
RBAC-MAS & SODA:
Experimenting RBAC in AOSE

Ambra Molesini1, Enrico Denti1, and Andrea Omicini2

1 Alma Mater Studiorum—Università di Bologna
viale Risorgimento 2, 40136 Bologna, Italy

ambra.molesini@unibo.it, enrico.denti@unibo.it

2 Alma Mater Studiorum—Università di Bologna a Cesena
via Venezia 52, 47023 Cesena, Italy

andrea.omicini@unibo.it

Abstract Role-Based Access Control models are currently considered
as the most effective approach for engineering access control systems. In
this paper we experiment their application in the context of Multi-Agent
Systems (MAS), by discussing the design of an access control system
with an agent-oriented methodology such as SODA. In particular, we
show how a clear separation between mechanisms and policies can be
achieved by organising the access control system along two layered sub-
systems, and discuss the advantages of such an approach.

1 Introduction

According to Anderson, “security engineering is about building systems to re-
main dependable in the face of malice, error or mischance” [1]. Security require-
ments are often still considered among the non-functional system requirements—
something that can be taken into account at a later point of the software devel-
opment process. Yet, fitting security mechanisms into an existing design leads to
design problems and software vulnerabilities: security should rather be consid-
ered as a key issue throughout the whole development process, to be defined and
explored in the requirements specification phase—i.e., among the functional re-
quirements [2]. So, software engineering methodologies should provide developers
with models and processes able to effectively capture the security concerns.

In principle, the agent-oriented paradigm seems a good candidate for cap-
turing security issues in software systems, since the intrinsic agents’ features –
such as autonomy, intentionality and sociality – make it possible to express the
security requirements at the proper abstraction level at early stages of the engi-
neering process, mapping them onto suitable security mechanisms in subsequent
stages. A software system can be then conceived as a Multi-Agent System (MAS)
where autonomous entities – the agents – interact with each other in order to
achieve their goals: such an agent “ensemble” is often represented as an agent
society at design time. Thus, software engineering techniques should specifically
be inspired by – and tailored to – the agent paradigm, so as to fully exploit the



agent as well as the agent society metaphors: according to that, several agent-
oriented methodologies have been proposed in the last years [3,4,5].

However, most of them still fall short in providing a full-fledged security-
oriented approach for agent-oriented systems, although some recent research
work is opening the way especially with respect to the requirements analysis
[6,7]. Indeed, research on security for MAS has been mainly focused on the
solution of individual security problems, such as attacks from an agent to an-
other, from a platform to an agent, and from an agent to a platform [2]: instead,
adequately integrating security and systems engineering into a coherent agent-
oriented development process is seemingly a more complex task. In particular,
in the engineering of interaction of complex software systems, security is strictly
related to two other dimensions—coordination and organisation [8,9,10]. In fact,
both coordination and security establish laws and rules for constraining the space
of interaction—that is, the system dynamics; organisation is their static coun-
terpart, in that it specifies on the one side the agents and the roles they play, as
well as the agent-role and inter-role relationships between them. The connection
between organisation and security is quite apparent in Role-Based Access Con-
trol (RBAC) models & architectures, currently considered as the most promising
approach in the engineering of security of complex information systems [11].

Generally speaking, access control is aimed at allowing authorised users to
access the system resources they need, while preventing unauthorised users to
do the same. Today, access control is typically designed by clearly separating
the definition of a suitable access policy – i.e., the set norms for granting /
refusing access to resources – from the hardware & software mechanisms used to
implement and enforce it: this separation guarantees independence between the
protection requirements to be applied and the way they are applied. Different
access policies can thus be easily compared independently from their actual
implementation, and changed with no impact over the system; in its turn, the
underlying mechanism can support different, multiple policies over time.

More recently, the RBAC technique has been introduced in the context of
MAS infrastructures, integrating a role-based security approach with agent-
based coordination and organisation, where the role abstraction is already at
play [8]. This choice helps facing the typical MAS heterogeneity and openness,
since the security properties can be specified in terms of RBAC general con-
cepts: for instance, participating agents can adopt heterogeneous computational
models (from purely reactive to cognitive ones), as well as enter/ leave/ change
role in the organisation as needed, according to the system policies.

In this paper we first discuss the application of RBAC models in the MAS
context (Section 2). Then, we focus on the RBAC requirements to be addressed
for engineering an RBAC system (Subsection 2.2), and show how SODA, an
agent-oriented methodology, addresses those requirements (Section 3) Finally,
as a case study, we apply our approach to the control of the accesses to a uni-
versity building (Section 4), and show the benefits of a clear separation between
mechanisms and policies. Discussion and comparison with some relevant related
work are reported in Section 5.



