
A Load Sharing Approach Based on Refactoring

of Roles in Multi-Agent Systems

Sebnem Bora, Ali Murat Tiryaki, and Oguz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

(sebnem.bora, ali.murat.tiryaki, oguz.dikenelli)@ege.edu.tr

Abstract. In this paper, we present a load sharing approach based on
refactoring of roles of agents. According to our approach, a heavily loaded
role is refactored by splitting it into new sub-roles with respect to a pol-
icy held by the �splitting ontology�. This approach de�nes a new agent
called �monitor agent� which monitors workload of roles of agents in the
organization and decides on refactoring of roles. The monitor agent uses
the platform ontology which explicitly describes components of the agent
organization including agents, agents' roles, their plans, and their work-
load. This ontology is updated by the monitor agent in every monitor
cycle.

1 Introduction

In distributed systems, computational elements work cooperatively so that large
workloads should be allocated among them in an e�ective manner. Any strategy
for workload distribution among computational elements is called load distribu-
tion. Load distributing algorithms can be classi�ed as load balancing and load
sharing. Load sharing is a distribution of processing and communication activi-
ties between computers so that no single computational element is overwhelmed.
Load balancing algorithms attempt to equalize loads at all computational ele-
ments.

In a computer system, resource queue lengths and CPU queue lengths are
good indicators of load, since they establish mutual relations with the task re-
sponse time. If the load of a system is large, then the system su�ers from perfor-
mance degradation. The function of a load distributing algorithm is to transfer
load from heavily loaded computers to lightly loaded computers.

Load distributing algorithms can be classi�ed as static or dynamic. In static
load distributing algorithms, decisions are taken using a priori knowledge of the
system. In dynamic load distributing algorithms, we need to use the system's
state information to reach a decision on distributing of loads at runtime.

As distributed systems, multi-agent systems (MAS) consist of autonomous
agents that collaborate with each other to achieve a common goal. During the
deployment phase, roles are assigned to agents on the verge of their execution.
Roles are architectural elements which satisfy system goals collaboratively. Each



role has some responsibilities (agent goals), abilities (plans), authorizations and
rules, all of which are based on system goals.

Due to openness of MAS, it is almost impossible to guess load of the agents
in MAS during the analyze and design phases exactly. Therefore, load of the
agents that play a speci�c role in MAS may increase at run time unexpectedly.
If the total request volume at any time is unusually high on an agent, then this
may lead to the agent failing with all requests unable to be performed.

Agent is only container used to execute developed roles like objects in tradi-
tional object oriented development - OOD. All features of an agent come from
the roles that are assigned to it. Therefore, overloading of an agent also comes
from its role(s). In such a condition, the overloaded entity is not agent itself,
the role(s) played by failing agent(s) is overloaded. Assigning these roles to the
other agents in the organization does not solve overloading, since the overloading
is passed to these agents via the overloaded role(s) assigned to them. To solve
overloading, the role(s) have to be split. In this case, transferring some plans of
a role which cause heavy workloads, to recent created roles potentially improves
system's performance.

In this paper, we present a load sharing approach based on applying refac-
toring [5] practice of extreme programming [1] on roles. Responsibilities and
abilities of roles may change in dynamic and open MASs frequently. Hence, the
concept of role is one of the most critical elements for refactoring in such sys-
tems. At this level, refactoring techniques such as moving responsibilities related
with the role are needed to improve the role structure of MAS at hand. Several
roles cooperate to achieve a common system goal of the system being developed.
Since refactoring techniques applied on the roles do not change external behav-
iors of the roles, achievement of system goals is not a�ected from the refactoring
operations.

According to our approach, the role on the heavily loaded agent is divided
into new sub-roles with respect to a policy held by the �platform ontology�.
�Platform ontology� is a general ontology to model multi-agent platform from
load sharing perspectives. It explicitly describes components of the platform and
agents, their initial values, and the load sharing policy. The strategy used in our
approach is to distribute the plans of a role that cause having large workload,
to new roles de�ned in design phase and described by the rules of the �platform
ontology�. The process of splitting a role to new roles at runtime is called role
refactoring. This approach uses a mechanism that monitors workloads of the
agents in the organization and decides on refactoring of roles of agents.

In order to implement load sharing technique based on applying role refactor-
ing, we have investigated several works. The static semantics of roles, formation
of roles, interactions between roles have been investigated in [2,7,10,3].

