ESAW 26th September 2008

Controlling the Global Behaviour of a Reactive MAS : Reinforcement Learning Tools

François Klein, Christine Bourjot, Vincent Chevrier francois.klein@loria.fr

LORIA Nancy Université France

Outline

- Scientific context and issues
 - MAS and control
- Proposition of a dynamical solution
 - Using reinforcement learning tools
- Case study and assessment
 - On a toy example modelling pedestrians
- Conclusion and future works

Reactive multi-agent system

- Simple individual behaviours
 - System's dynamics defined at this local level
- Complex collective (emergent) behaviour
 - Observed at global level

 How to make the MAS show a particular (target) global behaviour ?

Issues in controlling a MAS

- The target stands at the global level
- The possible actions only affect the system's dynamics at <u>local level</u>
- Issues
 - Difficult to understand the local-global link
 - Strongly non-linear dynamics
 - The accurate consequences of an action are unpredictable
- But \exists global regularities...
 - \rightarrow Illustration on a toy example

Toy example

- Agents : inspired by pedestrians
- Environment : torric corridor
- Emergent structures : lines and blocks

Toy example: agents' behaviour

- Forces-based behaviour
- 5 parameters

Toy example: collective behaviour

Context Proposition Assessment Conclusion

Control of the pedestrians system

 \rightarrow How to reach the target ?

How to control a MAS ?

- Analytical approach
 - Namely (global) differential equations
 - Unsufficient
 Wegner 1997, Edmonds 2004, DeWolf 2005
- Experimental approaches
 - Static (off-line)
 - Dynamical (on-line)

Static approaches

- (Sau 01), (DWo 05), (Feh 06), (Cal 05), (Bru 03)
- Engineering of the system
- Namely parameter setting
- Reduction of the experimental exploration

Dynamical approaches

- Heuristic global consideration
 - (Cam 04), (Ber 07)
 - No automatisation/optimisation in the choice of the actions
- Markov model approaches
 - (Tho 04), (Sut 98)
 - DEC-MDP (def. of the individual behaviours)
 - Usual application does not answer the control problem (action means, observation)
 - Complexity (Ber 02)

Global behaviour determination

Global behaviour determination

S

Decision context

- Global behaviour determination
- Decision context
- Possible kinds of control actions

measuremen

S

Д

- Global behaviour determination
- Decision context
- Possible kinds of control actions
- Control action decision

S

Global behaviour determination

- Automatic global behaviour measurement
 - Formal characterisation of the target \neq intuitive
 - Experimental \rightarrow automatic method

measurement

Target = 2 lines OKTarget = No blocks NO

Decision context

- Dynamical approach \Rightarrow distinction of situations
 - Differenciation of states S

Context

- Good choice (states level)
 - Few states = simpler = knowledge generalisation
 - Many states = more adequate actions

Possible kinds of control actions

Set A of possible actions

Context

- The controller can choose an action in A in each state (autorised actions)
- Actions characterisation
 - Individual behaviours
 - Environment (<u>example</u>)

- Number of agents
- Addition of luring agents, ...

Control action decision

- Policy : function $S \rightarrow A$ to reach the target
- Computation

- Use of reinforcement learning tools
- Principle
 - A reward is granted to the tested actions if the target is reached \rightarrow best actions in each state
- Complexity reduction
 - Dynamic programming
 - Rationnal exploration: in each state, the more promising actions have their estimation refined

-1-Behaviour determination

Case study and assessment

- Application to the toy example
 - 4 steps method
 - Applied to the pedestrians system
 - Control target : number of lines and blocks
- Assessment of the application of the method
 - Results on 2 scenarios
- Discussion
 - Assessment of the method

Application to the toy example (1)

Global behaviour measure

- Number of lines and blocks
- Clustering problem, unknown number of clusters
 Partially decentralised algorithm
- Learning of the control policy policy
 - Stochastic policy to prevent the system from staying in an attractor
 - Sarsa algorithm over 3000 simulations up to 50 actions in each one

Application to the toy example (2)

States definition S

Context

- Number of lines and blocks (= global behaviour)
- 18 different states
- Control actions A
 - Individual behaviours modification
 - Identical for all the agents
 - Choice between 5 values for 2 or 3 parameters
 - Coefficient of movement force
 - Coefficient of separation force
 - (Maximum speed)

Assessment

- System's controlability verification
 - Control improvement by the method ?
- Proposition compared to 2 other policies
 - Random policy

Context

- A random action is chosen each time a state is identified
- Dynamical application of parameter setting
 - A best action a is found after evaluating each one
 - The action a is alternatively applied with a random action

Results on 2 scenarios

- Evaluation of
 - cv : rate of convergence toward the target
 - nbA : average number of actions before the target is reached

	1 st scenario	2 nd scenario		
Target	1 block and 2 lines	0 block and 2 lines		
Actions	25 possible actions (2 parameters)	125 possible actions (3 parameters)		

Results on 2 scenarios

Evaluation of

Context

- cv : rate of convergence toward the target
- nbA : average number of actions before the target is reached

Method	1 st scenario		2 nd scenario	
	cv	nbA	cv	nbA
Random method	69%	15	23%	15
Parameter setting	89%	12	48%	7
Proposed method	94%	8	66%	13

Conclusion

Discussion

Implementation

Context

- Improvement of control efficiency
- For the studied MAS, ∃ sets A & S at a global level such as they improve the control assessment
- Method
 - Allows an effective control
 - Learning in a reasonable time / number of simulations

Conclusion and future works Proposition

- Control method
- 4 key steps
 - Global behaviour measurement
 - States description

System dependent

- Possible actions decision
- Policy computation (reinforcement learning)

Conclusion and future works Synthesis and advantages

- Dynamical approach
 - Choice of an action in A
 - Depending on the state in S
- Automatic policy computing
- Observed global regularities can be used to improve the control efficiency
 - The controller can navigate from one state (or one global behaviour) to another

Future works

- Make the implementation more decentralised
 - In the presented implementation
 - Use of global information (global behaviour)
 - To change the behaviours of all the agents
 - Use of local information (different choice of S)
 - Example: an agent can be in 2 states, wether it belongs
 - to a line
 - to a block
 - Different choice of A
 - Examples: actions on environment or on luring agents

Questions ?