2 Access Control in Multi-Agent Systems

Access control is aimed at enabling (only) the authorised users to access the
system resources in a controlled and supervised way. A key aspect is the clear
separation between the rules used to decide whether access to a resource should
or not be granted for a given user – the access policy – and the hardware & soft-
ware mechanisms actually enforcing such rules. Such a separation is useful for
two main reasons: first, to uncouple the definition of a policy from its implemen-
tation, so that the latter is not affected by policy changes; then, to more easily
identify the basic properties that any access control system should satisfy—such
as complete mediation, default deny, minimum privilege, etc.

With respect to previous access control models, such as Discretionary Ac-
cess Control (DAC) and Mandatory Access Control (MAC), RBAC – a NIST
standard [12] – specifies security policies in terms of organisational abstractions
(users, roles, objects, operations, permissions, and sessions) and their relation-
ships [13]. Users are assigned to roles, and roles to permissions. A role is un-
derstood as a job function within the context of an organisation with some as-
sociated semantics regarding the authority and responsibilities conferred to the
user that plays the role at a given time. A permission is an approval to perform
an operation on some protected objects: the exact semantics of “operation” and
“object” depends on the specific case. A session is a mapping between a given
user and the subset of its currently active roles: so, each session is associated
with a single user, while a user can be associated to one or more sessions.

Organisation rules are defined in terms of relationships between the above
elements—namely, between roles and permissions, and between roles and users;
inter-role relationships are also introduced to specify separation of duties. More
precisely, static separation of duty (SSD) is obtained by enforcing constraints
on the assignment of users to roles, while dynamic separation of duty (DSD)
is achieved by placing constraints on the roles that can be activated within or
across the given users’ session(s). Accordingly, introducing RBAC in the context
of MAS coordination models and infrastructures essentially amounts at mapping
roles, sessions, and policies onto suitable runtime issues of the MAS organisation,
dynamically manageable via infrastructural services.

2.1 RBAC for Multi-Agent Systems

RBAC-MAS [9,14] is a model for an RBAC-like organisation of MAS, where
RBAC general concepts are tailored to MAS specificities (Figure 1).

Generally speaking, agent-oriented methodologies often exploit MAS role-
based organisational models just as analysis & design tools [15]: instead, applying
an RBAC-like model into MAS shifts the focus on runtime aspects, making roles,
sessions, and policies the key runtime issues of a MAS organisation. In particular:

– RBAC users are represented in RBAC-MAS by Agent Classes;
– the behaviour of each role (agent) is defined in RBAC-MAS in terms of

Actions and Perceptions used, respectively, to affect and perceive the com-
putational environment where the agent is situated;



– Policies constrain the admissible interaction histories of an agent playing
a specific role, and are used to explicitly model the organisational rules: at
runtime, they are enforced by the underlying MAS infrastructure;

– while RBAC equips agents with a default role-set, in RBAC-MAS the agents’
session starts with no activated roles: roles can be subsequently activated
on a step-by-step basis, according to the specified activation/deactivation
policies. The dynamics of role activation is constrained by the DSD rules.

Figure 1. RBAC-MAS reference model [9]

More generally, RBAC approaches split some security issues which were previ-
ously faced by individual applications between the design and the infrastruc-
ture levels. Analogously, the factorisation in terms of agents of some security
issues that frequently emerge in the engineering of a distributed system involves
both the extension of MAS infrastructures with suitable services, and the im-
provement of the methodological support towards the design of complex secure
systems.

2.2 Requirements for Engineering an RBAC-MAS System

In order to support the analysis and design of an access control system, a method-
ology should properly support the analysis and design of all the abstract entities
adopted by the access control technique of choice.

In the specific case of RBAC-MAS, a methodology should allow engineers
to model and design roles, organisations, objects, policies, operations, as well as
static and dynamic constraints. Although at a first sight this requirement might
seem somehow obvious, and possibly even superficial, a more detailed analysis
leads to highlight some interesting aspects, that we will discuss below. Moreover,
the separation between policy and mechanism introduces further constraints: in
fact, while such two sub-systems can be designed separately, they are indirectly
coupled by the representation language of the access policies, since these are de-
signed by one sub-system, but enforced by the other. So, while it is not necessary
to know the specific policy during the mechanism design phase, knowing how



the policy is represented is relevant to choose the most appropriate storage and
to decide the most adequate enforcing implementation.