In traditional object-oriented design, roles are implicit to objects that play
them and there is no dynamic adaptation of the structure of the relationships
between objects and roles in response to changes in environment, user or ap-
plication requirements, and available resources. Colman and Han propose an
object-oriented role-based methodology based on the concept of ontogenic adap-



tation to make a system more adaptable [Colman05]. Ontogenic adaptation re-
quires interchangeable elements, �exible structure, and organizational regula-
tion. These all can be achieved through creating decoupled object-role structures.
This methodology distinguishes three types role in an organization: functional
roles, operational-management roles and organizational management roles. Func-
tional roles de�ne the processes of the system that achieve the system's functional
requirements. Operational management focuses on regulating the relationships
between functional roles. Organizational management provides mechanisms to
ensure their systems' viability by both ensuring the internal integrity of the sys-
tem and monitoring the external system performance, and to e�ectively modify
their organizational structures. The binding of those roles to objects creates on
instantiation of the role-based organizational structure.When the system needs
to change its organization to meet the new goals or to adjust environmental
requirements, the organizational-management roles manage the re-allocation of
roles and associations.

The work on formalizing dynamic role assignment has been done by Odell et.
al [8]. In their work, they discuss the �role-changing� operations by partitioning
into categories of dynamics: dynamic classi�cation and dynamic activation. The
concept of dynamic activation describes how an agent activates or suspends the
various roles that it plays. The concept of dynamic classi�cation conceives of
roles being bound to an agent after the agent is deployed, and unbound without
terminating the agent.

The main di�erence of our work from others is to dynamically refactor roles
of agents to distribute large workloads on heavily loaded agents at runtime. To
our knowledge, our load sharing approach is the �rst one that uses refactoring
practice for managing workload of the agents in the organization (not only in
agent systems but in general). Moreover, since the refactoring policy is de�ned
using a pre-known ontology and stored by the agent organization, changing of
this ontology at runtime makes the agent organization adapt itself to a new load
sharing policy.

The remainder of this paper is structured as follows: Section 2 presents the
context of the work; Section 3 introduces an abstract architecture for load shar-
ing in MAS organizations; Section 4 brie�y describes how to acquire information
to determine the excess load of agents in our load sharing approach and presents
how to achieve load sharing in MAS; Section 5 gives the evaluation of the ap-
proach; and �nally Section 6 gives the conclusion.

2 Realization of Load Sharing Components in a MAS

Environment

Dynamic load distributing algorithms (load sharing and load balancing algo-
rithms) outperform static load distributing algorithms for distributed systems,
since they are able to exploit changes in the system state. This characteristic
of dynamic algorithms is also critical for MAS organizations, since workload of



agents may change unexpectedly due to openness of MAS organizations. There-
fore, load distributing approaches in MAS must use dynamic algorithms.

Typically, a dynamic load distributing algorithm has four components: (1) a
transfer policy, (2) a selection policy, (3) a location policy, and (4) an information
policy.

Transfer policies determine whether an object may participate in a task trans-
fer. They de�ne threshold policies. Thresholds are expressed in units of workload.
When the workload on the object exceeds a threshold T, transfer policies decide
that the object is a sender. If the workload falls below T, the transfer policy
decides that the object is a receiver. When the transfer policy decides that the
object is a sender, a selection policy selects a task for transfer. The simplest
approach is to select tasks that have caused the node to become a sender by
increasing the workload. A location policy �nds suitable senders or receivers to
share load. It is usually achieved through polling. Finally, the information pol-
icy decides when information about the other objects in the system should be
collected, where it should be collected from, and what information should be
collected. [11].

In this section, we brie�y describe our approach for dynamic load sharing in
MAS organizations. To de�ne such an approach, one has to identify a selection
policy �rst. We use the MAS meta model shown in Figure 1 to de�ne our selection
policy. There are many agent system development methodologies such as [13], [6]
and di�erent meta models that have been proposed by these methodologies in
the literature. However, we de�ned a generic meta model that can be used any
methodology. To apply our load sharing approach in MAS, we added workload
concept to our MAS meta model. This concept includes data about the current
state of each role.

Fig. 1. MAS meta model

Now, it is time to de�ne the selection policy based on the de�ned meta model.
Since the selection policy selects the tasks that cause the overloading, we then
have to answer the basic question, �what makes an agent overloaded?�. Like



any computational entities, an agent is overloaded due to tasks processing and
messaging. Since these tasks and messages belong to the role(s) of the agent,
we can conclude that overloading is dependent to the role(s). Although one can
identify the overloaded role, this role cannot be selected as a distributed task
since the transfer of role makes another agent overloaded again. So, an agent
has to split a role to sub-roles to distribute its workload. Dividing the roles to
sub-roles creates a role model where each sub-role takes some responsibilities of
the original role.

