using Farkas” Lemma that cuts off the fractional point. Note
that this local cut is in the convex hull closure of this two-period relaxation. Finally, note
that alternative distance functions such as £ or even £, can be used in the framework,
and this important aspect will be discussed in detail in the presentation, including the
strength of the cuts generated.
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One remark is that this framework is not based on predefining a family of valid in-
equalities, which is one of its advantages. An inequality will be generated in all cases
when the fractional solution is not in the convex hull of a two-period problem. This is
also the justification for our expectation that this framework will provide an adequate
approximation of the bottleneck of the general lotsizing problems, as this is focused on
the capacitated single-machine problems with an approach providing exact solutions for
the subproblems. Computational results considering two-period as well as realistic-size
problem instances will be discussed in detail in the presentation.
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Abstract

We consider several variants of the two-level lot-sizing problem with one product/item at the
upper level facing dependent demand, and multiple products/items/clients at the lower level,
facing independent demand. We first show that under a natural cost assumption, it is sufficient to
optimize over a stock-dominant relaxation. We further study the polyhedral structure of a strong
relaxation of this problem involving only initial inventory variables. We consider several variants:
uncapacitated at both levels with or without start-up costs, uncapacitated at the upper level and
cosntant capacity at the lower level, constant capacity at both levels. We finally demonstrate how
the strong formulations described improve our ability to solve instances with up to several dozens
of periods and a few hundred products.

We study two-level multi-item multi-period planning problems on a finite horizon with
time-dependent demand. In this context, multi-level means that there is dependent de-
mand in the system: some goods are consumed by the production of others. We focus on
problems with one product/item at the upper-level facing dependent demand, and mul-
tiple products/items/clients at the lower level, facing independent demand. The two
levels can represent different stages of a production process executed at a single location
(e.g making and packing, bulk and end products, component and assembly), but also
represent production and transportation to client area(s), in which case it is known as the
one warehouse, multiple retailer (OWMR) problem. One key aspect of the models that
we consider is that holding inventory is possible at both levels. We study various poly-
hedra related to such problems. In particular, we consider the uncapacitated problem,
the problem with start-up cost at both levels, and some capacited variants.

For single-item lot-sizing, many polyhedral results have been obtained, for the basic
uncapacitated model [2, 1]Jand for extensions including backlogging, [4, 3], start-ups [8],
constant capacity [5], increasing capacities [7], sales, or a combination of these [10]. These
results can be classified into two categories: linear description of the convex hull of so-
lutions in the original variable space, usually of exponential size and accompanied by an
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efficient separation algorithm on the one hand, and tight extended formulation involv-
ing additional variables, usually of polynomial size on the other hand. For the latter, Van
Vyve and Wolsey [9] show how to create and manage a trade-off between strength and
size of these extended formulations.

To the best of our knowledge, no polyhedral work has been done for multi-level lot-
sizing models involving start-ups, capacities, or multiple items at the lower level (beyond
single-item relaxations based on the echelon stock concept). The present work partially
fills this gap. Following Pochet and Wolsey [6], we consider stock-dominant relaxations
of these multi-level problems that we prove are sufficient to solve the problem under
specific cost assumptions.

We first describe the capacitated two-level lot-sizing model 2LS, its stock-dominant
relaxation 2WW and the closely related subproblem 2DLS whose polyhedral structure
we study in order to obtain a good formulation for 2WW. We prove that solving 2WW
solves 2LS under a natural cost assumption.

Next we consider several variants of 2DLS and describe tight formulations, both ex-
tended and in the original variable space. We first consider the basic uncapacitated 2DLS-
(U,U) model and give a polynomial-size LP extended formulation, together with its pro-
jection onto the original variable space. We then, sometimes partially, extend these results
in several directions. The main result is that the following formulation

5= 9" (1)
iel
¢’ +5p = Zd;@; iel )
n
so =Y. dio i€l 3)
=1
Cl > (51 iellel,n], 4)
G+ Y+ Vi 2 1 ielle[lLn),telol], (5)
Sy, >1 iclle(l,n], (6)
ZeR™, 5 cR™,y e R 7)
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so=Y_¢', )
iel
¢+ sh+ My, + Z Q]y] iel,le(l,n],tel01l], (10)
j=t+1
. Z . . .
s + Z Q' > dy iclle(ln], (11)
S0 € Rm“,y € {0, 13+ ¢  R™. (12)

The proof is by showing integrality of the associated polyhedron.

We also consider the model 2DLS-(U,U)-SC that includes start-ups and extend the
result obtained for 2DLS-(U,U). We also derive results for the case with constant capacity
limits on production of items at the lower level, and at both levels respectively. Finally we
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demonstrate how these strong formulations improve our ability to solve several variants
of two-level planning problems. We also indicate what are the best modelling optiions
for instances of very large sizes. We conclude by discussing some open problems.
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Abstract

We study the DLSP with sequence-dependent changeover costs. We formulate the problem as a
quadratic binary program and propose to compute a lower bound of its optimal solution value
by using a semidefinite relaxation of the problem. The results of our computational experiments
show that the proposed approach provides lower bounds of significantly improved quality as
compared with those provided by the best previously published linear relaxations.

1 Introduction

We study the multi-product single-resource discrete lot-sizing and scheduling problem
with sequence-dependent changeover costs or DLSPSD. As defined in [4], several key
assumptions are used in the DLSPSD to model the production planning problem:

- A set of products is to be produced on a single capacitated production resource.

- A finite time horizon subdivided into discrete periods is used to plan production.

- Demand for products is time-varying (i.e. dynamic) and deterministically known.

- At most one product can be produced per period and the facility processes either one
product at full capacity or is completely idle ("discrete” production policy).

- Costs to be minimized are the inventory holding costs and the sequence-dependent
changeover costs.

We first introduce a quadratic binary programming formulation for the DLSPSD.

Notation and decision variables

- p = 1...P: products (product p = 0 represents the idle state of the machine),

-t = 1...T: periods (period t = 0 represents the initial state of the system),

- Dys: demand for p in t expressed as a multiple of the production capacity,

- hp: inventory holding cost per unit per period for product p,

- Spq: cost of a changeover from product p to product g.

- ypt: decision variables, y,; = 1 if product p is assigned to period ¢, 0 otherwise.
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QBP formulation
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The objective function (1) corresponds to the minimization of the inventory holding and
changeover costs over the planning horizon. (2) are the demand satisfaction constraints.
Constraints (3) ensure that a single product is assigned to each period of the planning
horizon.

Previously published exact solution approaches to solve the DLSPSD are mostly based on
the linearization of the quadratic terms of the objective function through the introduction
of linearization variables (see e.g. [1]). The obtained MILP formulation can then be fur-
ther strengthened e.g. thanks to the use of an extended reformulation (see [3]). However,
even if substantial improvements of the lower bounds can be obtained by strengthening
the MILP formulation, there are still cases where the linear relaxation of the DLSPSD
is of rather weak quality. This is why we propose to compute lower bounds by using
a semidefinite relaxation of the problem. To the best of our knowledge, this is the first
attempt at explicitly using a QBP formulation to solve the DLSPSD and at using semidef-
inite programming to solve lot-sizing problems.

2 Semidefinite relaxation of the DLSPSD

We first carry out the reformulation of the DLSPSD (1)-(4) as a semidefinite program. This
is done mainly by relying on techniques discussed in the semidefinite programming lit-
erature for general (0-1) quadratic binary programs (see e.g. [5]). A key ingredient in this
step is the representation of the linear constraints of the original problem in the quadratic
space. Namely, a significantly better semidefinite relaxation can be obtained by apply-
ing a pretreatment to the linear (equality or inequality) constraints before reformulating
them in the SDP (see e.g. [5] and [6]).

The obtained semidefinite program cannot be solved as such due to the presence of some
nonconvex constraints in its formulation. We thus have to carry out a relaxation of the
problem: we enlarge the feasible set to make it convex by dropping the nonconvex con-
straints. This leads to a polynomially solvable convex optimization problem but as some
constraints of the original problem have been removed, the corresponding optimal solu-
tion value will only provide a lower bound on the integer optimal solution value Zp;sp.
This initial semidefinite relaxation of DLSPSD can finally be strengthened thanks to the
use of several families of valid inequalities, either developped specifically for the prob-
lem under study (see [7]) or proposed to strengthen semidefinite relaxations of general
quadratic binary programs (see e.g. [5]). The number of these valid inequalities grows
very fast with the problem size so that it is not possible to include all of them directly in
the semidefinite programming formulation. This is why we devised a standard cutting-
plane generation algorithm to include them as needed in the formulation.
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Set 1 2 3 4 5 6 7 8 9 10
Instance p 4 6 4 6 4 4 6 4 6 4
size T 15 15 20 20 25 15 15 20 20 25
LP Gap (%) |19 03 13 21 14 112 42 72 75 72
relaxation Time(s) |01 01 02 02 02|01 01 01 02 02
SDP Gap(%) |00 00 00 01 01| 00 00 00 00 02
relaxation Time(s) | 42 86 151 644 713 | 95 145 388 852 1196

Table 1: Computational results

3 Computational results

We randomly generated 10 sets of 10 small instances involving 4 to 6 products, 15 to
25 periods, with a production capacity utilization of 95%. The instances mainly differ
with respect to the structure of the changeover cost matrix S. Instances of sets 1-5 have
a general cost structure whereas instances of sets 6-10 correspond to the frequently en-
countered case where products can be grouped into product families.

For each instance, we compute:

- the optimal integer solution value Z;),.

