A reverse engineering form for Multi Agent
Systems

Frangois Gaillard and Yoann Kubera and Philippe Mathieu and Sébastien
Picault

Equipe Systémes Multi-Agents et Comportements
Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
UMR CNRS USTL 8022
59655 Villeneuve d’Ascq cédex — FRANCE
www2.lifl.fr/SMAC/
mail: firstname.lastname@Ilifi.fr

Abstract. The IODA methodology allows automated construction of
models from an ontology, consisting of generic interactions that we can
assign to families of agents. Thanks to the measurement tools that we
define in this paper, we can automatically qualify characteristics of the
underlying models. Then we propose building of a browser for viewing
and analysing several simulations at the same time. This browser, called
LETA for "LEIA lets you Explore Interactions for your Agents”, aims
at exploring the simulations space. Finally, we offer tools for processing
and simplifying model, allowing iterative construction of new models by
involving the user in their assessment.

1 Introduction

Agents-based simulations have taken a preponderant place in life simulation
tools, in domains as different as the movie industry, video games, biology, etc.
These simulations establish a link between experts of their domain and experts
in computer science[10]: this multidisciplinary aspect gave birth to a whole range
of frameworks more or less related to the simulated domains.

Many of these platforms allow considerable freedom to the designer to cre-
ate its agents, the behaviour of those agents and the environment. We can cite
Swarm[12], Madkit[5] or Magic[14] in which all design refinements are possible
following their software sophistication (reusability, genericity, design patterns,
components). Other tools like Netlogo[17] are designed to be used by non com-
puter scientists: they rely on a very simple programming. However, openness
and genericity are chosen on the detriment of a clear framework for the design of
agent behaviour: there is a risk of mixing the framework code with some specific
knowledge to the model in the implementation of agents.

The IODA! methodology[11] is based on a clear separation of agents, their
behaviour and the actions selecting process. In this methodology, interactions are

! for : Interaction Oriented Design of Agent simulations

independently reified from agents which use them. As a result, we can establish
libraries of interactions for a particular area and adaptable to different families
of agents, increasing the genericity of modelling work.

An implementation achieved through JEDI engine [10] offers a generic sup-
port of the IODA methodology. This genericity is perfectly illustrated within the
generator called JEDI Builder 2: from a model written according to IODA, we
can easily obtain a simulation which is executable with JEDI engine.

We also offer measurement tools in order to describe the characteristics of
each model designed with TODA:

simulation activity;

characteristics of the environment and its population;

development of populations;

evolution of the use of interactions during the simulation.

/\

(JEDI Builder)

/ \
(JEDI)
/ \

(IODA)

L A\

Fig. 1. Hierarchy in the construction of the browser: LEIA is based on automatically
generated simulation for the platform JEDI, from a model specified in the methodology
IODA

Thanks to the abstraction provided by IODA and the measurement tools that
we set out, we propose the building of a browser in simulations space, applica-
tion which allows the simultaneous display and analysis of several simulations
running in parallel. Moreover, to browse the simulations space, we offer tools for
processing and simplifying models. These tools enable iterative construction of
new models in which the user and measurement tools are the evaluation func-
tions. This browser is called LEIA for "LEIA lets you Explore Interactions for
your Agents”’. LEIA reverses the usual way to design multi agents simulations:
we generate a random series of models and, by successive refinements and use
of tools, the user will be able to create a model and study its underlying charac-
teristics. The browser lets the user make a reverse engineering work on models.

2 www2.lifl.fr/SMAC /projects/ioda/demonstrations,/

Moreover, by the variations of the models, it acts as a ”brain stimulator” as Hof-
stadter explains in ”Metamagical Themas” [6]: ”Variations on a thema should
be considered as the fuel of creativity”.

Section 2 presents the IODA methodology and its relevance in the design
of the browser. We describe in section 3 some measurement tools analysing
the complexity of systems designed in accordance with the IODA methodology.
Then, we develop into section 4 the design of LEIA browser. Finally, section 5
presents the opportunities that the browser opens onto the creation of models
by using genetic algorithms.

