Peer Pressure as a Driver of Adaptation in Agent Societies

Hugo Carr¹, Jeremy Pitt¹ and Alexander Artikis²¹

¹ Imperial College London

² National Centre for Scientic Research "Demokritos"

{h.carr,j.pitt}@imperial.ac.uk, a.artikis@iit.demokritos.gr

ESAW 2008, St Etienne, France, Sep 2008

Thanks to: UK EPSRC EU FP6 Project 027958 ALIS

Background

- Characteristics of networks
 - open: agents are heterogeneous, may be competing, conflicting goals
 - fault-tolerant: agents may not conform to the system specification
 - volatile-tolerant: agents may come/go, join/leave the system
 - decentralised: there is no central control mechanism
 - partial: local knowledge, (possibly) inconsistent global union
- Agent Societies
 - Accountable governance, market economy, Rule of Law
 - Mutable: "tomorrow can be different from today"
 - Socio-cognitive relations: trust/forgiveness, gossiping

Motivation

- Resource allocation scenario where not all requirements can be satisfied
 - Common feature of e.g. ad hoc networks
- Two options:
 - Free for all: short-term gain, long-term annihilation
 - Do what people do: form committee, make up rules, . . .
- Previous work (OAMAS08)
 - Allocation according to vote, change the voting rules
 - Showed: population of 'responsible' agents stabilised the system
 - Now: given a stable system, show resistance to 'selfish' behaviour
 - Moreover: given a choice (responsible/selfish), agents 'choose' responsible (or have it chosen for them...)

How you gonna do that?

- Voting
 - voting about the rule
 - voting for each other
- Learning (individual behaviour)
- Reputation (individual opinion formation)
- Show that Organised Adaptation
 - is stable
 - is robust

Formal Model

• Let \mathcal{M} be a multi-agent system (MAS) at time t

$$\mathcal{M}_t = \langle U, \langle A, \rho, B, \mathbf{f}, \tau \rangle_t \rangle$$

- -U =the set of agents
- $-A_t \subseteq U$, the set of *present* agents at t
- $-\rho_t:U\to\{0,1\}$, the presence function s.t. $\rho_t(a)=1\leftrightarrow a\in A_t$
- $-B_t:\mathbb{Z}$, the 'bank', indicating the overall system resources available
- $-\tau_t:\mathbb{N}$, the threshold number of votes to be allocated resources
- $-\mathbf{f}_t:A_t\to\mathbb{N}_0$

The resource allocation function \mathbf{f}_t determines who gets allocated resources according to the value of τ_t and the votes cast (see below)

Scenario

- ullet System operation is divided into timeslices; during each timeslice, each 'present' agent a will
 - Phase 1: Vote for threshold value for τ (change a rule)
 - Phase 2: Offer $(O^a)/\text{Request }(R^a)$ resources $(R^a > O^a)$
 - Phase 3: Vote for a candidate(s) to receive resources
 - Phase 4: Update its satisfaction and learning metrics with respect to the outcome of the vote

Phase 1: Voting for τ

• Tau (τ) represents the threshold number of votes required to receive resources (at time t)

$$\mathbf{f}_t(a) = R_t^a, \mathbf{card}(\{b|b \in A_t \land \mathbf{v}_t^b(\ldots) = a\}) \ge \tau_t$$

= 0, otherwise

- ullet The value of au is context dependent and crucial for 'collective well-being'
 - If τ is too low, too many resources will be distributed, and this will result in the "Tragedy of the Commons"
 - If τ is too high, too few resources will be distributed, and this will result in "Voting with your Feet" (satisfaction)
- Each timeslice t, two-round election
 - round 1: each present agent proposes a value for au
 - round 2: run-off election between two most popular selections

Phase 2: Reputation Management

- Vote for τ is an indicator of selfish/responsible behaviour
- ullet For experimentation, require a method that computes au 'responsibly', supports discrimination, and isn't random
 - define a family of predictor functions, randomly initialised, a subset of which is given to each agents
 - functions which return 'good' value have increased weight

$$w_i = \frac{x_i}{\sum_{\forall j} x_j}$$
 $pred_{\tau} = \sum_{i=0}^{j} w_i.a_i$

ullet Agent uses other agents' au-voting to update opinion of those agents

Phase 3: Voting to Allocate Resources

- Plurality Protocol in ineffective
 - Does not provide information to effectively judge selfish or responsible behaviour
 - Punishment in the form of lost votes is not sufficient motivation to behave responsibly

Borda Protocol

- Agents vote using preference lists derived from reputation score
- Points are allocated based on 'most preferred'
- Agents are forced to give their opinion of their neighbours
 - * Allows a participant to see more easily who is behaving responsibly or selfishly

Phase 4: Reinforcement Learning

- Used to demonstrate how an initially selfish agent can be 'rehabilitated' through peer pressure
- Unbiased evaluation of sets of actions
- ullet A Q-Value is a metric which measures from a history of length m how successful an action x has been in a certain state s when each action is assigned a reward r

$$Q_{t+1}(s,x) = \frac{1}{m} \sum_{i=1}^{m} (r_{k_i} + \gamma V_{k_i}(s_{k_i})) + \epsilon$$

where

$$V_t = \max_{x \in X} Q_t(s, x), r_k \in [0, 1], \gamma \in [0, 1]$$

Experiment

- Initially we show that this experiment is stable amongst a group (size 10) of these agents who have already established a stable system
- We then add a destabilising element to the system at timecycle 3000 consisting of a set of agents (size 5) behaving selfishly
 - Agents who learn to behave responsibly are forgiven and assimilated into society
 - Agents who fail to learn are permanently ostracised and leave the system (through dissatisfaction)
- Use a certain 'well-known' MAS animator PreSAGE

Results (1.1): Satisfaction for Responsible Agents

Peer Pressure . . . 12

Results (1.2): Q-Values for Responsible Agents

Peer Pressure . . .

Results (2.1): Satisfaction for a Selfish Agent

Results (2.2): Q-Values for a Selfish Agent

Peer Pressure . . .

Summary (and duck)

- Additional supporting evidence for Axelrod's study of emergent norms
- Organised adaptation:
 - the introspective application of soft-wired local computations, with respect to physical rules, the environment and conventional rules, in order to achieve intended and coordinated global outcomes
- as opposed to
- Emergent adaptation:
 - the non-introspective application of hard-wired local computations, with respect to physical rules and/or the environment, which achieve unintended or unknown global outcomes