- the lower bound Z,,; provided by the linear reformulation of (1)-(4) discussed in [1].
We then use the extended formulation of the single-product DLSP proposed in [3] to
strengthen its continuous relaxation.

- the lower bound Zg;,,; provided by the strengthened SDP relaxation of the QBP formu-
lation proposed in section 2.

Zip and Zeyt are computed using CPLEX 12.1 solver, Zg;,1 is computed thanks to the
semidefinite programming solver DSDP (see [2]). All tests were run on an Intel Core i5
(2,7 GHz) with 4 Go of RAM, running under Windows 7.

Table 1 displays the computational results: we provide the average gap between the
lower bounds (Zeyt or Zsgp1) and Z;, as well as the average computation time needed
to compute these lower bounds.

Results from table 1 show that the lower bounds provided by the proposed semidefinite
relaxation of the DLSPSD are of significantly improved quality as compared with the
ones provided by the strongest linear relaxations known for the problem. Namely, for
instances with a general changeover cost structure, the average gap over the 50 instances
is decreased from 1.4% with the extended linear reformulation to 0.04% with the semidef-
inite relaxation. The improvement is more significant for instances with a product family
cost structure as the average gap over the 50 corresponding instances is decreased from
7.5% to 0.04%. However, the computation time needed to obtain the semidefinite lower
bounds remains high. This is mainly due to the fact that a series of semidefinite programs
of increasing size has to be solved by the cutting-plane generation algorithm. This could
be improved to some extent thanks to the use of a warm-start strategy within the cutting-
plane generation. However, as explained in [5], this would be difficult to implement
with interior-point algorithms such as the one embedded in solver DSDP. It might thus
be worth investigating the use of other algorithms such as the spectral bundle method to
solve the semidefinite programs involved in the proposed approach.
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1 Introduction

Lot-sizing and scheduling problems are usually studied separately, by viewing lot sizes
as inputs/restrictions of the scheduling problem. There exist in the literature some prob-
lems which consider sequencing decisions in lot sizing models. These problems are the
Discrete Lot-sizing and Scheduling Problem (DLSP), the Continuous Setup Lot-sizing Prob-
lem (CSLP), the Proportional Lot-sizing and Scheduling Problem (PLSP) and the General Lot-
sizing and Scheduling Problem (GLSP) (see [4]). The first three problems consider small
time buckets while the last problem considers big time buckets. The major drawback of
these problems is that, even if solutions are feasible, the capacity is not efficiently used
because of the limitations on the number of setups per period and the all-or-nothing as-
sumption. In addition, these restrictions increase the number of discrete variables, thus
making the problem very difficult to solve. This is why these problems usually cover sim-
ple manufacturing systems (with one or two parallel resources and few items). Another
well-known problem dealing with capacity considerations is the Capacitated Lot-Sizing
Problem (CLSP), where the planning horizon consists of big time buckets and there are
not limitations on the number of setups per period or on how the the available capac-
ity is used. Nevertheless, sequencing constraints are not taken into account, and thus
the resulting production plans may be unfeasible at the scheduling level, when studying
manufacturing systems with more than one resource. To avoid this unfeasibility prob-
lem and to efficiently use capacity, we propose an integrated approach for multi-level
lot-sizing problems. Our mathematical model is a generalization of the Multi-Level Capac-
itated Lot-Sizing Problem (MLCLSP), using detailed capacity constraints and the echelon
stock formulation described in [2]. This work is an extension of the integrated approach
for single-level problems presented in [5], which is an improved version of the original
approach proposed in [8] and [1]. A previous integrated approach was proposed in [3],
where the lot sizing and scheduling problems are solved iteratively and separately, so
that the output of one problem is the input for the other one.
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2 Integrated approach

The proposed approach considers a multi-item lot-sizing mathematical model, as in the
MLCLSP, but in which aggregate capacity constraints are replaced by detailed capac-
ity constraints, allowing multi-resource problems to be solved by considering typical
scheduling restrictions, like precedence between operations of the same job and prece-
dence between operations sharing the same resource. Multi-level considerations are
modeled by using flow balance and Bill-Of-Material (BOM) constraints in an echelon
stock formulation. The objective is to minimize the sum of manufacturing, setup and
echelon stock costs. The model allows determining an optimal production plan for a
fixed sequence of operations. Then, a sequence improvement method is applied and a
new sequence is fixed and used to determine a new production plan.

The scheduling problem is modeled with a disjunctive graph, where nodes corre-
spond to operations and arcs represent precedence constraints between operations. Arcs
linking operations of a same job always have the same orientation (respecting the rout-
ing of items), but the orientation of arcs linking operations on the routing of resources
has to be decided. Each path in the resulting conjunctive graph corresponds to a capacity
constraint. The last operation of each path must be finished before its due date in order
to meet the corresponding deadline, i.e. the end of the associated period in the planning
horizon.

2.1 Multi-level lot-sizing problem with a fixed sequence of operations

Even for a fixed sequence of operations, the number of paths in the conjunctive graph is
huge. Therefore, in order to make the problem solvable and to use the Wagner-Within
property, Lagrangian relaxation using subgradient multipliers is applied, relaxing the ca-
pacity and BOM constraints. Then, solving the relaxed problem corresponds to solving
a set of uncapacitated single-item lot-sizing problems (USILSP), using the algorithm pro-
posed in [7]. As there are too many capacity constraints, explicitly managing all of them
is impossible. Thus, only the most violated capacity constraint is relaxed at each iteration
of the Lagrangian relaxation algorithm, by only updating the Lagrangian multiplier asso-
ciated to the most critical path. This method provides at each iteration a lower bound to
the original multi-level multi-item lot-sizing problem with detailed capacity constraints
and a fixed sequence, which corresponds to the total cost of a production plan which is
in most cases unfeasible. This is why a smoothing procedure is implemented, that moves
quantities of some items from some periods to others, in order to satisfy the relaxed con-
straints while trying to avoid increasing too much the overall production plan cost. If a
feasible plan is obtained, its cost is an upper bound of the integrated problem. As moving
quantities to satisfy capacity constraints may increase the violation of BOM constraints
and vice versa, one of the challenges of the smoothing procedure is to balance between
decisions that improve the satisfaction of the two types of constraints. An extended de-
scription of the solution approach for a fixed sequence can be found in [6].

2.2 Sequence improvement method

Solving the lot-sizing problem for a fixed sequence allows generating a possibly optimal
feasible plan for that sequence. Nevertheless, this plan could be improved by modifying
the sequence. To search for an optimal integrated plan, i.e. with minimum total cost and
also the best possible use of the capacity, our approach integrates a sequence improve-
ment method using a Tabu search heuristic. The idea is to search for a new conjunctive
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graph, according to the information of the Lagrangian relaxation on the most violated
paths. Moves are performed by swapping critical arcs in the original conjunctive graph,
and evaluated by applying the Lagrangian heuristic for the resulting conjunctive graphs.
The conjunctive graph, i.e. the sequence, providing the best feasible plan is selected, and
the swapped arc is added in the Tabu list.

3 Numerical results

Currently, numerical experiments have only been performed for the case with a fixed
sequence. Instances for a job-shop manufacturing system with 6 (resp. 10) jobs, 6 (resp.
10) operations per job and 6 (resp. 10) resources have been solved, varying the number of
periods (5, 10 and 20) of the planning horizon and the capacity per period. Results were
compared with optimal solutions provided by the standard solver IBM ILOG CPLEX
(version 12.3). The quality of the solutions of our approach is good (with a maximum gap
of 1.95% over 13 instances) and the computational times are shorter than those of CPLEX.
Numerical results for the integrated multi-level lot-sizing and scheduling problem will
be presented in the workshop.

4 Conclusions

An integrated approach for solving multi-level lot-sizing problems with detailed schedul-
ing constraints was introduced. First numerical results allow validating the method for
the case with a fixed sequence, and additional tests are being conducted to show the ef-
fectiveness of the proposed integrated approach (with sequence improvements). More
complex instances will also be considered. Our future research aims at including in the
model practical constraints encountered in a supply chain context.
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Abstract

Several production environments require simultaneous planing of sizing and scheduling of pro-
duction lots. Integration of these problems has received an increased attention from the research
community due to its inherit applicability to real world problems. A two-dimensional classifica-
tion framework is proposed to survey and classify the main modeling approaches to integrate se-
quencing decisions in discrete time lotsizing models. Computational experiments are conducted
to assess the models performance, in terms of running times and upper bounds, when solving
real-word size instances. We also present a new commodity flow based formulation for the prob-
lem.

1 Introduction

In many production environments, switching between production runs of two different
products triggers operations, such as machine adjustments and cleansing procedures.
These setup operations, which are dependent on the sequence, consume scarce produc-
tion time and may cause costs due to, for example, losses in raw materials or intermediate
products. Consequently, the production sequence must be explicitly embedded in the lot
definition. Lot sizing determines the level of production to satisfy deterministic product
demand over the planning horizon. Sequencing establishes the order in which lots are
executed within a time period, accounting for the sequence-dependent setup times and
costs. Integration of these two problems enables the creation of better production plans
than those obtained by solving the two problems hierarchically. Production plans are cre-
ated with the objective of minimizing the overall costs consisting mainly of holding and
setup, while satisfying the available capacity in each time period from which the expen-
diture in setup times is deducted. Examples of industries where these decisions must be
taken concurrently are chemicals, drugs and pharmaceuticals, pulp and paper, textiles,
foundries, glass container, and food and beverage, among many others.
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The field of lotsizing and scheduling has received an increased attention from the re-
search community due to its inherit applicability to real world problems as shown in the
reviews by [6, 16, 9] and, recently, by the special issue [4]. Researchers have been incor-
porating additional scheduling decisions and features into lotsizing models to improve
their realism and potential applicability. However, none of the aforementioned reviews
focus on modeling techniques to integrate sequencing decisions into lotsizing models.
Among the most important features when considering sequencing decisions in lotsizing
models is to capture multiple production runs of the same product within a time period.
Usually, setups obey the triangular inequality with respect to both the setup time and
costs, i.e. it is more efficient to change directly between two products than via a third
product, hence at most one setup for each product per time period is performed. Nev-
ertheless, in some industries, contamination occurs when changing from one product to
another implying additional cleansing operations. If a “‘cleansing’ or shortcut product can
absorb contamination while being produced and thus replacing the cleansing operations,
non-triangular setups appear. Therefore, models allowing for more than one production
run of each product per time period potentially reduce setup times and costs.