2 The IODA methodology

The IODA methodology for design of simulation[11] is focused on interactions:
they are independently reified from agents. Agents from A, the set of agents in
the environment, have basic primitives:

— perception primitives on the overall state of the simulation (noted E), the
environment, its internal state and communication with other agents;

— action primitives which can alter the simulation state: its own state, the
state of the environment or the states of other agents.

These primitives are used to define the role of the agent in specific interactions.
An agent a also has a perception halo Hz(a) C E: i.e. the subset of the over-
all state of the simulation that the agent handles through its primitive. The
neighborhood N (a) of an agent a is the set of agents in his perception halo.

In IODA methodology, the agents have simple specification and are homoge-
neously represented, allowing the integration of any agent in a simulation model
centered on interactions: an agent is an autonomous entity, instantiated from an
agent family F, noted a < F. An agent family F in the set of families F is the
abstraction of a set of agents sharing all or part of their perception or action
primitives.

An interaction is a sequence of action primitives applied to several agents,
which could play the role of source or target (respectively S or T'), and is subject
to conditions of activation. The interactions are totally separated from agents
who use them, increasing their reusability through simulations and are applicable
to different families of agents.

We define the cardinality of an interaction Z as the pair composed with the
number of source agents cardg(I) and the number of target agents cardr(I)
that we need to perform the interaction.

The assignations are the set of interactions that a source agent may per-
form on target agents. We call assignation as,r of an interaction set (Ix)ie[1,n)
between a source agent family S € F and a set of target agent families T C F de-
scribes the set of interactions that agents belonging to S may perform as sources
together with sets of agents from T as targets. It is defined as a set of tuples
(I, Dk, di), k € [1,n], called assignation elements, where :

— I} : the interaction which could be performed by sources S and undergone
by targets T;

— cardyp(Ix) = q the number of targets in T;

— pi : the priority given to an interaction Iy;

— dj, : the limit distance below which the interaction is possible.

Building of a model using the IODA methodology is done through 6 steps:

1. identification of families of agents and interactions, as elements of a matrix
of interaction;

2. writing activation conditions and sequences of actions which are primitives

of each interaction;

. identification of action and perception primitives of agents;

. specification of the priority and the limit distance of each interaction;

5. determining the dynamics, i.e. the evolution of the interaction matrix built
at the previous steps;

6. determining the specificities of the model.

=~

During the development of models in the LEIA browser, agent families and
interactions are specified in advance. The conditions of action and perception
of interactions are also set. Then, the design of the model can be limited to
the available choice of interactions and families of agents without the need to
generate code in order to use them. We can modify in runtime the model of a
simulation without having to stop it.

3 The measurement tools

As proposed by Kubera[8], it is possible to characterize the complexity of a
computer simulation by quantifying the number of calculi between the beginning
and the end of the simulation. The complexity lies in different aspects of the
simulation:

— in the studied phenomenon;

— the complexity of the cognition of agents;

— in the way to design the simulated phenomenon and to design the simulation
engine;

— on the way to achieve these two models.

We specify in this section some heuristic measures which characterize the com-
plexity of a system designed in accordance with the IODA methodology and
simulated through the JEDI engine (fig.2).

These tools are implemented in JEDI [10] which is a sequential engine and
whose representation of time is discrete. An interaction Z has only one source S
(cards(I) = 1). At each time step, for each potential source S, it selects a couple
(interaction I, target T'). The interaction I is chosen following the assignment of
highest priority among all feasible assignments for this source S. The target T
of this interaction I must also be in the neigborhood of the source N'(a). For the

selected couple, then, we solve the action of the interaction between the source
and target. At each time step, we can therefore have a specific and quantified
return on all the events of the simulation from which our tools of measurement
are defined.