It is important to note that in the original RBAC-MAS formulation opera-
tions and objects collapse to the same entity “action” [14], i.e., an operation over
a given object. However in the following we prefer to characterise both actions
– the operation over the object – and objects, given that, from a software engi-
neering viewpoint, the object entity hides all the environment abstractions and
structures. The knowledge of the environment and of its topological structure is
instead crucial when we deal with the engineering of a new system specially in
the context of MAS engineering where is often necessary to design new environ-
ment abstractions in order to support the achievement of the agent’s tasks/goals.
Obviously, the same distinction is not so crucial in the context of MAS infras-
tructures – where RBAC-MAS was developed – because there environment is
already analysed and designed in terms of the infrastructures themselves. Fi-
nally, the distinction between actions and objects is very important also in the
engineering of the interactions between agents and environment.

In turn, abstract entities add their own requirements, which can be outlined
as follows:

Role — This entity implies that the methodology should support the modelling
and design of both the user roles and the administrative roles which are
required for the system management.

Organisation — This entity implies that the methodology should support the
modelling and design of agent societies and of the rules that govern them.

Object — This entity hides a lot of complexity: in fact, the ability of mod-
elling the “system’s objects”(i.e., the system “resources”) requires that the
methodology is able to model the environment of the MAS. In the case
of the mechanism sub-system, this means that the methodology should be
able to both model and design the environment, since the mechanism has to
provide the physical and logical control to prevent unauthorised access. In
addition, the notion of MAS environment, as suggested in [16], implies both
the modelling of the environment abstractions – entities of the environment
encapsulating some functions – and of the topology abstractions – entities
of MAS environment that represent the (either logical or physical) spatial
structure. In fact, enabling system requirements to determine the topological
structure of the system is necessary in order to capture the wide range of
access control systems (e.g., from controlling the access to a file, to a room
in a building, etc). Summing up, topology constraints should be considered
since the earliest requirement analysis phase. So, supporting the object en-
tity requires that a methodology enables engineers to model and design both
the topological structure of the environment and the resources that populate
it.

Action and Perception — These entities imply that the methodology should
support the modelling and design of the actions that roles can perform over
the objects and of the perceptions of the environment—as highlighted in the
Subsection 2.1.



Policy — This entity leads to the design of rules concerning the abstractions.
More precisely, these policies represent rules that involve roles, objects and
actions, and rules over role activations and default roleset.

Finally, the mechanism sub-system should manage the association between users
and roles, and should do that in a dynamic way: indeed, policies could change
over time and at any time, and the sub-system should be able to support and
implement such changes with no need to be stopped or reset.

3 SODA and RBAC-MAS

3.1 The SODA Methodology

SODA (Societies in Open and Distributed Agent spaces) [17,18] is an agent-
oriented methodology for the analysis and design of agent-based systems, which
adopts the Agents & Artifacts meta-model (A&A) [19], and introduces a layering
principle as an effective tool for scaling with the system complexity, applied
throughout the analysis and design process [20].

The SODA abstractions – explained below – are logically divided in three
categories: i) the abstractions for modelling/designing the system active part
(task, role, agent, etc.); ii) the abstractions for the reactive part (function, re-
source, artifact, etc.); and iii) the abstractions for interaction and organisational
rules (relation, dependency, interaction, rule, etc.). In its turn, the SODA pro-
cess is organised in two phases, each structured in two sub-phases: the Analysis
phase, which includes the Requirements Analysis and the Analysis steps, and
the Design phase, including the Architectural Design and the Detailed Design
steps. Each sub-phase models (designs) the system exploiting a subset of SODA
abstractions: in particular, each subset always includes at least one abstraction
for each of the above categories – that is, at least one abstraction for the system
active part, one for the reactive part, and another for interaction and organi-
sational rules. Figure 2 shows an overview of the methodology structure: as we
will show in the case study (Section 4), each step is practically described as a
set of relational tables (listed in Figure 2 for the sake of completeness).

Transitions
Tables

Requirements
Analysis Analysis

References
Tables

Requirements Tables

Domain Tables

Relations Tables

Responsibilities Tables

Dependencies Tables

Topologies Tables

Analysis

Architectural
Design

Detailed
Design

Mapping
Tables

Entities Tables

Interaction Tables

Topological Tables

Agent/Society  Design Tables

Environment Design Tables

Constraints Tables Interaction Design Tables

Topological Design Tables

Design

Figure 2. An overview of the SODA process



Requirements Analysis. Several abstract entities are introduced for require-
ment modelling. In particular, requirement and actor are used for modelling the
customers’ requirements and the requirement sources, respectively, while the
external-environment notion is used as a container of the legacy-systems that
represent the legacy resources of the environment. The relationships between
requirements and legacy systems are modelled in terms of a suitable relation.