Our contributions are as follows. We present a new classification framework to clas-
sify modeling approaches to lotsizing and scheduling with sequencing decisions. The
new framework is used to survey and classify the different modeling approaches present
in the literature. A new commodity flow based formulation to integrate sequencing deci-
sions in discrete time lotsizing models is presented. Extensive computational results will
allow a full evaluation of the pro and cons of the different modeling techniques.

2 Modeling sequence-dependent setups

Many models in the field of lotsizing and scheduling (LS) are expressed in the form of
mixed integer programming (MIP) formulations. The advances observed in mathemat-
ical programming in the last years combined with the increase in computational power
(hardware) and in the quality of general purpose mixed-integer programming commer-
cial solvers (software) allowed standard lotsizing problems to be solved efficiently using
exact methods. However, the development of tighter mathematical formulations is still
mandatory to reduce the running times needed to solve real-world LS instances.

In this work we first survey and classify discrete time models for LS with sequencing
decisions in two main dimensions: time resolution and scheduling technique (see Figure
1).

Most mathematical formulations for LS assume a planning horizon divided into a
finite number of time buckets. Classifying LS models considering the resolution of the
planning horizon has been commonly accepted in the community. According to this
classification there are two main types of models: large and small bucket.

In large bucket models the planning horizon is partitioned into a small number of
time periods, commonly representing a week or month. In each time period these models
allow more than one setup. On the other hand, in small bucket models the planning hori-
zon is divided into a large number of time periods, usually referred as micro-periods (e.g.
days, hours or shifts). The assumption in these models is that at most one setup is per-
formed per micro-period. The number of micro-periods may account for the maximum
number of setup operations allowed in each time period. While in small bucket models
the production sequence comes for free directly from the assumption of allowing at most
one setup per micro-period, in large bucket models the use of decision variables simi-
lar to those of routing problem formulations requires sub-tour elimination constraints to

48



Guimaries et al.

correctly represent production sequences. The sub-tour elimination constraints are dra-
matically harder when allowing for multiple production runs in the same period, often
resulting in an exponential number of constraints. Hence, large bucket models can be
further divided into models allowing a single production run for each product per time
period and those which consider multiple production runs.

The second dimension used for classification regards the technique used to capture se-
quencing decisions, which can be divided in two main approaches: product and sequence
oriented formulations. In product oriented formulations sequences are defined explicitly
by an MIP model, while in sequence oriented formulations the MIP model prescribes
for each period or micro-period a sequence from a set of pre-determined sequences. Se-
quence oriented formulations for LS are easier to model and solve, but yield a major
drawback coming from the fact that the number of decision variables grows exponen-
tially with the number of products. On the other hand, product oriented formulations
may have an exponential number of constraints.

Lotsizing and

Scheduling
|
| ]
Product oriented Sequence oriented
formulations formulations
| |
| ] | ]
Large bucket Small bucket Large bucket Small bucket
| | Single production | | Single production
run run
Multiple | | Multiple
production runs production runs

Figure 1: Proposed classification framework

Besides reviewing the models present in the literature we also introduce a new poly-
nomial sized model formulation to LS which uses commodity flow based constraints to
eliminate sub-tours and allows for multiple production runs of the same product.

The classification and the models reviewed are presented in Table 1.

The performance of the models reviewed in the proposed two-dimensional classifi-
cation framework and of the new formulation is assessed by using a mixed-integer pro-
gramming commercial solver. The goal is to test the capability of solving instances of
real-world size. In addition, as many solution procedures for the LS combine heuris-
tics with exact methods, we also assess their potential to be used in hybrid methods.
Progressive interval heuristics are MIP-based heuristics which solve a series of partially
relaxed MIP subproblems to construct an initial feasible solution to the original MIP and
are widely used in the LS literature. Similarly, the ‘exchange’ (fix-and-optimize) improve-
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ment heuristic decomposes the set of integer variables in the original MIP to create MIP
subproblems to re-optimize. The efficiency of these heuristics strongly depends on the
efficient MIP formulations.

Table 1: Classification of lotsizing and scheduling models with sequencing decisions

Scheduling Technique
Product Oriented Formulations Sequence Oriented Formulations
) Smith-Daniels and Haase and Kimms
Time dependent Ritzman [14] subproblems - TSP [8]
Single
Production Miller-Tucker-Zemlin based Haase [7]
c Run
<) —_— P
-8 Large MAIHEI‘ Tucker-Zemlin based Almada-Lobo et al. [2]
= with alpha sub-tours
= | Bucket
b5 Exponential sized Almada-Lobo et al. [2]
24
Q 1w Belvaux and Wolsey subproblems - Prize collect- Guimaries et al. [1]
é Exponential sized 3] ing ATSP
Ic\l/‘lllélttig)rlleRulz:- Exponential sized Menezes et al. [11]
Multi-commodity flow Sarin et al. [13]
Single-commodity flow this work
Pre-definied maximum num- Meyr [12] Solit Sequences Kang et al. [10]
ber of setups (GLSP) 4 (g q
Small Bucket Network flow reformulation Wolsey [15]
of changeovers
Pre-definied maximum num- Clark and Clark [5]
ber of setups

During the computational experiments we analyze the trade-offs present in these
different modeling approaches. First, we study the correlation between the additional
complexity introduced by allowing multiple production runs of the same product and
the solution quality obtained when a time limit is imposed to the solution. Second, we
compare the use of exponential number of constraints and variables against the use of
compact model formulations.
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Abstract

We consider the uncapacitated lot sizing problem with batch delivery. We study the complexity of
this problem in the case of time-dependent batch sizes. We prove four special cases to be NP-hard
and two other to be polynomially solvable. As a consequence of our results, if any one of the cost
parameters is allowed to be time-dependent, the problem becomes NP-hard.

1 Introduction

We consider the single item uncapacitated lot-sizing problem where the ordered quanti-
ties are delivered by batch (i.e. truck or container) from an external supplier. Each batch
ordered incurs a fixed cost, independently of the number of units actually in the batch.
The same problem can be seen as a single machine with an unlimited capacity, produc-
ing a single item per batches of certain size. We call this problem UBLS for uncapacitated
batch lot-sizing. As in the classical lot sizing problem, a setup cost f; is paid for a period
of positive production, a procurement cost p; per unit ordered, and a holding cost h; per
unit of product in stock between period t and t + 1. Demands d are known over T periods
and are to be satisfied without backlogging.

For the batch delivery, we adopt an FTL (Full Truck Load) cost structure, where, in
addition to the classical cost structure, a fixed cost k; is paid for each batch used in period
t. This cost structure is also referred to as stepwise costs in the literature. Notice that our
model allows to order incomplete batches. We denote by B; the size of the batch in period
t. The overall procurement cost g;(x) for an amount x of products ordered in period t is
thus given by :

q(0) =0 and q¢(x) = fi + pex + [x/Bi ke forx >0

A formulation of the problem is given below, where x; represents the amount of products
ordered in period t and s; the stock level at the end of period t. Without loss of generality
we assume no initial inventory, that is sp = 0. Notice that this formulation is non-linear
due to the procurement cost g;(x).

min Y/ (q:(xe) + Pesy)
(UBLS) s.t. St71+xt = dt"—St Vt = 1,...,T
Xt,StGIR+ vVi=1,...,T
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For ease of the reading, in the remaining the notation (f;/k:/h:/ p:) is used to desig-
nate the assumptions adopted on the cost parameters (setup cost/fixed cost per batch/unit
holding cost/unit procurement cost). The field for a parameter a will take either the value
"—"if a is null, "’ if it is assumed stationary and finally "« if it is allowed to be time-
dependent. For example, the rightmost problem in Figure 1 is designated by (f;/k/—/—)
in our notation, corresponding to UBLS instances with time-dependent setup costs, sta-
tionary fixed cost per batch and no unit procurement nor holding costs.

B

A
N lk

~ €—

k K,
h=0 h=0 h, h=0  h=0 h=0
p=0 o) p=0 p=0 p=0 p=0

Polynomial ~ NP-hard NP-hard NP-hard Polynomial NP-hard*

* Polynomial with divisible batch size assumption.

Figure 1: Complexity of different special cases of UBLS.

The UBLS problem is well-studied in the literature, but as far as we know, all the
papers restrict to the case of a stationary batch size. To the best of our knewledge, the
first study considering a stepwise cost (but without setup cost) is due to Lippman [4].
The author proposes an O(T°) time algorithm for UBLS with (—/k;/h;/p¢) and with-
out backlogging. For the same problem, Pochet and Wolsey [5] improve this result to
an (9(T2 min(T, B)) time algorithm. Lee [2] studies a similar structure, with a non null
setup cost but assuming stationary cost parameters: (f/k/h/p) and proposes an O(T%)
time algorithm. Li et al. [3] consider the more general problem both with time-dependent
cost parameters (f;/k:/h:/p:) and with backlogging, and propose an O(T°) time algo-
rithm. The capacitated lot-sizing problem with batch production has also been studied
in the literature. See two recent studies, van Vyve [6] and Akbalik and Rapine [1] for the
polynomial time algorithms proposed.