Fig. 2. Screenshot from an ” Age of Empire”-typed simulation

These tools are designed to reveal the qualities and defects of simulated
models. In what follows, we put ourselves, using the LEIA browser, in a simplified
situation where each cell of the environment can only be occupied by one agent.
The initial distribution of agents and the primitives are accordingly implemented
from this situation.

3.1 Simulation activity

Agents activity With the JEDI engine, we can monitor the activity of agents,
particularly if an agent is able to perform some interactions. This measure called
7 Agents activity” characterize the interactivity of the simulation, i.e. the ability
of the simulation to run and therefore evolve.

Definition 1. Activity

At time step t, with 1(t) the set of resolved interactions and A(t) the set of agents,
the activity of agents is given by:

Activity(t) = card(1(t)) / card(A(t))

The provided score is the ratio between the number of agents which are sources
of interaction and all agents of the simulation. We can underline that in the
JEDI engine, by default, upon being resolved, the source S and target T of an
interaction are disabled [10]: the target T cannot participate in another inter-
action at the same time step, either as target or source. The lower the value
of the activity metric, the greater are the number of passive agents: their state

will evolve through the few interactions that have been resolved (considering
that their internal state does not change by itself through internal lookup by
example). In the interaction point of view, this measure can thus reveal some
very complex models such as the sale or purchase of items which do not generate
changes in the environment and its representation.

3.2 Environment

Environment modifications The JEDI engine provides an environment similar
to a collection of cells that can be occupied by agents (agents have real coor-
dinates [10]). The environment is graphically represented in the simulation as
a 2-dimensional grid, made from cells in which agents are represented. It has a
set of primitives, such as Put an agent or Remove an agent of the environment,
whose use requires an update of the the associated graphical representation.
Therefore, we propose to measure, at time step ¢, the number of calls for these
primitives of the environment, noted £(t), compared to the number of agents in
the simulation.

Definition 2. Modifications
At time step t, the number of modifications from agents is defined by:
Modifications(t) = E(t) / card(A(t))

We get a indicator of the visual entropy of the simulation: we mean here the
evolution of the representation of the environment between two time steps. This
measure is open, typically between 0 and 1 if the resolved interactions call to
only one environment primitive requiring an associated graphical update.

Environment stability This indicator is a measure of stable points of the sim-
ulation. This is done through the evolution of the occupation of environment
cells in relation to each family of agents. A large deviation in some cells shows
that they are occupied repeatedly by the considered family of agents: so we can
conclude that this is a stable point in the simulation.

Definition 3. Stability
At time step t, with:

— N(t) = card(Ag(t)) the number of agents from family F ;

— p the number of cells in the environment;

— O.,7(t) the cumulated presence of agents of the family F since the beginning
of the simulation in cell c;

- Mxz(t) = W the average occupancy of cells.

The standard deviation of cells occupancy is:

o (1) = \/ 5 % L0y (Oer(t) = M(1)2.

The worst standard deviation, if every agent has a differ-
ent cell without moving and that the population N is the

same in number since the beginning of the simulation, is:

odefr(t) = 1 x (S22 (0= M#(1)2 + $7, y(t— M#(1))?)

Then, the stability is defined as:
Stabilityr(t) = ox(t)/odefx(t)

If at time step ¢, the population N peaks and, subsequently, cell occupancy stag-
nates, the standard deviation will converge towards the unfavourable metric. A
simple measure of Agents stability would have been to determine the proportion
of agents whose position is unchanged after two time steps. Our measure takes
into account the cumulative presence of agents since the beginning of the simu-
lation: it enables us to reveal areas of convergence of agents in the environment.

We also provide 2 indicators on the environment: the mix and the cohesion.
The mix is the average percentage of other families in the neighborhood of each
agent. Similarly, cohesion is the average percentage of agents from the same
family in the neighborhood of each agent. The general idea is the commonly
accepted idea of similarity percentage in the Moore neighborhood.