The general methodology of creating such a role model is to split the original
role to coherent roles that semantically encapsulate the related behaviors of the
original role. Of course, such a modeling must have been done by designers of
the organization and explicitly represented to be used by the agent(s) to apply
the selection policy. This splitting role model can be represented by a simple
ontology. This ontology that is de�ned by the designers at the design holds the
roles that can be overloaded at the run-time and the role splitting strategies that
are used to split these overloaded roles. The splitting strategy includes sub-roles
of the role and plans of each sub-roles. The structure of this ontology is shown
in Figure 2.

Fig. 2. The Meta Model for Splitting Role

The selection policy simply selects a sub-role to transfer by considering the
workload of the role. Although it is possible to dynamically calculate the work-
load of a role, this is not a straight-forward process. Because, each role includes
plans and each plan may interact with other agents and creates a messaging
load. So, one needs a complex monitoring mechanism to observe and calculate
load of each role of the agents. In this paper, we have implemented a monitoring
mechanism that observes the role's workload. Thus our selection policy simply
selects the prede�ned sub-role to be transferred based on the workload of the
role and a refactoring ontology.

The second policy for load sharing is the location policy which is used for
�nding a suitable receiver that can overcome excess loads. From MAS perspec-
tive, the location policy has to identify the suitable agent to transfer the selected
sub-role. The location policy associates with the monitoring mechanism to iden-
tify the suitable receiver agent since the monitoring mechanism holds the current



states of the agents that exist in the organization. Hence, it computes the excess
workload of each agent by comparing the agent's workload to the average over
all load of the system. The agents with less load are identi�ed as the receivers
or a new agent is created as a receiver in a suitable ground machine.

In order to determine the load of each role and the workload of each agent, we
have to monitor the environment to collect information. The information policy
decides when information about the agents in the system should be collected,
where it should be collected from, and what information should be collected.
Our approach uses a periodic and centralized information policy, in which each
domain agent periodically sends its state to the monitoring mechanism.

In the monitoring mechanism, the excess load of agents and roles are evalu-
ated by applying our threshold policy. If the workload caused by a speci�c role
is larger than the average load in the organization, the monitoring mechanism
decides on applying the role refactoring algorithm on a role. The threshold policy
will be detailed in Section 4.1.

3 The Abstract Architecture

The proposed abstract architecture is illustrated in Figure 3 and built on the
FIPA (Foundations for Physical Agents) based MAS architecture1. To collect the
workload related data and evaluate the collected data, we propose a speci�c role
called �monitor role�. The agent that plays the �monitor role� is called �monitor
agent�.

In this abstract architecture, the monitor agent is a centralized agent that
controls domain agents in the organization at runtime. It holds the current state
of the platform in an OWL2 ontology called platform ontology. The monitor
agent receives workload messages sent by domain agents and pass the data ex-
tracted from those messages to a plan called the �workload evaluation plan� of
the �monitor role�. This plan evaluates the load of each role in the organization.
It also evaluates the current state of each agent that sends its workload data
within the content of the message, according to the current state of other agents
in the platform using the platform ontology. If the monitor agent detects that an
excess load for a role exists during this plan execution, it then sends a message to
itself to activate the �role splitting plan�. This plan decreases the responsibilities
of the role by splitting the role to sub-roles using the load sharing guidelines
de�ned at the design time. The main approach for role splitting is to split plans
of the role to new roles.

1 FIPA, FIPA Speci�cations , http://www.�pa.org
2 Web Ontology Language (OWL), http://www.w3.org/2001/sw/WebOnt/



Fig. 3. Abstract architecture for load sharing based on refactoring

As aforementioned, data related to the excess load for each role is acquired
directly from the domain agents. Domain agents are agents which ful�ll require-
ments of domain. Each of these agents has the plan library based on their respon-
sibilities. Naturally, the agent's responsibility comes from the roles that agent
has to play. All of the domain agents in the MAS may execute more than one
role to achieve general goals of the organization. Roles are identi�ed during the
design of the organizational structure and assigned to the agent when the agent
is initiated. Here, each domain agent executes a plan named �Send workload to
monitor agent�. This plan is periodically executed during the agent's operation.
In this plan, �rstly the workload data of the role played by the agent is collected
from the agent infrastructure in a certain period. The collected data consists
of the agent's roles, the number of objectives (goals extracted from incoming
requests) for each role of the agent (the workload of the role), the mean of the
time for each agent to perform requests, and arrival rates of requests. Finally, the
collected data is sent within the content of the inform message to the monitor
agent. Next, we explain the components of our load sharing approach based on
role refactoring in detail.