As a conclusion, when restricted to stationary batch sizes, stepwise costs appear to do
not alter the complexity status of the lot-sizing problem. That is, both the uncapacitated
and capacitated lot-sizing problems remain polynomial, even when backlog is allowed.
In contrast, we establish that UBLS with time-dependent batch sizes is N P-hard, even
if all but one cost parameters are stationary. Figure 1 gives a synthetic representation of
our results.

General case : (f;/k;/hi/ p:)

For the most general case of UBLS with all cost parameters being time-dependent, to our
knowledge no general dominance properties exist in the literature, but a general pseudo-
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polynomial time dynamic programming algorithm can be adapted to solve it. Note that
UBLS can be solved in polynomial time if the fixed cost per batch is null (k; = 0), all
other cost parameters remaining time-dependent. In this case UBLS is equivalent to the
classical uncapacitated lot sizing problem.

Case (—/ki/ — /—)

We show that UBLS is V'P-hard when both fixed cost per batch and batch sizes are time-
dependent, even with no setup cost, no unit procurement cost and no unit holding cost.
The reduction is immediate from the UNBOUNDED KNAPSACK PROBLEM.

Cases (—/k/p;/—) and (—/k/ — /h;)

UBLS with time-dependent unit procurement cost p; and time-dependent batch size is
shown to be N'P-hard with all other cost parameters stationary. It remains NP-hard even
if the setup and the holding costs are null. We made the reduction from the MONEY
CHANGE PROBLEM. Using the classical result that any instance of the lot-sizing problem
can be transformed into an equivalent instance with no procurement costs and modified
unit holding costs, we can also show the NP-hardness of the second case with time-
dependent unit holding cost £;.

Case (—/k/ —/—)

The only cost is a stationary fixed cost k per batch. It is immediate to see that an optimal
policy produces only full batches. A greedy approach selecting at each step the largest
batch size period solves the problem in O(T) time.

Case (fi/k/ — /—)

We consider the setup costs f as the only time-dependent cost parameters. This means
that once the setup paid, any batch in any period has the same cost k. Although this prob-
lem seems simple, it happens to be NP-hard. A more efficient pseudo-polynomial time
algorithm is given for this case, in O(T Y, B;). We also show that the problem becomes
polynomially solvable for divisible batch sizes, in O(T?log T) time.

Case (f/k/ —/—)

We finally consider the case where only the batch sizes are time-dependent and all the
cost parameters are stationary. We restrict our attention to a null unit holding cost, that
is h = 0. We show that this case can be solved in time O(T?).
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Abstract

We study lot-sizing problems with batches and a minimum order quantity. Two variants are
considered: with and without a capacity constraint on the number of batches per period. We
develop dynamic programs for both cases and see that these can be simplified significantly if the
costs have a special structure that is similar to Wagner-Whitin (non-speculative) costs.

1 Introduction

Often, production takes place in several runs (batches) of a certain (maximum) size.
Batches can also have a minimum size, for instance because of technical restrictions on a
machine or because of supplier restrictions. This problem is also related to carbon emis-
sion reduction. Today, just-in-time production is a very popular production strategy.
However, it often leads to carbon emission levels that are far from optimal, because of
its frequent less-than-truckload shipments and/or frequent change-overs on machines.
By imposing a minimum order quantity in each period, we prevent products from being
transported by almost empty vehicles or machines from producing only very few units
of a product per batch.

There may also be a capacity constraint on the total number of batches that may be
produced within a period. We consider both this capacitated variant and an uncapaci-
tated variant.

[1] get lot-sizing with minimum batch sizes as a special case of their problem, which
extends work in [2]. Lot-sizing problems with batches but without a minimum order
quantity (i.e. with minimum order quantity zero) are studied by [3], in which also a good
overview of related literature can be found. Lot-sizing problems with a minimum order
quantity but without batches are studied by [4], [5] and [6].

2 Problem definition

Sets and parameters

Let T be the number of time periods and 7 = {1,...,T} the set of all periods. The
demand in period t is denoted by d;. Let K;(y;) denote the fixed costs per batch if y;
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batches are produced in period t. Ki(y:) := Y/, Ki and K! are the fixed costs of the
ith batch in period t, where Ki > Ki'Vi € IN,t € 7. That means that the fixed costs
may differ per batch, as long as they are decreasing in the number of batches. Let L
and F be the minimum (Lowest) and maximum (Full) production quantity in one batch,
respectively. We assume that these are constant over batches and time. The production
capacity in each period is denoted by C. We will assume that this production quantity is
also constant over time and a multiple of F, the maximum batch size, i.e. Gk € N : C =
kF.

Let p:(x;) and h;(I;) be the production, respectively holding cost function in period
t; they are assumed to be nonnegative functions and #;(I;) should be concave. p;(x;)
should be concave ‘within’ the interval of allowed production quantities for each batch.
That is, in each interval [Lk, Fk] for k < k and (F(k — 1), Fk] for k > k (k € IN), where
k :=max{k € N : kL > (k —1)F}.

Variables

Let x; be the production quantity in period ¢, for all t € 7. y; is the number of batches
produced in period t. I; is the inventory at the end of period t.

Model

min ) (Ki(ye) + pi(x:) + he (1)) (1)

teT
st. L1+ x=I+d; teT (2)
Ly;<x; < Fy; teT 3)
x<C teT (4)
Ip=0 5)
xt, ;>0 teT (6)
€N te T @)

In the uncapacitated variant, constraint (4) is omitted.

3 Algorithms

First, we derive several structural properties of an optimal solution. Based on these prop-
erties, we develop dynamic programming algorithms to solve the problems described
above.

2
We find that the uncapacitated variant can be solved in O <T5 (min { =, % }) ) -

O (T7 (FFfL)Z) This reduces to O (T4 (min{%, DiT})2> cC O <T6 (%)2) if the
production cost functions are fixed-plus-linear for each batch.

These running times are polynomial for general K, that is, if different batches have
‘completely different’ costs. If the function K; can be represented in a more compact way
(i.e. fully polynomial in the number of batches), then the dynamic program is pseudo-
polynomial in the input size. However, the algorithm still runs in polynomial time for a
fixed ratio of % This includes the case where L divides F (see [1]), because in that case
<2
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We study the following special case in more detail. Let the (production and holding)
costs be linear and non-speculative (Wagner-Whitin). Let the set-up costs K be equal
for each batch i within period t except for the first one (K}), which may be larger, i.e.,
Ki = KJVi,j > 2 and K} > K?, and let the set-up costs for batches 2 and higher be
non-increasing over time, i.e., K;' > K;Vt < 5,1 > 2. In this case, an optimal solution
has several additional properties, so that the complexity of the dynamic program for the
uncapacitated variant can be reduced to O (T4) . Moreover, in this special case, a dynamic
program can be constructed for the capacitated variant that runs in O (T°) time.
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Abstract

We observed a capacitated lot-sizing problem with linked lot-sizes, multiple machines and sequence-
dependent setup costs and times in a German food company. Setup operations are carried out by
parallel common setup operators. As a common setup operator can perform only one setup at
once, setup operations that are carried out by a certain operator must be synchronized to avoid
intersections. We present a model formulation as well as a heuristic solution approach for this
lot-sizing problem .

1 Introduction

Classical lot-sizing problems are primarily concerned with the question about when and
how much production of a certain product occurs considering setup and inventory hold-
ing costs. However, in a German factory producing food, as well as in several automotive
companies, we observed that sometimes specialized resources are required to carry out
setup operations. Since these resources are not able to handle more than one setup op-
eration at the same time, they have to be included into the decision problem to avoid
overlapping setups.

Models, which consider one common setup operator to synchronize setup operations,
were proposed by [1] and [2]. While [1] use a PLSP-based model formulation, [2] ex-
tend the Capacitated Lot Sizing Problem with linked lot-sizes, multiple machines and
sequence-dependent setups (CLSP-L-MM-SD) by [3].

Nevertheless, the consideration of only one common setup operator does not entirely
represent the planning situation in the mentioned factory, as there are more (parallel)
common setup operators. Therefore, we present a model that extends the CLSP-L-MM-
SD with one common setup operator (CLSP-L-MM-SD-CSR) by parallel common setup
operators (CLSP-L-MM-SD-PCSR) in order to get a precise mathematical formulation for
this practical case. Due to long computation times for the exact solution, we additionally
present a heuristic solution approach.

2 Problem description

In the considered practical case, products with dynamic demands are produced on mul-
tiple capacitated resources. Setup times and costs are sequence-dependent and the setup
state of a production resource can be carried over to the next periods. Each production
resource requires a setup operator which can handle only one production resource at a
time. Therefore, setup operations on all machines using a certain setup operator have
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to be coordinated. A production resource can use any available setup operator. Inter-
sections between setup operations are allowed, if they are carried out by different setup
operators. In detail, the underlying problem has the following characteristics:

e The planning horizon is divided into T periods.

e K products are produced.

e An external demand dj; for product k in period t must be met.
e Backlogging and overtime are not allowed.

e M production resources (machines) with period-specified capacities b} are avail-
able.

e Each product is uniquely assigned to a single machine (k € K,;,, m =1,2,..., M).

e A production lot is always associated with a setup operation performed by one of
the setup resources.

e Each setup operation is linked with sequence-dependent setup-times and -costs.

e Setup states are carried over to the next period, so production of a lot may run over
several consecutive periods.

e The objective is to minimize the sum of holding and setup costs.