Definition 4. Mixz and Cohesion
At time step t, with:

— N(z) the neighborhood of the agent x;

— F(x) the family from which agent x is instantiated;

Diff (z) = card({a € N(z)|F(a) # F(x)}) the number of agents in the
neighborhood of the agent x whose family is different;

Pareil(z) = card({a € N(2)|F(a) = F(z)}) the number of agents in the
neighborhood of the agent x whose family is the same;

CasesP(x) the number of cells in the neighborhood of the agent x;

— N = card(A) the number of agents in the environment;

— p the number of cells in the environment.

The miz is defined as: Mix = (1/p) % Zﬁ;l(Diﬁ(x)/CasesP(m));
the cohesion is defined as: Cohesion = (1/p) x Eivzl(Pareil(x)/CasesP(x)).

We also use a traditional definition of density.

Definition 5. Density
At time step t, with N(t) = card(A(t)) the number of agents in the environment
and p the number of cells in the environment, the density of population is defined

as: Density = %.

3.3 Study of the evolution of populations and the resolution of
interactions

Usage of interactions For the purposes of the browser, analysis of the dynamic
interactions also reveals their use.

Take the example of two families of agent: Plant and Grasshopper; and two
interactions: Graze and Devour. In fig.[Table]3, the Grasshoppers will Graze the

target Envir.| Plant |Grasshopper
Plant
Grasshopper Graze 1| Devour 0

Fig. 3. Interactions matrix from a simple model of food search: Graze has an higher
priority than Devour

Plants by priority then, when the Plants will have disappeared, the Grasshoppers
will Devour themselves. The interaction Devour will be made only when there
will be no more plants.

Let’s imagine that in this example, new Plants could grow during simulation
in sufficient numbers to feed the Grasshoppers: the interaction Devour can never
happen then, which allow a step of simplification in this model. Although we
do not have a knowledge of the evolution of the simulation, we can detect as an
heuristic measurement the interactions that do nothing to a given model.

Interactions dynamic In a feedback phenomenon, the result of the phenomenon
in question acts back on itself. In the case of simulations, such feedback can
occur in solving interactions.

Let’s take a simple example (cf. fig.4): 3 agents are placed around a table.

give

flower flower

char3

Fig. 4. Simple experience of object transmission between 3 characters

At the beginning of the simulation, an object Flower is given to one of the
Char. During simulation, if an agent has a Flower, it performs the interaction
Give the Flower to one of his neighboring agent. Considering one of the agents,
the interaction Give will be made once every three time steps, waiting that the
object Flower round the table: this phenomenon is periodic. The emergence of
cyclical use of interactions allows us to detect links between interactions that
are part of a possible feedback phenomenon.

Let’s consider the previous example that we modify (cf. fig.5):
after receiving the object Flower, the agent first performs the interaction Thank
whose target is its neighboring donor, then performs at next time step the inter-
action Give Flower to his other neighboring agent. If we study the interactions
of one agent, we find that the interactions Thank and Give are performed every
6 time steps (2 time steps for each Char). Give Flower can only be performed
after Thank during the cycle of 6 time steps: there will be a phase of %’T between
the two interactions. If we follow the interactions in general, Thank and Give
are alternately performed once at each time step. The link between Thank and
Give is viewable, with a periodic phenomenon of 2 time steps. In the case we

Fig. 5. Simple experience of object transmission with thank between 3 characters

have a low-level knowledge of the scenario being modelled, we propose the use
of frequency analysis tools in order to determine the periodic phenomena in the
use of interactions.

(DFT) By seeing the use of interactions as a discrete signal, we cab use the
classic definition of the Discrete Fourier Transform (DFT) in order to study
the interactions in the space of frequencies without constraint in the choice of
frequencies and the sampling.