Analysis. The Analysis step expresses the requirement representation in terms
of more concrete entities such as tasks and functions. Tasks are activities re-
quiring one or more competences, while functions are reactive activities aimed
at supporting tasks. The relations highlighted in the previous step are here the
starting point for the definition of dependencies among such abstract entities.
The structure of the environment is also modelled in terms of topologies, i.e.,
topological constraints over the environment.

Architectural Design. The main goal of this stage is to assign responsibil-
ities of achieving tasks to roles, and responsibilities of providing functions to
resources. In order to attain one or more tasks, a role should be able to perform
actions; analogously, the resource should be able to execute operations provid-
ing one or more functions. The dependencies identified in the previous phase
become here interactions and rules. Interactions represent the acts of the inter-
action among roles, among resources and between roles and resources, while rules
enable and bound the entities’ behaviour. Finally, the topology constraints lead
to the definition of spaces, i.e., conceptual places structuring the environment.

Detailed Design. Detailed Design is expressed in terms of agents, agent so-
cieties, composition, artifacts and aggregates and workspaces for the abstract
entities, while the interactions are expressed by means of uses, manifests, speaks
to and links to concepts. More precisely, agents are intended here autonomous
entities able to play several roles, while a society can be seen as a group of
interacting agents and artifacts when its overall behaviour is essentially an au-
tonomous, proactive one. The resources identified in the previous step are here
mapped onto suitable artifacts, while aggregates are defined as a group of inter-
acting agents and artifacts when its overall behaviour is essentially a functional,
reactive one. The workspaces take here the form of an open set of artifacts and
agents: artifacts can be dynamically added to or removed from workspaces, and
agents can dynamically enter (join) or exit workspaces.

3.2 RBAC Requirements in SODA

In Subsection 2.2, two major requirement categories were outlined: one about the
representation language of the access policies, the other concerning the RBAC-
MAS abstract entities. With respect to the former issue, SODA is conceptually
orthogonal to any possible representation language, since at the moment no hy-
pothesis is made about the language adopted for compiling its relational tables.



With respect to the latter issue, RBAC-MAS abstract entities are captured by
suitable SODA abstractions as follows:

Role — this RBAC-MAS entity is directly mapped onto SODA role concept in
the Architectural Design phase, namely in the Entities Tables.1

Organisation — this entity is mapped by SODA societies in the Detailed De-
sign phase (see the homonymous tables); in turn, the rules governing such
societies are embodied in the social artifacts expressed by the Environment
Design Tables.

Object — since this RBAC-MAS entity is used to represent the environment of
the system, and given that topology constraints need to be considered since
the earliest requirement analysis phase, its impact spreads through all SODA
phases. More precisely, since the environment is composed of both environ-
ment abstractions and topological abstractions, in the analysis phase such
aspects are captured via the legacy system and function abstractions, and the
topology abstractions, respectively. Then, in the Design phase (which is par-
ticularly relevant for the mechanism sub-system), environment abstractions
take the form of resources (in the Architectural Design step) and artifacts
(in the Detailed Design step); in the same way, topology abstractions take
the form of spaces (in Architectural Design) and workspaces (in Detailed
Design).

Action and Perception — these entities are natively supported by SODA:
actions and use map action in the Architectural Design and in the Detailed
Design respectively, while manifest maps perception in the Detailed Design.

Policy — this entity finds it specific counterpart in the Rule abstraction (Con-
straints Tables) of SODA’s Architectural Design, since in the Analysis phase
they are simply considered as relations and dependencies; such rules are then
mapped onto suitable (individual or social) artifacts in the Detailed Design
step.

Considering how SODA supports RBAC-MAS requirements with respect to the
three abstractions categories outlined above in this Section, it is worth noting
that in the design of the mechanism sub-system only the reactive abstractions are
involved, while in the design of the policy sub-system only the interactions and
rules abstractions are used: the active abstractions, instead, are just modelled
– not designed –, as in this kind of system the corresponding roles, from the
RBAC design perspective, are just an input of the system, defined in the policy
sub-system requirements. This is no longer true if a new system is being designed
from scratch, where it is unlikely to have such roles as inputs of the whole system:
rather, in such cases these roles should likely be first designed—and only then
used as inputs in the design of the policy sub-system.

1 The term “Entities” in SODA tables is used with a different, and more specific,
semantics than in RBAC-MAS: Entities Tables, in fact, refer to roles, resources,
actions, and operations, while RBAC-MAS uses that term to refer to a wide range
of abstractions—from roles to organisations, objects, operations, permissions and
constraints.



Summing up, all the key RBAC-MAS issues discussed above are quite well
captured in SODA: such aspects are naturally taken into account when the
methodology is applied, and take the form of suitable requirements and specifi-
cations in the SODA tables, as we will show in the case study below.