3 Solution

We develop a model formulation using the big-bucket model CLSP-L-MM-SD-CSR by
[2] and the Simple Plant Location reformulation. The CLSP-L-MM-SD-PCSRspl is very
complex due to a high number of binary setup variables generated through sequence-
dependence and the coordination of setup operations. Thus, we also develop a Fix-and-
Optimize heuristic based on the idea of [4] with a resource/time-oriented decomposition
to solve large problem instances. The model formulations as well as the heuristic are
implemented with OPL and solved with CPLEX 12.2.

Problem instances comprise 50 products, 7 machines, 2 setup operators and 2 up to
12 periods. The average capacity utilization is 66%, at which it respectively amounts 90%
for machine 5 and 7. Table 1 shows the numerical results for the exact solution approach
on an Intel(R) Xeon(R), 2.67GHz Core Duo with 3.5 GB RAM and Windows 7 (32-bit). For
solving a problem instance a time limit of 3000 seconds was set.

Periods LB UB Gap Seconds

2 370.33 37033  0.00% 6

3 673.17  673.17 0.00% 78

4 74090 741.14 0.03 % 3000
5 780.09  780.65 0.07% 3000
6 881.69 89421 1.37% 3000
7 94493 102645 7.94% 3000
8 995.89 1190.34 16.34 % 3000

9-12 n/a n/a n/a memory overflow

Table 1: Numerical results for the CLSP-L-MM-SD-PCSRspl
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The results show that only small problem instances can be solved exactly with CPLEX,
whereas no feasible solution can be found for problems with 9 or more periods. For com-
parison reasons, Table 2 presents computation times for the Fix-and-Optimize heuristic
and deviations of the objective function values.

Periods | Seconds Deviation
2 16 -7.03%
3 38 -4.63%
4 210 -7.22%
5 217 -9.45%
6 415 -4.25%
7 608 -1.24%
8 744 +0.35%
9 869 n/a
10 1405 n/a
11 1590 n/a
12 1796 n/a

Table 2: Numerical results for the Fix-and-Optimize heuristic

To get comparable objective function values, the solution time of the Fix-and-Optimize
heuristic is the time limit for the exact solution. In Table 2, the resulting deviation of the
objective values can be seen. For the data sets with 7 and 8 periods, the given time limit
is not sufficient to get a feasible solution. Therefore, the first feasible solution is taken to
calculate the deviation.

In comparison to the exact solution approach, the heuristic is able to generate feasible
solutions even for large problems. Moreover, Table 2 shows that the heuristic can not
only generate a feasible solution in less time (problems with 7 or more periods) but also
provides a better objective function value for the considered problem with 8 periods.
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Abstract

In this paper, we present a new model formulation for a multi-level capacitated lot-sizing prob-
lem with returns and remanufacturing (MLCLSP-RM) in closed loop supply chains. After dis-
assembling returned goods, components can be remanufactured or newly produced. However,
the production times and costs of the returned components depend on the quality level. When-
ever a product or component is (re)ymanufactured the respective machine has to be set up, which
causes setup costs and /or setup times. The objective of the MLCLSP-RM is to determine a feasible
production schedule which minimizes the sum of setup, (re)ymanufacturing, disposing, holding,
and overtime costs. For the solution of the MLCLSP-RM, we adapt known MIP-based solution
approaches from literature, e.g., the Fix-and-Optimize heuristic by [2]. The analysis of first nu-
merical results shows the high solution quality of the proposed heuristics.

1 Introduction

In closed-loop supply chains, in addition to a forward-oriented supply chain from the
manufacturer to the customer, the reverse direction also has to be taken into account. In
this setting, customers return old and used products to the manufacturer at the product’s
end-of-use. The manufacturer can decide whether to remanufacture or dispose these re-
turned products. In case of remanufacturing, the product returns are firstly disassembled
and after remanufacturing these returned components are as good as new components.

2 Problem Statement and Model Formulation

We assume that K products are (re)manufactured in a multi-level production environ-
ment on a production system containing M different capacitated machines. Each re-
source can only manufacture or remanufacture products, but not both. (Re)manufact-
uring a product leads to setup times and costs in each period the respective machine is
set up for the respective product. The primary demand is known and has to be fulfilled
completely in the respective period. As the returned products are disassembled in ad-
vance, the quantities of returned components and the respective quality level are known
in each period. The (re)manufacturing time and costs per unit are given and independent
of the production quantity. However, they depend on the quality level of the returned
components. Furthermore, the returned components can be disposed causing disposing
costs. The holding costs are proportional to the inventory at the end of a period. The
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objective of the MLCLSP-RM is to generate a production plan which minimizes setup,
(re)ymanufacturing, disposing, holding, and overtime costs over the whole planning hori-

zon.

Table 1: Notation used for the MLCLSP-RM

Indices and index sets:

K set of products (k € {1,...,K})

L set of quality levels (I € {1,...,L})

M set of resources (m € {1,..., M})

T set of periods (t € {1,...,T})

Subsets:

Ko set of products requiring machine m

M’ set of resources for remanufacturing

M® set of resources for manufacturing

Ny set of immediate successors of product k

Parameters:

Ak number of units of product k required to produce one unit of product i
Cint available capacity of the resource m in period ¢

dcy disposing cost of returned product k with quality level /

hey holding cost of product k

hey, holding cost for returns of product k with quality level /

My big number for product k in period ¢

0Cp overtime cost at machine m

pck production cost of product k

PCiy remanufacturing cost of product k with quality level /

pdi primary demand of product k in period ¢

Tkl returns of product k with quality level / in period ¢

SCk setup cost of product k

sc}, setup cost of returned product k

tpk production time of product k

try remanufacturing time of product k with quality level !

tsk setup time of product k

tsy setup time of returned product k

Decision variables:

Dyy disposal quantity of product k with quality level / in period ¢
Ot amount of overtime at machine m in period t

Qkt production quantity of product k in period ¢

Qs remanufacturing quantity of product k with quality level [ in period ¢
Yt inventory of product k at the end of period ¢

Y[, inventory of returned product k with quality level I at the end of period ¢
Vit binary setup variable of product k in period ¢

Vit binary setup variable for remanufacturing product k in period ¢

Following [3], the MLCLSP-RM can be stated using the notation in Table 1:
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The objective function (1) minimizes the sum of inventory holding, production, re-
manufacturing, setup, disposing and overtime costs. Equations (2) and (3) represent the
inventory balance constraints for manufacturing or remanufacturing, respectively. In-
equalities (4) and (5) ensure that (reymanufacturing quantities and setups meet the capac-
ity constraints in each period. Inequalities (6) and (7) link the variables of (re)manufacturing
quantities to the setup variables, i. e., if product k is produced in period ¢, the respective
machine has to be set up for this product in the respective period.

3 Outline of the Solution Approach

For solving the MLCLSP-RM, we adapt, e.g., the Fix-and-Optimize heuristic (cf. [2]).
The idea of the Fix-and-Optimize heuristic is to solve a sequence of subproblems in an
iterative fashion. In each subproblem, the number of “free” binary setup variables is
limited as most of the binary setup variables are fixed to a constant setup state. this
subproblem can be solved to optimality quickly. This (optimal) solution describes a new
temporary solution for the binary setup variables. At least some of them are fixed in
the next subproblem when a new subset of binary variables is solved to optimality. In
contrast, the real-valued decision variables are never fixed for all products, periods and
machines.

A first numerical study has shown that the Fix-and-Optimize heuristic provides high
quality results for the MLCLSP-RM with respect to both solution time and solution qual-

ity.
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Abstract

The non-linear optimization problem of the stochastic dynamic capacitated lot sizing problem can
be reformulated as a solvable linear program by approximating the non linear functions of back-
log and inventory with a series of piecewise linear segments. Since the fill rate criterion is very
popular in industrial practice, a model formulation with j service-level constraint is presented.
It is assumed that, according to the static-uncertainty strategy of [1], all decisions concerning the
time and the production quantities are made in advance for the entire planning horizon regardless
of the realization of the demands.

1 Introduction

The observed problem is to determine production quantities to satisfy time-varying ran-
dom period demands over a finite discrete time horizon so as to minimize the sum of
setup and holding costs under consideration of a fill-rate constraint. Especially, in a plan-
ning environment with uncertain demand the service-level towards the customers is at
least as important as cost efficiency. On the one hand in industrial practice many manu-
facturers have to face demand uncertainty and on the other they have to guarantee their
customers a predefined service-level. Anyway, conventional production planning sys-
tems neglect demand uncertainty and use deterministic planning approaches. Therefore,
the stochastic dynamic capacitated lot sizing problem is presented.

It is assumed that according to the static-uncertainty strategy of [1], all decisions con-
cerning the time and the production quantities are made in advance for the entire plan-
ning horizon, which is equivalent to use a frozen schedule. We assume that for every
period t and every product k the demand is a random variable Dy, (t = 1,2,...,T; k =
1,2,...,K). Demand that cannot be filled immediately from stock on hand is backo-
rdered. As the precise quantification of shortage penalty costs which involve intangible
factors such as loss of customer goodwill is very difficult to quantify, usually technical
performance measures are applied in practice. Since the fill rate criterion is very popu-
lar in industrial practice, a model formulation with a finite horizon f; service-level and
cyclic Beye service-level'? constraint is presented.