Definition 6. DFT

With sz(n) the evolution of usage of an interaction T and N the number of time
steps used %/ the DFT, the DFT is defined as:

Sz(k) = S0 " sz(n) x e~ 2kn/N

Remarkable frequencies We propose finding local maxima in the frequency spec-
trum obtained by Fourier transformation of the evolution of interactions.

Definition 7. Remarkable frequencies
are Sz(k) the TFD of sz(n), the set Freq of Remarkable frequencies is:
Freq={k/Sz(k —1) < Sz(k) and Sz(k) > Sz(k+1)}

If the sample is correctly selected, we can detect the periodic usage of an inter-
action.
We can reach 2 levels of analysis in monitoring the interactions:

— A macroscopic monitoring, i.e. taking into account all the interactions that
reveal the dynamics of the global system. The discovery of remarkable fre-
quencies may highlight the coupling of some interactions.

— A microscopic monitoring, focus on one agent, where we can follow the res-
olution of interactions. This analysis can reveal the dependency between
the behaviour of the agent and his assignments. It faces, however, the life
expectancy of agents in some models (for example, the model prey / pre-
dation). Moreover, some interactions can disable the agent (at the choice of
the developer): an agent may only undergo interactions.

The frequency analysis needs to be counterbalanced because some interactions
may follow a periodicity intrinsic to them (and therefore independent of the
conduct of the simulation itself).

Study of the evolution of populations Some models, like the prey / predator, will
lead to the periodic variation of populations, revealing feedback phenomena.
The detection of these periodic phenomena is carried out by Fourier analysis, as
described for the analysis of interactions.

4 LEIA: a browser in simulations space

The LEIA browser®# is an application using N instances of the JEDI engine.
It allows the user to instantly make a visual comparison of N simulations by
seeing all of them working in parallel (fig.6). These N instances are created
from a reference model like JEDI Builder. This reference model is based on an
ontology, constituted of already-built family of agents and interactions. We can
also define the beginning number of agents and their initial distribution. By
giving a domain ontology in input, LEIA is able to build automatically several
simulations from the space simulations associated to this domain.

Model manipulation The LEIA browser provides to the user a set of transforma-
tions and generation tools for model, and a set of tests to browse the simulations
space. These tools can vary the parameters of the model, either by adding or
deleting assignations, changing priorities or limit distance, the initial number
of agents, or operations on the interactions matrix as to symmetrize or merge
matrices of 2 models. The user can then, by these tools, automatically change
the reference model to generate N sub-models. These models are then loaded
into the N instances of the JEDI engine: the user can view and compare the NV
simulations with separate behaviours.

3 for LEIA lets you Explore Interactions for your Agents
* www2.lifl.fr/SMAC/LEIA /applet.html

v Chatouilleur —OXx

Configuration | Parametre | Simulation |

Modéle Modificatioh modele

Tester modéle \ Melanger modéles

Tester Ajouter Retirer
Tester affectation distance/ priorité

Tester Famille/Population
Tester affectation Source/ Cible

score =11.0 o score =9.0

N -

score =11.0

score =8.0

score =9.0

score =12.0

score =15.0

score =8.0

Crepnie | o |

Copyright @ 2007 SMAC - hup:/ /www.lifLir/ SMAC

Fig. 6. LEIA the browser in simulations space

Simulation analysis The browser is assisted by a statistics engine to help the
user to appreciate the qualities and differences between the displayed models.
This statistics engine is based on measurement tools presented in the previous
section. We get a quantified return for each simulation in which we consider:

all interactions resolved by time step compared with envisaged interactions;
the number of modifications of the environment;

the repartition of agents: cohesion and mix;

the evolution of the occupation of the environment;

remarkable evolution of populations;

remarkable evolution of interactions.

These heuristic measures allow the user to access to informations about each
model with complete detail of scores and the associated graphics display is up-
dated in real time.

Model analysis In addition to the measurement tools that we have already pre-
sented, we can study in the specific context of LEIA browser the construction
of the model, especially its interactions matrix. The so-called circular assigna-
tions are remarkable: i.e. for the same interaction, priority and limit distance,
the sources and targets vary cyclically.