4 Monitoring for Load Sharing in MAS

A monitor agent is a centralized and critical agent that plays the �monitor role�.
It continuously monitors a multi-agent organization and ensures reliability of the
MAS by refactoring on the organizational structure when it detects an abnormal
state such as overloading of agents in the organization. The monitor agent has
two critical responsibilities: evaluation of the collected information and applying
of role splitting when an overloaded role is identi�ed. In order to achieve its
responsibilities, �rst it has to evaluate workloads of the agents in the organization



to catch system's abnormal states; then it has to split the role when it catches
an overloading on a role. In the following subsections, we explain in detail how
the monitor agent ful�lls these two responsibilities.

4.1 Evaluation of the Collected Information

It is time to explain how we process data collected by the monitor agent to obtain
the excess load information of each agent and each role in the organization. In
order to explain how we process data, �rst we need to explain our transfer policy.
It is very similar to the transfer policy proposed by Dhakal et. al in [4]. It uses a
threshold policy which de�nes the excess workload of a role. This threshold policy
is based on a queuing model which characterizes the stochastic dynamics of the
load distributing in a multi-agent organization of n agents which collaborate
with each other.

In this architecture, clients (agents or human users) send �request� messages
to agents to perform some actions. When an agent receives a �request� message, it
matches the goal extracted from the incoming �request� message to an agent plan.
Then, this plan is scheduled and executed by the agent's internal architecture.

We assume that in this agent system, requests arrive according to a Poisson
process of rate λ so the interarrival times are i.i.d (independent, identically
distributed) exponential variables with mean 1/λ[9]. Also, we consider that each
agent performs requests according to an exponential distribution with mean 1/µ
and sends its workload information to the monitor agent at every period.

Fig. 4. The �workload evaluation� plan of the monitor agent

When the monitor agent receives a workload message from the agent, it
initiates the �workload evaluation� plan. The structure of this plan built by
using the hierarchical task network (HTN) formalism [12] is shown in Figure 4.
According to this plan, the workload data obtained from the workload message is
transferred to the �compare current workloads� primitive task by an inheritance
link. In this primitive task, the monitor agent computes the excess workload of
each role by comparing the role's workload to the average over all load of the
system.



During system initialization, a period is set for the organization. This period
is called the sampling period T and actually de�ned over a time window ((k-1)T,
kT), where k is the sampling instant. The excess workload of each role is given
by the following equation:

Li(k) =

n∑
j=0

Qij(k)−

n∑
j=0

1/µij

m∑
h=0

n∑
j=0

1/µhj

m∑
h=0

n∑
j=0

Qhj(k) (1)

Li(k): The excess load of the ith role at the kth sampling period .
Qij(k): The total workload of the ith role at the kth sampling period. Since

there are n agents in the organization, the monitor agent determines the
total workload of the ith role by considering the workload data sent by every
agent.

µij: The jth agent performs requests for the ith role according to an exponential
distribution with mean µi . In order to obtain the workload of the ith role,
the monitor agent determines the sum of all the (1/µi)s received from all
the agents that play the ith role.

Qhj(k): The workload data of the hth role at the kth sampling period. The
monitor agent determines the total workload of the roles of n agents in the
organization.

µhj : The j
th agent performs requests for the hth role according to an exponential

distribution with mean µh .

The second quantity in equation 1 is the fair share of the ith role from the total
workloads in the system. The excess load of the ith role is restricted by the
following:

Li(k) > a

1
n

n∑
j=0

µij

λi
(2)

n: The number of agents in the organization.
λi : The arrival rate of requests for the i

th role.
a: The coe�cient which is de�ned by the programmer. a is selected as 0.3 in

this work.

If the monitor agent detects that the excess load of the ith role is greater than the
right-hand side of the inequality 2, it then decides that the ith role is a sender. Ac-
cording to the �workload evaluation� plan, the �compare current workloads� task
returns the �fail� outcome with respect to the overloaded role. The overloaded
role de�nition is admitted by the �send request for role splitting� primitive task.
In this task, the monitor agent prepares the message that includes the request
for splitting of the overloaded role and sends this message to itself to initiate the



related plan. If there is no excess load condition for the agent, then �compare
current workloads� primitive task produces �OK� outcome.