ICf. [4] p. 36.
2Cf. [6] p. 5183.
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2 Modeling Approach for the Stochastic Dynamic Lot-sizing Prob-
lem

Assuming independent and normal distributed period demand the random variables of
the expected backlog and the expected inventory are convex functions of the cumulated
production quantity. [3] propose to replace the non-linear functions of expected physical
inventory E {I},} and backlog E {I,{t} to approximate the stochastic multi-item capaci-

tated lot-sizing problem (SMICLSP) with J service-level. This linearization technique can
be used to approximate the SMICLSP with B; and By service-level constraint.
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Figure 1: Approximation of expected backlogs and physical inventory

The idea of the piecewise linear approximation model is to replace the non-linear
functions by piecewise linear segments so that the problem can be converted into a solv-
able linear model. The quality of the results of the approximation model depends on
appropriate chosen knots, the points at which the values of a function are assigned. The
functions of the expected backlog and the expected physical inventory are illustrated in
Figure 1. These points have to be concentrated in the area where the convexity of the
curve is strongest. Following the assumptions of the normal distribution, 99.73% of the
observations fall within the interval u 4 3¢°. [3] showed that such a linearization is re-
quired for each period t and each product k for the expected inventory and the expected
backlog as functions of the cumulated production up to period #*. For a model formu-
lation with fill-rate constraint it is additionally required to determine the period specific
backorders. Therefore, it is necessary to compute the supporting points for the approxi-
mation via the first-order loss function.

3 First Numerical Results

To test the quality of the proposed optimization model a numerical experiment is con-
ducted which is based on problem instances presented by [5]. In total, 90 problem in-

3Gee table of standard normal distribution.
A4Cf. [3] pp. 12-15.
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stances were generated. The costs of the presented solution procedure that combines
column generation (CGN) and the ABCg Heuristic is compared to the ABCy Heuristic
presented by [6]. The numerical experiment was performed for a SMICLSP with B¢,
service-level and solved with a Fix & Optimize Heuristic>. The results will be served as
reference for the linearized optimization model. The periods demands are assumed to be
normally distributed and the parameters are shown in Table 1.

Table 1: Parameters for the numerical experiment

Number of products 10

Number of periods 10

Capacity 1.1 - average demand
Fill-rate Bcyc 0.80,0.90,0.98

Mean period demand Continuous uniform U(0,100)
Coefficient of variation 0.15, 0.20, 0.25, 0.30, 0.35
Time-between-orders, TBO Discrete uniform U(1,5,10)
Setup Times 0

The computations are based on up to 200 linear segments, the accepted relative MIP-
Gap Apmip = 2% and a time-limit for each subproblem of 120 seconds. The computational
tests were performed on an standard PC (Windows 7 -32 bit-, 4 * 2.83 GHz, 3.5 GB RAM)
and the problem instances were solved with CPLEX (12.2). The results of the numerical
experiments for data sets with high capacity utilization are presented in Table 2. The
results of each setting are based up on 10 data sets. The relative cost savings against
the Column Generation Heuristic are presented in column A costs CGN and the savings
against the ABCy Heuristic are shown in column A costs ABCy.

Table 2: Results for low capacities
B TBO Acosts CGN A costs ABCy

0.80 01 4.90% 13.38%
0.80 05 4.33% 15.22%
0.80 10 8.28% 12.72%
090 01 5.06% 11.50%
090 05 15.57% 23.46%
090 10 20.00% 21.74%
0.98 01 n/a n/a
0.98 05 n/a n/a
0.98 10 n/a n/a
o 9.29% 16.34%

The numerical results in Table 2 have a capacity utilization > 90%. In practical plan-
ning situations capacities are generally scarce and therefore the results underline the per-
formance of the linearization technique for practical applications. It is remarkable that
the CGN Heuristic gives in just 31 of 60 experiments results, whereby the linearized
optimization model is able to solve all data sets. In case of By = 0.98 no feasible so-
lution could be found by the CGN Heuristic and the ABCy Heuristic. The Fix & Optimize
heuristic gives solutions with overage time usage. Furthermore, the linearized model
gives in 28 of 31 experiments the best solution. The ABCg Heuristic achieves in 36 of

5Cf. [2].
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60 a result, but was outperformed by the linearized optimization model in all cases. On
average the solution quality of the Fix & Optimize Heuristic is 9.29% better than the CGN
Heuristic and 16.34% better than the ABCy Heuristic.
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Abstract

We consider a single-stage inventory system facing non-stationary stochastic demand of the cus-
tomers in a finite planning horizon. Motivated by the practice, the replenishment times need to be
determined and frozen once and for all at the beginning of the horizon while decision on the exact
replenishment quantities can be deferred until the replenishment time. This operating scheme is
refereed to as “static-dynamic uncertainty” strategy in the literature. We consider dynamic fixed-
ordering and linear end-of-period holding and penalty costs. We prove that the optimal ordering
policy is a base stock policy. Since an exponential exhaustive search based on dynamic program-
ming yields the optimal ordering periods and the associated base stock levels, it is not possible
to compute the optimal policy parameters for longer planning horizons. Thus, we develop two
heuristics. Numerical experiments show that both heuristics perform well in terms of solution
quality and scale-up efficiently, hence, any practically relevant large instance can be solved in
reasonable time.

1 Introduction and contributions

In inventory planning, freezing schedules for the timing of deliveries in advance, tak-
ing account of future uncertainties, is of practical interest. This need to fix the deliver-
ies in advance, whilst allowing reasonable flexibility in the order size, has been at the
heart of many industrial problems such as coordinating suppliers and buyers in supply
chain partnerships [4]; managing joint replenishments for multiple items [8] and plan-
ning for shipment consolidation in logistics [6]; master planning and leveling workload
in Advanced Planning Systems [8]; buying raw materials on fluctuating price markets in
purchasing [5]; etc.

Freezing delivery schedules alleviate the supplier-buyer coordination in supply chains
susceptible to system nervousness, which arises when a formerly fixed order request for
a certain period is replanned later. The deviations causing nervousness may be in the
form of quantity adjustments and/or changes in delivery requests. Inderfurth [4] notes
that nervousness due to deviations in delivery requests is considered as the most serious
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in practice and is referred to as setup instability. Blackburn et al. [1] encourage deliv-
eries in periods where they are scheduled previously for dealing with the problem of
nervousness.

Silver et al. [8, pp.236-237] point out that freezing schedules is particularly appealing
when items are ordered from the same supplier or require resource sharing. In such a
case, all items in a coordinated group can be given the same replenishment period. This
also allows a reasonable prediction of the level of the workload on the staff involved and
is particularly suitable for advanced planning environments.

Shipment consolidation in logistics management is another area that benefits from
scheduled deliveries. Mutlu et al. [6] describe shipment consolidation as the “practice
of combining small size shipments into a larger load with the aim of benefiting from
scale economies associated with transportation costs”. The shipment consolidation pol-
icy using scheduled deliveries is called the “time-based policy” and noted to be popular
in practice. In this policy, arriving orders are combined to form a large load, and con-
solidated shipments are released at periodic intervals. It is emphasized that this policy
is important in terms of delivery reliability since it allows logistics providers to quote a
delivery time.

In this paper, we consider the inventory problem faced by a manager who replenishes
stock using the following practice. At the beginning of the planning horizon, he decides
on the number and exact timing of delivery requests once and for all. This decision
constitutes the “static” part of the manager’s “static-dynamic uncertainty” strategy, name
coined by Bookbinder and Tan [3]. Each delivery request incurs a fixed cost. The exact
order quantities for deliveries are determined only after observing the realized demands
until that time. This decision constitutes the “dynamic” part of the strategy. The demand
process in this paper is assumed to be the only source of uncertainty and follow a non-
stationary pattern over a finite planning horizon.

The static-dynamic uncertainty strategy is described first in [3]. They assume non-
stationary demand and suggest a two-step heuristic solution method. In the first step,
future replenishment periods are fixed at the beginning of the planning horizon using a
Wagner-Whitin type model. In the second step, subsequent order quantities are deter-
mined on the basis of demands that have become known at a later point in time. Propor-
tional end-of-period inventory holding and fixed-ordering costs are taken into account.
Instead of adopting a penalty cost approach, service level constraints are imposed in each
period. In a related work, Bookbinder and Tan [2] introduced and tested a rolling horizon
framework. Tarim and Kingsman [10] address the same problem and provide a mixed
integer programming (MIP) model to simultaneously answer the questions on the ex-
act timing of future replenishments and corresponding order quantities. Tarim et al. [9]
mainly focus on the computational issues and provide an efficient computation approach
to solve the MIP model in [10]. Tempelmeier [12] addresses the same problem under a
fill rate constraint as a service measure. Finally, Tarim and Kingsman [11] relax the ser-
vice level constraints and present an approximate model for the penalty cost case with
normally distributed demands. In all the aforementioned works the inventory control
policy is in the form of static-dynamic uncertainty strategy. Although the demand pro-
cess is assumed to be non-stationary and stochastic, all these papers formulate certainty
equivalent mathematical programs and analyze the resulting deterministic problems.