Definition 8. Cyclic assignations

With e = (I,p,d) an assignation element.

we define: Assi(e) = {(S,T) € (F)?|e € as/r} the set of assignations from the
Assignation Matriz with the same interaction I, priority p and limit distance d.
If a € agyr, then:

— Src(a) = S is the agent family being source of a;
— Tgt(a) =T is the agent family being target of a;.

the cyclic assignations is the set of couples (S,T) taking part in the cycle e:
Assicyliques(e) = {(S,T) € Assi(e)/3(ai)ienn S Assi(e)/Src(ar) =
SATgtlar)) =T A (Vi € [1,n—1],Src(air1) = Tgt(a;)) A Src(ar) = Tgt(an)}-

Definition 9. Cyclic aspect
The cyclic aspect is defined as:
Cyclique = card(Assicyliques)/card(Assi)

The cyclical aspect of a model is the proportion of cyclical assignations among
all assignations the study of which helps to highlight cycles in the construction
of model that can possibly result in feedback loops.

More generally, the study model also opens the prospect of automated sim-
plification of models, which we are laying the foundations in LEIA by eliminating
unattainable interactions by their priorities and limit distance.

Scoring models We provide to the user a total score to bring together the results
of all the tools of measurement.

Definition 10. Total score

With S = {S1, ..., Sn'} the set of scores provided by the measurement tools (scores
between 0 and 100), the total score is defined as:

Totalscore = 1/N x Zfil(Si —50)

We made the choice to reduce the total score in a note typically between —50
and 50 not to emphasize a score over another. The score is centered on 0 to give
a simple reference to the user. We don’t use the multiplication because there is
the risk of hiding interesting data because of a particular score which would be
zZero.

By seeing the behaviour of all simulations in parallel, when one of them is
considered as interesting by the user with the help of the measure tools, its
model can be defined as the new reference model. Then, the user can repeat
the process of replacing the reference model, either manually or by using our
tools of transformation. The LEIA browser therefore allows one to explore the
simulations space generated from the domain ontology board. It should be noted
that the LEIA browser is open to any domain ontology, as the interactions and
agent families are designed according to the IODA methodology.

target|Envir. Red Blue Green
Red Infect 0 (1.0)

Blue Infect 0 (1.0)
Green Infect 0 (1.0)

Fig. 7. Interactions matrix of the infection model. It can be extended to a greater
number of agent families than two. ”Infect 0 (1.0)” means that the interaction ”Infect”
only occurs under a maximal distance of 1.0.

Results The tools presented here allow the user to make a back-engineering work
on simulations. This simulations can be discovered using the browser among the
simulations space.

Like the ”Continuator” [15], which stimulates musical creativity, LEIA is
proving to be a ”brain stimulator” for the discovery of new models, and helps
the user to identify interesting models.

Even with a simple ontology, with few classical interactions, benefits of the
LETA browser are outstanding. The observation of an experiment displaying
a synchronization phenomena between some agent families pointed out an in-
teresting set of interactions at its origin. This set of interactions contains two
interactions: one that clones the source on a neighboring position, and the other
that kills the target. Thanks to an analysis of the interaction matrix, this set
was simplified to a single interaction. Briefly, the aim of this new interaction is
to destroy a targeted agent found in the neighborhood and to replace it with a
copy of the source agent.

This model, found by LEIA, cyclically affect several families of agent with
the interaction "Infect” (see fig.7). At least three families of agent are required to
avoid deadlock in this simulation. From initial positions which are random, this
model led the agents to form spirals per infection (see left figure in fig.8). LEIA
points out that the infection model can’t work without filling the environment
with a huge and equal amount of agents from each families. Indeed, the greater
is the number of agents, the greater is the probability for a source agent to
find a target. Moreover, the limit distance is really important: having an higher
limit distance for an interaction allows agents to find further a target for this
interaction. Thus, the higher the limit distance is for ”Infect”, the higher is the
probablity to fire it. Of course, raising this limit distance helps to increase the
number of familiy agents.

