LEIA A reverse engineering form for Multi Agent Systems

François Gaillard and Yoann Kubera and Philippe Mathieu and Sébastien Picault

> SMAC team - LIFL - USTL **UMR CNRS USTL 8022** Villeneuve d'Ascq

Introduction

What do we call reverse engineering for MAS?

Table of contents

I. SMAC team

II. IODA

III. LEIA

IV. An interesting result from LEIA

V. Conclusion

I - SMAC team

software engineering for MAS
Model of the behaviour of agents
Implementation of the behaviour
Evaluation of the behaviour of agents
Design of experimentation platforms

URL: www.lifl.fr/SMAC

II - IODA

Interaction Oriented Design of Agent simulation

Methodology centered on Interactions [Mathieu Routier 01]

Separation between what an agent can do and how he will do it

II - IODA

How can an interaction occur ? [Kubera 08]

Declarative part

- → Interaction
- → Source/Target
- → Distance Guard

Procedural part

- → Order in the evaluation of the interactions
 - → Selection process

Interaction Matrix

Source Target	Envir.	Red	Blue
Red		Follow 0 (4.0)	Run 2 (7.0)
Blue		Run 1 (5.0)	Follow 1 (2.0)

Interactions

Priority

Distance guard 5/15

III - LEIA: the exploration of simulations as a reverse engineering form

Why doing reverse engineering?

- → Understanding the model
- → A brain stimulator [Pachet 07]

III - LEIA

LEIA lets you **E**xplore Interactions for your **A**gents

III - LEIA - Automatized building of model

We can do it thanks to IODA methodology!

III - LEIA - Let's explore the simulations space

Iterative construction of models by exploring the simulations space

III - LEIA - our measurement tools

Our aim: analysing a simulation during the runtime

Activity of the agents

The evolution of the population

Density of population

Number of modification of the environment

Mix and Cohesion

An example: a battle simulation

Main points:

- → Using the separation Interactions/Agents
 - → Working with any JEDI simulation and any ontology of domain
 - → Data from each families of agent and interactions

III - LEIA - Let's explore the simulations space

Our aims:

- → Find new models
- → Test the robustness of existing models
 - → Test an ontology of domain

Our model transformation tools:

- → Test on the beginning number of agent
 - → Add/Remove random interactions
- → Modification of the distance guard/priority
- → Derivation of an interesting model into new models
- → Play with several interaction matrices at a time

III - LEIA - Let's explore the simulations space

IV - An interesting result from LEIA

an infection model

Source	Envir.	Red	Blue	Green	Yellow
Red			Infect		
Blue				Infect	
Green					Infect
Yellow		Infect			

Excitable medium

Cyclical cellular automaton [Griffeath 93]

Belousov-Zhabotinsky reaction [Belousov 59, Zhabotinsky 50]

V - Conclusion

- → A simulation generator without any code generation
- → Made thanks to IODA methodology
- → The **user is implied** in the iterative process of exploration of the simulations space in order to create new models
- → guide lines to improve simulations following several metrics
- → **Reverse engineering** by analysis of simulations
- → Take place in a whole framework from the conception of interactions to their implementations using IODA, JEDI, JEDI Builder and now LEIA
- → **Exploration** of an ontology of domain with genetic algorithm

Let's visit www.lifl.fr/SMAC/LEIA/

Bibliography

- → [Philippe Routier 01] Philippe Mathieu and Jean-Christophe Routier and Pascal Urro Un modèle de simulation agent basé sur les interactions
- → [Pac07] F. Pachet. De la co-construction d'un langage homme-machine : quelques expériences en musique (JFSMA'2007)
- → [Kubera 08] Sébastien Picault Yoann Kubera, Philippe Mathieu. Interaction-oriented agent simulations: From theory to implementation, ECAI 08 July 21-25 2008.
- → [Kubera 08] Sébastien Picault Yoann Kubera, Philippe Mathieu. Une architecture orientée interactions. Revue d'Ingéniérie des Systèmes d'Information (ISI), 2008.
- → [FGG93] R. Fisch, J. Gravner, and D. Griffeath. Metastability in the Greenberg-Hastings Model. March 1993.
- → [Bel59] B. P. Belousov. A periodic reaction and its mechanism. In Compilation of Abstracts on Radiation Medicine, 1959.
- → [Zha64] A. M. Zhabotinsky. Periodic processes of malonic acid oxidation in a liquid phase. In Biofizika, 1964.
- → [Holland 75] Adaptation in natural and artificial systems
- → [MonMarché Venturini 99] Imagine : a tool for generating HTML style sheets with an interactive genetic algorithm based on genes frequencies