Our contribution in this paper is multi-fold. We provide a model and a solution al-
gorithm for finding an optimal solution for the static-dynamic uncertainty strategy with
penalty cost. In contrast to the related literature presented above, in which certainty
equivalent mathematical programming formulations dominate, a dynamic programming
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(DP) based approach is adopted. The optimal parameters of the replenishment policy is
determined via exhaustive search, which is impractical for large instances. Therefore, we
develop two heuristics: Approximation Heuristic (AH) and Relaxation Heuristic (RH).
Our numerical experiments show that both heuristics perform well in terms of solution
quality and computation time, and find the optimal policy over a wide range of model
parameters. Any practical size instance can be solved to near-optimality using these
heuristics. Finally, we discuss how our results and heuristics can be extended to han-
dle capacity limitations and minimum order quantity considerations. The details of this
study are reported in Ozen et al. [7].
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We consider the two-level lot sizing problems in serial supply chains where produc-
tion, inventory, and shipment decisions are made centrally over a T-period planning
horizon. A typical objective of these problems is to determine when and in what quan-
tities to replenish (through either production or procurement), the inventories at each
level, and when a downstream shipment should be made so that the external known de-
mand at the final level is satisfied at a minimal total cost including fixed-charge replen-
ishment/shipment costs and inventory holding costs at all levels. Several applications
are encountered in practice especially for the two-level serial supply chains including,
for instance, a warehouse and distribution center [5] or a supplier and manufacturer [9].
We study the uncapacitated problem where demand can be backlogged at the final level
and the problem with capacitated shipments to the final level. In the following, we pro-
vide a brief overview of the literature that closely relate to the problems we address in
this work.

For the uncapacitated L-level serial lot sizing problem without backlogging, Zang-
will [13] presents a network representation and proposes a polynomial time DP algo-
rithm based on the arborescent flows on the network. In an arborescent flow no node
can have more than one positive input. This corresponds to the W-W property of an op-
timal solution to the single-level lot sizing problem with concave costs [12]. In most of
what follows the W-W or ZIO (Zero-Inventory Ordering) property constitutes the foun-
dation of the developed algorithms. Love [6] addresses the problem in [13] to show that
if inventory holding costs are nondecreasing with respect to the production levels and
production costs are nonincreasing in time, a nested schedule having the property that
in a given period, production at level / implies production at level I + 1, will be optimal.
This nested structure leads to an algorithm that runs in O(LT?) time. Later, van Hoesel
et al. [11] show that Zangwill’s algorithm runs in O(LT*) time when L > 2 and in O(T?)
time when L = 2. Recently, Melo and Wolsey [7] propose a new DP algorithm running
in O(T?logT) time for the two-level problem based on the observation that production
batches at the second level are a refinement of those at the first.
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van Hoesel et al. [11] also extend Zangwill’s work by proposing polynomial DP algo-
rithms for the more general problem that considers a stationary capacity on production
at the initial level of the supply chain. For the general concave production, transporta-
tion, and inventory costs, the running time is O(LT2L+3) which, for L = 2, reduces to
O(T®) when inventory costs are linear and transportations costs are fixed-charge with no
speculative motives. The two-level problem with fixed-charge and general concave trans-
portation but linear production and inventory costs is studied in Kaminsky and Simchi-
Levi [4]. Production is capacitated at the first level. They present a DP-based polynomial
algorithm with O(T*) time complexity for the fixed-charge, nonstationary capacity prob-
lem. The complexity increases to O(T®) when transportation costs are general concave
with stationary capacity. This is later improved to O(T”) in [11] as mentioned before.
Considering nonconcave, stepwise fixed-charges for shipment costs, Lee et al. [5] present
a shortest path network and propose an algorithm with a time complexity of O(T®) when
backorders are allowed to better utilize the transportation scale economies. The case
without backorders runs in O(T*) time. The shipment cost they consider includes a fixed
cost and a freight cost that is a function of the used cargo capacity defined in terms of
discrete increments. By identifying the regeneration periods (a period with zero ending
inventory) for both levels of the problem, they define the structural properties of an op-
timal solution and develop DP algorithms. Sargut and Romeijn [9] study the two-level
problem with backlogging at the second level and both capacitated and uncapacitated
upstream sources also considering an outsourcing option. They provide a network rep-
resentation and develop a solution methodology by generalizing the results from [4] and
[11]. They provide solution procedures that run in O(T®) time for the capacitated and
O(T”) time for the uncapacitated cases when there is no outsourcing. Assuming station-
ary fixed-charge transportation costs, linear inventory holding costs and no backlogging
of demand, Jin and Muriel [3] develop an O(T?) algorithm for the single-retailer case and
a nested shortest-path algorithm for the multi-retailer problem that runs in polynomial
time for a given number of retailers. Variants of the two-level problem such as the prob-
lem that considers multiple modes of transportation [2] and the problem where the W-W
property does not apply at the second level [10] have also been studied in the literature.
Jaruphongsa et al. [2] suggest O(T*) and O(T®) algorithms considering alternative fixed
cost delivery charges. Solyali and Siiral [10] consider an exogenous base-stock inventory
at the second level such that when a shipment is made inventory has to be brought up to
a specific order-up-to level. They propose an algorithm that runs in O(T?) time.

In this study, we consider two different two-level serial lot sizing problems and pro-
pose effective network models for them. The first problem we consider is the uncapaci-
tated two-level serial lot sizing problem with backlogging (2L-U-B), where the backlog-
ging of demand at the final level (retailer) is allowed and there are no capacities over the
replenishments/shipments to the levels. The aim is to determine when and in what quan-
tities to replenish at each level over the planning horizon, so that the sum of fixed-charge
replenishment/shipment costs and inventory holding /backlogging costs at both levels is
minimized. For 2L-U-B, making use of the regeneration intervals at the retailer [8] and the
W-W property at the first level (warehouse), we propose an effective shortest path net-
work representation, which can be solved in O(T?) time using a standard DP algorithm.
Moreover, we present a tight formulation for 2L-U-B. The second problem we consider
is the two-level serial lot sizing problem with cargo capacities and backlogging (2L-C-
B). Similar to 2L-U-B, the backlogging of demand at the final level (retailer) is allowed
and there is no capacity over the replenishments to the first level (warehouse). However,
in 2L-C-B, we consider cargo capacities for shipments to the final level and the related

74



Denizel et al.

stepwise fixed shipment costs as in [5]. The aim is to determine when and in what quan-
tities to replenish at each level over the planning horizon, so that the sum of fixed-charge
replenishment costs at the warehouse, stepwise fixed shipment costs at the retailer, and
inventory holding/backlogging costs at both levels is minimized. By making use of the
regeneration intervals at the retailer [1] and the W-W property at the warehouse, we pro-
pose a novel shortest path network representation for 2L-C-B. We show that this network
can be solved in O(T®) time, which is an O(T) improvement over the algorithm of Lee et
al. [5].
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1 Introduction

We consider a multi-stage capacitated lot-sizing problem (MLSP-PC), where the goal is
to generate a centralized production and distribution plan for a supply chain which con-
sists of a manufacturer with finite production capacity, intermediate agents and a retailer
facing deterministic demand at the last stage. Clearly, centralized planning of an entire
supply chain will lead to a lower-cost production and distribution plan than decentral-
ized planning by independent agents. However, one of the obstacles to the centralized
planning is the time to optimality due to the increased problem complexity from the
simultaneous consideration of all problem parameters. Thus, a key to reducing this com-
plexity is to allow decentralized or independent decisions of each agent whenever doing
so will not negatively impact the overall solution. One of the purposes of this paper
is to show that production decisions at the first stage of the supply chain can be made
independently from transportation decisions at other stages in certain settings without
negatively impacting the solution. This independence of the first-stage decision from
other stages leads us to first focus on the two-stage problem (2LSP-PC) in which only
two agents exist, the manufacturer and the retailer. The multi-stage problem with certain
cost structures can be addressed in a similar fashion.

The single-stage uncapacitated lot-sizing problem for a manufacturer was introduced
by Wagner and Whitin (1958), and efficient solution algorithms were designed by Fed-
ergruen and Tzur (1991), Wagelmans et al. (1992) and Aggarwal and Park (1993). The
multi-stage version of the uncapacitated problem was solved by Zangwill (1969). To deal
with the manufacturer’s production capacity, Florian and Klein (1971) solved the capaci-
ated single-stage lot-sizing problem (See also van Hoesel and Wagelmans 1996). Optimal
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algorithms for the multi-stage problem accounting for production capacity are provided
by van Hoesel et al. (2005) and Hwang et al. (2011).

The MLSP-PC in general assumes concave production, transportation and inventory
carrying costs through the planning horizon and the supply chain. As a special case
of concave cost structure, the so-called non-speculative (transportation) cost structure as-
sumes that inventory holding cost functions are linear and each of transportation cost
functions consists of a fixed setup cost and per-unit transportation cost in which no spec-
ulative motive is allowed for keeping inventory. If each transportation does not incur
setup cost then the supply chain is said to be have linear transportation costs. For the
2LSP-PC with the length of planning horizon T, Kaminsky and Simchi-Levi (2003) devel-
oped an O(T?) algorithm for their class of concave transportation costs and van Hoesel
et al. (2005) presented three algorithms with complexities O(T”), O(T®) and O(T?) for
concave, non-speculative transportation and linear transportation cost structures, respec-
tively. Van Hoesel et al. (2005) also put the complexity reduction of their algorithms as
an open question. In this paper, we address this question by deriving O(T®), O(T°) and
O(T?*) algorithms for concave, non-speculative transportation and linear transportation
cost structures in the 2LSP-PC, respectively. For the multi-stage production capacitated
problem with non-speculative costs, we present an efficient O(T®) algorithm as compared
to the O(T”) algorithm of van Hoesel et al. (2005).

We note that all the algorithms in this paper are efficient by a factor of O(T) over the
best known ones until now. Most of these improvements are made by making possible
separating the production decision from transportation decisions. To support such in-
dependence, it is crucial to have an appropriate dynamic programming algorithm. We
adapt the single-phase dynamic programming approach first developed in Hwang et al.
(2011) for multi-stage problems.
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1 Introduction

In this work, we investigate the multi-sourcing single-item lot-sizing problems with fixed
and variable carbon emissions. This problem is an extension of the lot-sizing problem
with periodic carbon emission constraints introduced in [1] where only variable carbon
emissions were considered.