We point out the robustness of this model by adding some obstacles in our
experiments. Those obstacles are empty agents that don’t interact with any other
agents in simulation: they just occupy a place in the environment. Spirals can
occur though the presence of obstacles. Moreover, this obstacles can make easier
the formation of spiral at their positions, like the right image in fig.8.

This dynamic® is well known in chemistry in reactions such as the Belousov-
Zhabotinsky cyclical reaction [18,1]. Such phenomena are also examined with
the help of cellular automata in the Greenberg-Hastings model [4].

> www2.lifl.fr/SMAC/LEIA /spirale.html

Fig. 8. At left, formation of a spiral in infection model between 7 colors. The figure on
the right shows the robustness of this model even if obstacles exists in the picture.

5 Towards a genetic evolution

When a problem admits a set of solutions, a genetic algorithm solves it by
evaluating a set of solutions parametrized with a fixed number of genes. These
genes can evolve by crossing and mutations of the solution in order to maximize
an evaluation function [7]. The algorithm converges towards a solution which
is considered to be good. The designer also defines a fitness function to fit the
sought solution.

In works about Imagine [13], designers suggest an original technique for build-
ing CSS stylesheets by using a genetic algorithm and successive evaluations by
the user. Here, each stylesheet parameter is a gene that can be crossed or trans-
ferred. The algorithm randomly generates stylesheets, used to the same text. A
user can then choose one or more stylesheets with pleasant characteristics. The
algorithm then generates new stylesheets by taking into account the previous
choices in order to converge, after some iterations, to a stylesheet that the user
deems to his liking.

In the LEIA browser, designing a model can be automated by drawing ran-
dom assignments. We can also dynamically implement this model with the view
to immediately test it in a simulation. The browser also allows the use of mul-
tiple simulations at the same time. We can create and test a model, then help
the user to judge its quality by using our measurement tools. Indeed, they make
easier the search for some phenomena, for example to identify:

— phenomena of segregation using the measurement tools about cohesion, mix-
ing and stability;

— cyclical evolution of the population from which we can detect remarkable
frequencies;

— point out some models which converge towards stable positions by observing
the variations of cells occupation;

— models causing a major renewal of the environment by studying its modifi-
cations.

The user can identify an interesting model by specifying precise research crite-
ria and, by successive iterations, refine the model in order to obtain a sought
phenomenon. Like the user can identify the Dawkins biomorphs in ” The Blind
Watchmaker”[2] whose development meets its desires, he can design models cor-
responding to his needs by viewing them.

The browser in the simulations space opens the perspective of the generation
of model, written in the IODA methodology, through a genetic algorithm. The
user choice of specific measurement tools allows the creation of fitness functions.
All scores are evaluation functions judging the quality of models. We can see
the assignations as genes with which a mutation factor is involved. Then, the
mutation can be applied to parameters of an assignation: priority, limit distance,
source, target, interaction with different probabilities depending on the supposed
impact of the parameter: modifying the distance limit changes the behavior of
a model less than changing the interaction.

6 Conclusions and Perspectives

The browser in simulations space allows the iterative construction of models
through the IODA methodology which provides a clear separation between
agents and their interactions allowing composition without code generation. We
offer a range of tools for processing and simplifying models that can then be
viewed in parallel. Then, we propose measurement tools designed from the per-
spective of IODA. These heuristic measures highlight some features of these
models: system activity, spatial distribution, stability over time, feedback, etc.
They make easier the understanding of models built in this way.