4 The Case Study

The case study we consider is the management of the access control to a uni-
versity building: for the sake of brevity, we set the core layer quite at a high
abstraction level, and only a limited set of the SODA tables will be reported.
As highlighted in Section 2, the design of mechanisms (Subsection 4.1) is kept
separate from the design of policies (Subsection 4.2). Here we present the key
system aspect, that is, the topological structure of the environment, leaving the
discussion of the application roles involved to the sub-systems design.

The topological structure, shared between the sub-systems, is established
during the requirements analysis, since it derives from the physical structure of
the building. More precisely, following the hierarchial view in Figure 3, layer
a represents the whole building, layer b represents the spatial organisation of
the building in terms of classrooms, administration, departments, and library,
layer c represents the spatial organisation inside each department – composed
of administration offices, professors’ offices and the library – and administration
– made of offices; finally, layer d represents the spatial organisation inside the
administration department, which is, again, made of offices. Such a hierarchical
representation simplifies the design of both mechanisms and policies, since the
same mechanism can be replicated in the access points of the building, while
finer-grained policies can be expressed for each space.

The general description above summarises the analysis of the topological
constraints for both the mechanism and policies. As far as the mechanisms are
concerned, this analysis suggests that the designer organises the environment
following the topological structure, nesting spaces and workspaces, and mapping
spaces onto workspaces: this approach simplifies the design of the mechanisms,
which can be structured along different control levels. On the other hand, the

classroom librarydepartment

Faculty building

administration

office dep-administrationdep-library office

office

a)

b)

c)

d)

Figure 3. The physical structure of the university building.



policy designer can express accurate policies, defining whether each role can
either access or not the building, along with its access privileges, for each access
point—i.e., on a fine-grained basis.

4.1 Designing the Mechanism

The topological structure of the environment explained above is captured by two
different SODA tables in the Architectural Design phase (Figure 4): the Space ta-
ble ((L)St) describes the logical space of the system, while the Space-Connection
table ((L)SCt) shows the relation between spaces. Then, the workspaces in the
Detailed Design step naturally follow from the spaces defined in the Architec-
tural Design step.

Space Description
Faculty the whole building

Classroom the student space

Library the faculty library

Department the research centre

Administration the faculty bureaucracy centre

Dep-Library the department library

Dep-Administration the department bureaucracy centre

Office the rooms for employees

Space Connection
Faculty Classroom, Library, Department, Administration

Administration Office

Department Dep-Library, Dep-Administration, Office

Dep-Administration Office

Figure 4. Topological Structure in top down order: (L)St, (L)SCt

According to this topological structure, the global mechanism can be con-
ceived as composed of two complementary sub-mechanisms, one for the access
to the whole building (Figure 5, top) and another for the access to a single
room/office department—simply “room” in the following (Figure 5, bottom).
Both are based on “Interface Artifacts” that represent the wrappers to the hard-
ware resources capturing the user credentials: in the case of the whole building,
there is an Interface Artifact for each hardware device that monitors a specific
physical access point, while each room has its own Interface Artifact.

We assume that Interface Artifacts generate an event whenever a user enters
the building (room); we also assume that such events are perceived by a suitable
“(Room-)Access Manager” agent, whose task is to check whether such an access
can be authorised. For this purpose, the Access Manager exploits the “User(-
room) Artifact” to check if the user can access the building (room) and, if so,
modifies the state of the “Building-State Artifact” accordingly. Room access,



building
room

User
Artifact

Interface 
Artifact

Building-State
Artifact

User Manager

Access Manager
Admin
Artifact

Interface 
Artifact

R-Access Manager

User-room
Artifact

Appointment
Artifact

Room-Admin
Artifact

Room Manager

event

event

event
event

uses

uses

uses

uses

uses

uses

uses

uses

Figure 5. The mechanisms for the access control for the whole building (top) and the
single room (bottom)

instead, must be granted also to users that are not permanently authorised,
provided that they have an appointment: this is performed via the “Appointment
Artifact”.

The “User(-room) Artifact” stores all the roles permanently qualified to ac-
cess the building (room), along with their access privileges. This artifact pro-
vides two different sets of functionalities: those needed to check the access au-
thorisations, and those required by special users—such as administrators – for
management purposes – such as adding or deleting roles, modifying the users’
privileges, and so on. The “Building-State Artifact” traces the people inside the
building: when a user exits the building, an event is generated, and the Access
Manager modifies the artifact again. The “Appointment Artifact” manages the
users’ appointments, storing the list of the appointments for a given room: so,
it is obviously shared by all the people that work in that room. The stored data
include the time and the people involved in each appointment, enabling the poli-
cies designer to express several different policies—for instance, deciding whether
the access should be denied or authorised if the people involved are not in office.