The multi-sourcing single-item lot-sizing problem can be defined as the problem faced
by a company that has to determine, over a planning horizon of T periods, when, where
and how much to produce an item to satisfy a deterministic time-dependent demand.
Different production locations and transportation modes are available to satisfy a given
demand. We consider M different supplying modes, where a supplying mode is defined
as the combination of a production location and a transportation mode (combining one or
more types of vehicles). There are no capacity constraints, but we consider periodic car-
bon emission constraints with fixed and variable carbon emissions. The carbon emission
of each supplying mode is modeled using a linear function of the supplied quantity plus
a fixed carbon emission. The fixed carbon emission is incurred is incurred at each period
the mode is selected. The objective function consists in minimizing the total supplying
costs (fixed and variable) as well as the inventory costs.

In this work, we propose some structural properties of dominant solutions and show
that our problem can be solved using a dynamic programming algorithm when carbon
emission parameters are stationary. In contrast, we prove that the problem with time
varying carbon emission parameters is N/P-hard.
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2 Mathematical model

To model the multi-sourcing lot-sizing problem with fixed and variable carbon emissions,
the following parameters and variables are required.

Parameters:

dy: Demand at period ¢,

h¢(s): Cost of holding s units at the end of period t,

p{": Unitary supplying cost of mode m at period ¢,

fi": Supplying setup cost of mode m in period t,

ev}’: Environmental impact (carbon emission) related to supplying one unit using mode
m at period t,

ef{": Fixed environmental impact (carbon emission) related to using mode m at period ¢,
E"®: Maximum unitary environmental impact allowed at period ¢.

Variables:

x}": Quantity supplied at period t using mode m,

y}": Binary variable which is equal to 1 if mode m is used at period t, and 0 otherwise,
s¢: Inventory carried from period t to period ¢ + 1.

The formulation for the multi-sourcing single-item lot-sizing problem with periodic
carbon emission constraints is given below:

M T
min Z Z pi'xl" + f —|—th St) (1)
m=1t=1
s.t. %1xt — S+ 54— 1:dt t=1,...,T (2)
YM (ev)t — EM™)x!" fefmyn <0 t=1,...,T 3)
m < (Zt/:tdt/)yt t=1,...,T,m=1,...,M @)
x" € RY,y" € {0,1} t=1,...,Tm=1,...,.M (5)
StE]RJr, t=1,...,T (6)

The objective function (1) minimizes the fixed and variable production and trans-
portation costs and holding costs. Constraint (2) models flow conservation, and Con-
straint (3) forces the average amount of carbon emission at any period ¢ to be lower or
equal than the maximum unitary environmental impact allowed. Constraint (4) ensures
that no item can be supplied with mode m at period ¢ if this mode is not selected.

3 Complexity results

In what follows, we establish some dominance properties for the Uncapacitated Lot-
Sizing problem with the Periodic Carbon emission constraint, and fixed and variable
carbon emissions (ULS-PC-F). We then show that ULS-PC-F can be solved using a dy-
namic program if carbon emissions are stationary and is N'P-Hard if these parameters
are non stationary. For sake of conciseness, we denote by ¢} the expression (ev}" — E[®).
A mode m is called ecological or environmental friendly in period t if e' < 0. Note that a
non-ecological mode cannot be used before fixed carbon emissions are compensated. If
a mode m; (or a combination of modes m; and my) is used to produce a given demand,
a minimal production threshold Q" (or Q;"'"?) is required to compensate the associated
fixed carbon emissions.
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Property 2 Consider a solution of the ULS-PC-F problem using two modes my and my in a given
period t. If p{"* < p{" and ev;"t < ev{"™, then mode my dominates mode my (i.e. a solution using
modes my and my can be improved by removing the quantity x;"* produced using mode my and
by producing x}" using mode m).

Property 3 Any solution of the ULS-PC-F problem uses at least one ecological mode in each
period with an order, i.e a strictly positive supplied quantity.

Theorem 1 There exists an optimal solution for the ULS-PC-F problem that uses at most two
modes in each ordering period: One ecological mode and possibly one non-ecological mode.

Lemma 1 For the ULS-PC-F problem, the cost of the best Z10 (Zero-Inventory-Ordering) policy
may be arbitrary large compared to the cost of an optimal policy.

Definition 1 (ordering period)
o A period t is a threshold ordering period if there is a mode m such that x}' = QJ".
o A period t is an ordering period if there is a mode m such that x| > QJ".
Definition 2 (Regeneration point) A period t is an regeneration point if (s; = 0).
A dominant solution has the following properties.

Property 4 Between two consecutive regeneration points, there exists at most one ordering pe-
riod.

Property 5 All threshold ordering periods occur before the production ordering period.
From these properties, we can show the following results:

Theorem 2 The ULS-PC-F with a fixed number of modes M and stationary carbon emissions
can be solved using a dynamic programming algorithm.

Theorem 3 ULS-PC-F is N'P-Hard if carbon emission parameters are not stationary.

The theorem above can be proved by performing a reduction from the PARTITION
problem.

4 Perspectives

In this work, carbon emissions are aggregated in each supplying mode (a combination
of a production location and a transportation mode, requiring one or more types of ve-
hicles). The carbon emission of each supplying mode is modeled using a linear function
of the delivered quantity plus a fixed carbon emission. This model could be detailed by
defining a fixed carbon emission that depends on the number of required “vehicles” (e.g.
containers). It would be interesting to study the added value of a more detailed carbon
emission constraint and the complexity of the resulting problems.
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Abstract

Nowadays companies try to reduce their carbon footprint. Bearing in mind this environmental
awareness, the choice of a production plan can be modeled as a Bi-Objective Economic Lot-Sizing
problem, in which we aim to minimize the total lot-sizing costs, as well as minimizing the maxi-
mum emission across blocks of given length. In this talk, we first show that finding a single Pareto
efficient outcome is, in general, an NP-hard task. We then identify non-trivial classes of problem
instances for which this problem is polynomially solvable. We end by showing how our results
can be used to approximate the Pareto frontier.

Keywords: carbon emissions, lot-sizing, bi-objective, Pareto efficient outcomes

1 The outline of the talk

While over the last two decades many quantitative models have been developed for the
design and management of green supply chains, [2, 11, 16], only very recent papers have
addressed the carbon footprint of the supply chain, see [3, 6,7, 8, 9, 10, 13, 14, 17, 18].
Benjaafar et al. [4] are one of the first to include carbon emissions in the classical Economic
Lot-Sizing (ELS) Problem, by means of emission caps, taxes on emissions, cap-and-trade
emission mechanisms, or carbon offsets. See also [12] for a lot-sizing model with an
ecoterm in the objective function. More recently, [15] and [1] have provided theoretical
and algorithmic results on lot-sizing models with emission constraints.

Bearing in mind the current environmental awareness, we model the choice of a pro-
duction plan as a Bi-Objective Economic Lot-Sizing Problem. Consider a planning hori-
zon of length T. For period t (t = 1,...,T), let f; be the setup lot-sizing cost, c; the unit
production lot-sizing cost and h; the unit inventory holding lot-sizing cost. Similarly, for
period t, let f; be the setup emission, ¢ the unit production emission and f; the unit in-
ventory emission. Let d; be the demand in period t. Let us partition the time horizon into
consecutive blocks of ¢ periods. The Bi-Objective Economic Lot-Sizing (BOLS(¥)) model
with block size ¢ reads as follows:

T il . R
minimize < Z[ftyt —+ cxy + htIt], ~ Imax Z [ftyt + c}xt + I’ltlt])
=1 =L T e
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subject to (BOLS())
xe+ Ly = di+ 1 t=1,...,T
xr < My t=1,...,T
Ih = 0
Y € {0, 1} =1,...,T
x; > 0 t=1,...,T
I, > 0 t=1,...,T.

If more than one objective function is optimized, Pareto efficient outcomes (in the value
space) are sought. These can be found by minimizing one objective function while con-
straining the others. Given b € R, the following problem defines a Pareto efficient
outcome for (BOLS()):

T
minimize [ftyt —+ cix + ]’ltlt]
=1
subject to (PO (b))
xt+It,1 = dt+1t t_l,. .,T
Xt S Myt t = 1, .y T
Iy = 0
Y+ € {0, 1} t=1,...,T
Xy > 0 =1,..., T
I > 0 t=1,...,T
il . . .
Y. [fe+éxi+hd] < b i=1,...,T/¢
t=(i—1)¢+1

In this talk, we first show that finding a single Pareto efficient outcome is, in general,
an N'P-hard task. We then identify classes of instances for which (P () (b)) is polynomi-
ally solvable. In particular, we analyze classes for which the costs are non-speculative,
and the setup and production emissions are time-invariant. A summary of our results is
given below. We end by showing how our results can be used to find an e-dominating set
in the outcome space, see [5] and references therein.

14 costs

emissions running time
T ft:f,Ct:C ft:flétzézﬁt:aht O(TZ)
1 ft > fi+1, non-speculative ft = f, G=¢h =h O(T?)
fixed ¢ non-speculative & =0 O(T?)
general / non-speculative fi=f,6=0hh=0 O(T?
general / non-speculative fi=f,ee=¢h=0 O(T/0)
general / non-speculative f=0,6=¢6M=0 O(T?)

—
(ol
SN—

Table 1: Polynomially solvable cases of P(¢)
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