From Multi-Agent to Multi-Organization Systems Utilizing Middleware Approaches

Matthias Wester-Ebbinghaus, Daniel Moldt, Michael Köhler-Bußmeier

http://www.informatik.uni-hamburg.de/TGI

University of Hamburg Faculty of Mathematics, Informatics und Natural Sciences Department of Informatics Theoretical Foundations of Informatics

ESAW 2008

曲

Motivation: Software Systems in the Large

- Frequently referred to as
 - Application Landscapes
 - Ultra Large Scale (ULS) Systems
 - Software Cities
 - ▷ Characterization as large scale Systems of Systems (SoS)

Motivation: Software Systems in the Large

• Frequently referred to as

- Application Landscapes
- Ultra Large Scale (ULS) Systems
- Software Cities
- ▷ Characterization as large scale Systems of Systems (SoS)

OrgOSE Hypothesis

There exists a strong analogy between modern software systems in the large and organizations in social societies. Thus, we need an organization-oriented approach to software engineering.

Table of Contents

1 Motivation: Software Systems in the Large

- 2 MAS and Organizations
- 3 The ORGAN Model
- MAS and ORGAN

MAS and the Organizational Metaphor

• Mechanism of *formalization* borrowed from social sciences

MAS and the Organizational Metaphor

• Mechanism of *formalization* borrowed from social sciences

 Rationality resides in an organization's structure itself
Allows for separation of concerns in MAS engineering (organization vs. agent design)
Formal organizational structure both *restricts* and *enables* organizational behaviour

Conceptions of Organizations and MAS

- ...a division of tasks, a distribution of roles, authority systems, communication systems, contribution-retribution systems... [Bernoux 1985]
- ...structured, patterned system of activity, knowledge, culture, memory, history and capabilities that are distinct from any single agent...

[Gasser 2001]

• ...collective entity operating in a larger system of relations... [Scott 2003]

Conceptions of Organizations and MAS

- ...a division of tasks, a distribution of roles, authority systems, communication systems, contribution-retribution systems...
 [Bernoux 1985]
- ...structured, patterned system of activity, knowledge, culture, memory, history and capabilities that are distinct from any single agent...

[Gasser 2001]

• ...collective entity operating in a larger system of relations... [Scott 2003]

Conceptions of Organizations and MAS

- ...a division of tasks, a distribution of roles, authority systems, communication systems, contribution-retribution systems...
 [Bernoux 1985]
- ...structured, patterned system of activity, knowledge, culture, memory, history and capabilities that are distinct from any single agent...

[Gasser 2001]

• ...collective entity operating in a larger system of relations... [Scott 2003]

Conceptions of Organizations and MAS

- ...a division of tasks, a distribution of roles, authority systems, communication systems, contribution-retribution systems...
 [Bernoux 1985]
- ...structured, patterned system of activity, knowledge, culture, memory, history and capabilities that are distinct from any single agent...

[Gasser 2001]

...collective entity operating in a larger system of relations...
[Scott 2003]

Limits of the Agent-Oriented Approach

 SoS demand for the distinction of different levels of abstraction (depending on the granularity of system units)

Limits of the Agent-Oriented Approach

- SoS demand for the distinction of different levels of abstraction (depending on the granularity of system units)
- Availability of mechanisms and frameworks for the *technical* realization of collective agency in/with MAS

Limits of the Agent-Oriented Approach

- SoS demand for the distinction of different levels of abstraction (depending on the granularity of system units)
- Availability of mechanisms and frameworks for the *technical* realization of collective agency in/with MAS
- Lack of conceptual mechanisms and frameworks

Limits of the Agent-Oriented Approach

- SoS demand for the distinction of different levels of abstraction (depending on the granularity of system units)
- Availability of mechanisms and frameworks for the *technical* realization of collective agency in/with MAS
- Lack of conceptual mechanisms and frameworks

Broadened Perspective Hypothesis

In order to exploit the true potential of the organizational metaphor, we need a broadened perspective that accounts for a systematic and disciplined treatment of collective levels of action in OrgOSE.

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN model: Purpose

 Development of a universal comprehension of systems that can be differentiated for various levels of abstraction (of an SoS)

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN model: Purpose

- Development of a universal comprehension of systems that can be differentiated for various levels of abstraction (of an SoS)
- Development of a particular proposal for multi-organization systems (MOS) featuring specific types of system units

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

Modelling of Open and Controlled System Units

UHI #

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

Modelling of Open and Controlled System Units

UHI #

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

谱

MOS Reference Architecture

Wester-Ebbinghaus, Moldt, Köhler-Bußmeier From Multi-Agent to Multi-Organization Systems

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

MOS Reference Architecture

Wester-Ebbinghaus, Moldt, Köhler-Bußmeier From Multi-Agent to Multi-Organization Systems

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

MOS Reference Architecture

ORGAN Hypothesis

The ORGAN model accounts for the true potential of the organizational metaphor.

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

谱

Petri Net-Based Deployment

Wester-Ebbinghaus, Moldt, Köhler-Bußmeier From Multi-Agent to Multi-Organization Systems

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

Petri Net-Based Deployment

UH **#**

The ORGAN Model: Purpose Universal Model of Open and Controlled Systems MOS Reference Architecture Deployment

MAS Deployment

Utilizing Middleware Approaches Establishing a "Best Fit"

Utilizing Middleware Approaches (1)

- Middleware Approaches carry the principle of "separation of concerns" introduced by formalization to the software level
- Instead of resting "in the heads" of the members, organizations are software technically *reified*

Utilizing Middleware Approaches Establishing a "Best Fit"

Utilizing Middleware Approaches (1)

- Middleware Approaches carry the principle of "separation of concerns" introduced by formalization to the software level
- Instead of resting "in the heads" of the members, organizations are software technically *reified*

Nested Middleware Layers Hypothesis

The "agent neutrality" of middleware approaches can be carried forward to the modular engineering of different levels of SoS.

Utilizing Middleware Approaches Establishing a "Best Fit"

Utilizing Middleware Approaches (2)

Utilizing Middleware Approaches Establishing a "Best Fit"

Nested Layers - Example Sonar

Utilizing Middleware Approaches Establishing a "Best Fit"

Nested Layers - Example Sonar

Wester-Ebbinghaus, Moldt, Köhler-Bußmeier

Utilizing Middleware Approaches Establishing a "Best Fit"

Pooling of Competencies

Pooling of Competencies Hypothesis

We may avail ourselves of the broad spectrum of already existing organizational MAS approaches in order to establish a "best fit" between different approaches and different levels of SoS.

Utilizing Middleware Approaches Establishing a "Best Fit"

Pooling of Competencies: To Be Discussed

Pooling of Competencies Hypothesis

We may avail ourselves of the broad spectrum of already existing organizational MAS approaches in order to establish a "best fit" between different approaches and different levels of SoS.

- "First guess" proposal for systems according to ORGAN
 - **Department level:** $MOISE^+/S-MOISE^+$ (constructive, fine-grained *role* relationships, centralized middleware management)
 - **Organization level:** SONAR (constructive, high-level *position* relationships, distributed middleware management)
 - Organizational field and society level: ISLANDER/AMELIE (regulative, scalable *scene* relationships, distributed middleware management)

Conclusion: Organization-Oriented Software Engineering

⊳ Hypotheses

- OrgOSE Hypothesis
- Isoadened Perspective Hypothesis
- ORGAN Hypothesis
- Insted Middleware Layers Hypothesis
- Pooling of Competencies Hypothesis

Outlook: What we are working at

曲