Users are managed by the “User Manager” agent, while users authorised to
enter a room are managed by the “Room Manager”: both such managers per-
ceive the events generated by the “Admin Artifact” (respectively, by the “Room-
Admin Artifact”). In turn, this represents the interface between the human ad-
ministrator and the mechanism itself, and is used by the system administrator
to introduce or delete roles and, more generally, to edit the policies over time
(in the case of the building) or to handle appointments (in the case of rooms).

These functionalities are represented in the Artifact-UsageInterface table
(AUIt) of the Detailed Design (Figure 6): the usage interface represents the



set of operations provided by an artifact. For space reason, only the names of
the artifacts’ operations have been reported, by omitting operations’ parameters.

Artifact Usage Interface
Interface Artifact enter role, exit role

Admin Artifact new role, canc role, update role, get roles, new user,
canc user, update user, can pol, new pol, update pol

User Artifact check access, new role, canc role, update role, get roles, new user,
canc user, update user, can pol, new pol, update pol

Building-State Artifact update in, update exit, get roles

Room-Admin Artifact new role, canc role, update role, get roles, new user,canc user,
update user, can pol, new pol, update pol, insert appointment,

modify appointment, delete appointment, get appointments

User-room Artifact check access, new role, canc role, update role, get roles, new user,
canc user, update user, can pol, new pol, update pol

Appointment Artifact check appointment, insert appointment, modify appointment
delete appointment, get appointments

Figure 6. Artifact-UsageInterface table

4.2 Designing RBAC Policies

RBAC policies are designed during SODA’s architectural design phase: more
precisely, the constraints that shape the role interaction spaces drive the design
of the organisational rules.

In our case, the environment needs not – and actually can not – be explicitly
designed, as it is already represented in/by the above mechanism as specified in
Subsection 3.2: all we need is to model it in the analysis phase, so as to identify
the relationships and the interactions between the two sub-systems. Then, the
mechanism’s artifacts will enforce the policies designed here, while, conversely,
the roles (agents) defined here will interact with the mechanism. For the same
reason, also the topological structure is implicit in the mechanism: so, the spaces/
workspaces identified in Subsection 4.1 are the same here, too. As a result, we
now focus only on the design of the interaction and organisational rule entities.

From the viewpoint of sub-system requirements, our scenario, in its simplest
version, involves six different roles: Student, Professor, Technician, Administra-
tive staff, Guide and Visitor. Professors, Technicians, and Administrative staff
can freely access the building at any time. Students, instead, can access the
building – in particular, classrooms and library – only during the regular opening
hours; in addition, to access the Administrative staffs’ and Professors’ offices,
they must have an appointment. Finally, Visitors cannot access the building
without a Guide, who is a member of the University – Professor, Technician,
Administrative staff – that escorts visitors inside the building.

Beyond these roles, the user management activity highlights the need of a new
“service” role – the System administrator – for modifying the access privileges
and managing the users’ credentials. This is not surprising, since during SODA’s



Role Action
Visitor enter, exit, ask appointment

Student enter, exit, ask appointment

Professor enter, exit, canc appointment, set appointment, change policy
insert role, canc role

Administrative staff enter, exit, canc appointment, set appointment, change policy
insert role, canc role

Technician enter, exit, canc appointment, set appointment, change policy
insert role, canc role

Guide enter, exit

System administrator enter, exit, change policy, insert role, canc role

Figure 7. Role-Action Table ((L)RAt)

Architectural Design new roles are often identified that complete and support
the activities of the roles directly deducted from the requirements.

So, there are seven different roles in all, each potentially able to perform the
actions depicted in Figure 7—we say “potentially” because the role will actually
be enabled to do such actions only if/when authorised to. Rules derive from the
desired policies, and are listed in Figure 8: the corresponding association to roles
is given in Figure 9.

For the sake of clarity, Figure 8 is organised in different sets of rules. The
first set (Guide-Rule and Visitor-Rule) reports the DSD and SSD constraints
over the corresponding roles (shown in Figure 9) that are enforced by the “User
Artifact”. In particular, the Guide role is dynamically incompatible with any
other role during a session (DSD constraint), since the Guide cannot abandon
visitors, who are not allowed to move alone inside the building. Similarly, the
Visitor role is incompatible with any other because a visitor cannot cover any
position inside the university: this is an SSD constraint, since this incompatibil-
ity holds permanently (it is not related to a temporary status in the session).
The second set of rules represents the constraints over the administrative opera-
tions, enforced by the the “(Room-)Admin Artifact”. The two other sets express,
respectively, the constraints over the access to the building (third set) and to
each room (fourth set), and are enforced, respectively, by the “User Artifact”
and by the “User-room Artifact” & “Appointment Artifact” pair.