We can reverse the usual way of models designing, by firstly seeing the result
then studying their behavior. Through its tools and ease of model design, the
LEIA browser acts so as a ”brain stimulator” whose first result was to find
a model similar to the dynamic of Greenberg-Hastings model. Moreover, the
browser is open to any ontology as agents and interactions are being designed
following the IODA methodology: LEIA aims at exploring simulations space of
domains as various as physics or biology. Ultimately, we envisage the construction
of models by genetic algorithms, models in which the matrix of assignation can
be seen as a set of genes, our measurement tools used for evaluating these models
and the search for special features.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

B. P. Belousov. A periodic reaction and its mechanism. In Compilation of Abstracts
on Radiation Medicine, 1959.

R Dawkins. The Blind Watchmaker. W.W. Norton & Company, Inc., New York,
1986.

Gabriel Desmeulles, Gabriel Querrec, Pascal Redou, Sébastien Kerdélo, Laurent
Misery, Vincent Rodin, and Jacques Tisseau. The virtual reality applied to biology
understanding : the in virtuo experimentation. Ezpert Systems with Applications,
30(1):82-92, 2006.

R. Fisch, J. Gravner, and D. Griffeath. Metastability in the Greenberg-Hastings
Model. In eprint arXiv:patt-sol /9303005, pages 3005—, March 1993.

Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform architecture.
In Agents Workshop on Infrastructure for Multi- Agent Systems, pages 48-55, 2000.
D. Hofstadter. Ma thémagie: En quéte de l’essence de l’esprit et du sens. Intered-
itions, London, 1988.

J. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, 1975.

Yoann Kubera, Philippe Mathieu, and Sébastien Picault. La complexité dans les
simulations multi-agents. In Valérie Camps and Philippe Mathieu, editors, Actes
des 15e Journées Francophones sur les Systémes Multi-Agents (JESMA’2007),
pages 139-148. Cépadues, 2007. JFSMA’2007 — Carcassone (France) — 17-19 oc-
tobre 2007.

Yoann Kubera, Philippe Mathieu, and Sébastien Picault. Interaction-oriented
agent simulations : From theory to implementation, ECAI 08 July 21-25 2008.
Yoann Kubera, Philippe Mathieu, and Sébastien Picault. Une architecture orientée
interactions. Revue d’Ingéniérie des Systémes d’Information (ISI), 2008. Numéro
spécial Architectures Logicielles.

Philippe Mathieu, Sébastien Picault, and Jean-Christophe Routier. Donner corps
aux interactions. In Actes des Je Journées Francophones sur les Modéles Formels
de UInteraction (MFI’07), pages 333—-340. Université de Paris Dauphine, 2007.
MFT’07 — Paris (France) — 30 mai, ler juin 2007 — Papier court.

N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation
system, a toolkit for building multi-agent simulations, 1996.

N. Monmarché, G. Nocent, M. Slimane, and G. Venturini. Imagine: a tool for
generating HTMUL style sheets with an interactive genetic algorithm based on genes
frequencies. In IEEE International Conference on Systems, Man, and Cybernetics
(SMC’99), volume 3, pages 640-645, Tokyo, Japan, October 12-15 1999.

Philippe Mathieu Nouredine Bensaid. A framework for cooperation in hierarchical
multi-agent systems. Journal of Mathematical Modelling and Scientific Computing,
8, September 1998.

F. Pachet. De la co-construction d’un langage homme-machine: quelques
expériences en musique. In Valérie Camps and Philippe Mathieu, editors, Actes des
15e Journées Francophones sur les Systémes Multi-Agents (JESMA’2007), page 9.
Cépadues, 2007. JFSMA’2007 — Carcassone (France) — 17-19 octobre 2007.

Yves Demazeau Pierre-Michel Ricordel. La plate-forme volcano - modularité et
réutilisation pour les systéemes multi-agents. Technique et Science Informatiques,
21(4):447-471, 2002.

Uri Wilensky. Netlogo (and netlogo user manual), 1999.

A. M. Zhabotinsky. Periodic processes of malonic acid oxidation in a liquid phase.
In Biofizika, 1964.