5 Conclusions and Related Work

To the best of our knowledge, this is the first attempt to support the design
of an RBAC system via an agent-oriented methodology such as SODA. In fact,
other works in the literature (e.g. [21,22]) exploit MAS for realising an RBAC
system, but in the context of specific domain applications: thus, they lead to
ad-hoc solutions which are not easily reusable in other contexts, due to the lack
of separation between the “static part” of the system – the mechanism – and the
“dynamic part” – the policies. In addition, these works delegate the enforcing



Rule Description
Guide-Rule Guide cannot be activated together other roles (DSD constraint)

Visitor-Rule Visitor cannot be activated together other roles (SSD constraint)

Admin-Rule The Administrator can modify the access rules for the whole
building but cannot modify the access rules for the offices

Prof-Admin-Rule The Professor can modify the access rules for his/her office

Staff-Admin-Rule The Administrative staff can modify the access rules for their office

Visit-Rule Visitor can access the building only together a Guide

Building-Rule The access to the building is possible only
when the building is open to the public

Uni-Build-Rule Professor, Technician, Administrative staff and
System administrator can always access the building

App-Rule The access to an office is granted only if the Student has an
an appointment and the Professor/Administrative staff is in the office

Administration-Rule The access to the staff office is possible only
when the office is open to the public

ClassRoom-Rule The access to a classroom is not granted during a lecture

Library-Rule The access to the library is possible only
when the library is open to the public

Lab-Rule The access to the laboratory is possible only
when the laboratory is open to the public

Department-Rule The access to the department is possible only
if the destination room grants the access

Figure 8. Rule table ((L)Rut)

of policies to agents, while our approach is that such an enforcing should more
properly be done by suitable environmental abstractions [9].

Moving from the “university building access” case study, this paper aims at
showing the benefits of a clear separation between mechanism and policies, so
as to split the design of an access control system in two separate aspects: our
SODA-based approach leads to design such aspects as two sub-systems, exploit-
ing the agent paradigm. In particular, the mechanism sub-system is designed as
general as possible, since its structure is basically stable and reusable as is in
other applications: artifacts wrap the physical resources, and a society of agents
reacts to the events occurring in the environment. From this viewpoint, SODA’s
intrinsic support for both environmental abstractions – artifacts – and topol-
ogy abstractions – workspaces – makes it possible to support the whole design
process of the environment, including its spatial structure, in a uniform way.

Policies, on the other hand, are generally tied to the application domain, so
they typically have to be re-designed each time: as highlighted in Subsection 4.2,
the design of this sub-system is focused on the definition of roles and their
access privileges, which are the core of any RBAC system. Again, SODA natively
supports both roles and access privileges, which can be easily expressed in terms
of rules. So, only one sub-system needs to be redesigned in response to any
application or policy change—the other sub-system remains untouched, unlike
what would happen with a monolithic system.



Role Rule
Visitor Visitor-Rule, Visit-Rule, Building-Rule, Administration-Rule

ClassRoom-Rule, Library-Rule, Department-Rule

Student Building-Rule, App-Rule, Administration-Rule, Lab-Rule
ClassRoom-Rule, Library-Rule, Department-Rule

Professor Uni-Build-Rule, Administration-Rule, Lab-Rule
Library-Rule, Department-Rule, Prof-Admin-Rule

Administrative Uni-Build-Rule, Administration-Rule, Lab-Rule
staff Library-Rule, Department-Rule, Staff-Admin-Rule

Technician Uni-Build-Rule, Administration-Rule,Library-Rule, Department-Rule

Guide Guide-Rule, Uni-Build-Rule, Administration-Rule, Lab-Rule
ClassRoom-Rule, Library-Rule, Department-Rule

System Uni-Build-Rule, Administration-Rule, Admin-Rule
administrator Library-Rule, Department-Rule

Figure 9. Role/Rule association table (L)RoRut

Future work will be mainly devoted to improve the methodology in several
directions: i) to support the design of secure agent-oriented systems since the ear-
liest Requirement Analysis step; ii) to develop a language for SODA rules which
could be able to capture all the relevant RBAC permissions and constraints, and
iii) to more deeply study the access control issues related to artifacts.

References

1. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. 2nd edn. Wiley Computer (2001)

2. Mouratidis, H., Giorgini, P.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17 (2007) 285–309

3. Henderson-Sellers, B., Giorgini, P., eds.: Agent Oriented Methodologies. Idea
Group Publishing, Hershey, PA, USA (2005)

4. Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engi-
neering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Kluwer Academic Publishers (2004)

5. Bernon, C., Cossentino, M., Pavón, J.: An overview of current trends in european
AOSE research. Informatica 29 (2005) 379–390

6. Liu, L., Yu, E., Mylopoulos, J.: Analyzing security requirements as relationships
among strategic actors. In: 2nd Symposium on Requirements Engineering for In-
formation Security (SREIS’02), Raleigh, NC, USA (2002) Electronic Proceedings.

7. Yu, E., Cysneiros, L.M.: Designing for privacy and other competing require-
ments. In: 2nd Symposium on Requirements Engineering for Information Security
(SREIŚı02), Raleigh, NC, USA (2002) Electronic Proceedings.

8. Omicini, A., Ricci, A., Viroli, M.: RBAC for organisation and security in an agent
coordination infrastructure. Electronic Notes in Theoretical Computer Science
128 (2005) 65–85 2nd International Workshop on Security Issues in Coordination
Models, Languages and Systems (SecCo’04), 30 August 2004. Proceedings.

9. Viroli, M., Omicini, A., Ricci, A.: Infrastructure for RBAC-MAS: An approach
based on Agent Coordination Contexts. Applied Artificial Intelligence 21 (2007)
443–467 Special Issue: State of Applications in AI Research from AI*IA 2005.



10. Johnson, M., Feltovich, P.J., Bradshaw, J.M., Bunch, L.: Human-robot coordina-
tion through dynamic regulation. In: IEEE International Conference on Robotics
and Automation, IEEE Computer Society (2008) 2159–2164 2008 IEEE Interna-
tional Conference on Robotics and Automation ICRA 2008 Pasadena, California,
on May 19–23, 2008.

11. Sandhu, R.S., Coynek, E.J., Feinsteink, H.L., Youmank, C.E.: Role-based access
control models. IEEE Computer 29 (1996) 38–47

12. RBAC: American National Standard 359-2004 (Role Base Access Control – home
page). http://csrc.nist.gov/rbac/ (2004)

13. Ferraiolo, D., Kuhn, R., Sandhu, R.: RBAC standard rationale: Comments on a
critique of the ANSI standard on Role Based Access Control. IEEE Security &
Privacy 5 (2007) 51–53

14. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organi-
sation, roles and contexts in MAS. Applicable Algebra in Engineering, Commu-
nication and Computing 16 (2005) 151–178 Special Issue: Process Algebras and
Multi-Agent Systems.

15. Ricci, A., Viroli, M., Omicini, A.: An RBAC approach for securing access control
in a MAS coordination infrastructure. In Barley, M., Massacci, F., Mouratidis,
H., Scerri, P., eds.: 1st International Workshop “Safety and Security in MultiA-
gent Systems” (SASEMAS 2004), AAMAS 2004, New York, USA (2004) 110–124
Proceedings.

16. Molesini, A., Omicini, A., Viroli, M.: Environment in Agent-Oriented Software
Engineering methodologies. Multiagent and Grid Systems 4 (2008) Special Issue
on Environment Engineering for MAS.

17. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.P., Ricci, A., eds.: Engineering Societies in the Agents
World VI. Volume 3963 of LNAI. Springer (2006) 49–62 6th Inter. Workshop
(ESAW 2005), Kuşadası, Aydın, Turkey, 26–28 October 2005. Revised Paper.

18. SODA: Home page. http://soda.apice.unibo.it/ (2008)
19. Omicini, A.: Formal ReSpecT in the A&A perspective. Electronic Notes in Theoret-

ical Computer Sciences 175 (2007) 97–117 5th International Workshop on Foun-
dations of Coordination Languages and Software Architectures (FOCLASA’06),
CONCUR’06, Bonn, Germany, 31 August 2006. Post-proceedings.

20. Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming multi-agent systems.
In Müller, J.P., Zambonelli, F., eds.: Agent-Oriented Software Engineering VI.
Volume 3950 of LNCS. Springer (2006) 81–93 6th Inter. Workshop (AOSE 2005),
Utrecht, The Netherlands, 25–26 July 2005. Revised and Invited Papers.

21. Drouineaud, M., Lüder, A., Sohr, K.: A role based access control model for agent
based control systems. In Unland, R., Ulieru, M., Weaver, A.C., eds.: 1st IEEE
International Conference on Industrial Informatics (INDIN 2003), Banff, Alberta,
Canada (2003) 307–311

22. Yamazaki, W., Hiraishi, H., Mizoguchi, F.: Designing an agent-based RBAC system
for dynamic security policy. In: IEEE 13th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2004), 9th
International Workshop “Enterprise Security” (ES 2004), Modena, Italy, IEEE
Computer Society (2004) 199–204