In this section, we mentioned about our transfer policy for load sharing based
on refactoring of the roles of heavily loaded agents. In the next section, we explain
our selection policy that selects the roles that have caused the agent to become
a sender and our location policy.

4.2 Splitting Roles

When the monitor agent receives the message that includes the request for role
splitting, it initiates the�role splitting� plan shown in Figure 5.

Fig. 5. The role splitting� plan

This plan takes the role that makes the agent(s) overloaded. To split the role,
�rst, the sub-roles of the overloaded role and the plans that would be executed
by these roles have to be determined. Currently, we consider the information
about how overloaded role is split into sub-roles at the design time. Developers
determine the splitting strategy and save this information as an instance of the
role splitting concept in the refactoring ontology. In the �create new roles� task,
this splitting strategy for the overloaded role is obtained from the refactoring
ontology with respect to the received �role� provision. Then, the platform ontol-
ogy of the system is changed by adding new roles de�ned as the sub-roles of the
original role in the role splitting strategy. At this point, the new role instances
are created in the ontology. However, there is not any agent that plays these roles
in the platform. The de�nitions of the new roles are passed to the �reorganizing
systems' roles� and �start a new agent� complex tasks. The HTN structure of
the complex task called �reorganize system's roles� is shown in Figure 6.



Fig. 6. The �Reorganize system's roles� plan of the monitor agent

In the previous task, the new role with their plans was created. However, the
overloaded role were not removed from the platform ontology and the domain
agents that play original roles still use the plan library that is not relieved. In the
�rst primitive task, the overloaded role is removed from the platform ontology.
In the next task, a message that noti�es removing of the overloaded role is sent
to the agents that play the overloaded role.

Since a role is removed from the platform and some new roles are added
to the platform, the distribution of roles' responsibilities and capabilities in the
MAS are changed. At this point, these changes have to be noti�ed to the direc-
tory facilitator (DF) of the platform. In the primitive task called �notify DF�,
a noti�cation message that de�nes the removing role, the new roles and their
capabilities is prepared and sent to the directory facilitator.

The directory facilitator stores two ontologies in its knowledge base. One
of these ontologies includes services that are supplied by the roles as service
descriptions de�ned by FIPA. The other ontology includes the information about
the roles that the agent plays in the platform. So, the mentioned noti�cation
message causes that the service description ontology is changed by DF.

According to our location policy, if the agents with less load can not be iden-
ti�ed as receivers, then new agents are created as receivers in suitable ground
machines by executing the �nal complex task called �start new agents� . In this
complex task, �rst, the ground machines are selected from available machines
submitted to the platform in accordance with our location policy. During this
selection process, the monitor agent looks up some workload values -like CPU
load- of the domain agents and selects the most suitable machine that can over-
come more loads based on the information collected before. After selecting the
suitable machines, the plan library of the new role is sent to these machines.
Finally, an agent that uses this plan library is started on each of these selected
ground machines in the�start the agents� task. Also, the noti�cation messages
include advertisements of the started agents and their roles.



5 Evaluation of the Approach

Our load sharing approach presented in this paper has been implemented with
the SEAGENT framework 3.

5.1 Modeling Perspective for Applying Load Sharing

To show the e�ectiveness of our load sharing approach, we applied it to an agent
system application which was implemented by SEAGENT Research Group. The
case focuses on one of the core scenarios of the tourism domain. In this scenario,
the traveler tries to organize a holiday plan which includes hotel booking and
transportation details. It is assumed that accommodation and transportation
preferences of the traveler are known by the system. The aim of the scenario
is to arrange the cheapest holiday plan by selecting the proper accommoda-
tion and transportation options based on the traveler preferences. The primary
roles of the scenario are identi�ed as the �Traveler�, �travel agency�, �Hotel�, and
�Transportation Provider�.

In the initial design of the system, it has been realized that the travel agency
role is the most critical role in terms of the load sharing perspective, because
the agent that plays this role has two critical responsibilities which are hotel
booking and proper transportation selection. The role diagram of our initial
design is shown in Figure 7.

Fig. 7. initial role diagram of the �prepare a holiday� scenario

After we realized that the travel agency role can be heavily loaded, we applied
our load sharing at the design phase. Based on our approach, we de�ned a role
splitting strategy for developing a tourism system. This strategy is de�ned as a
role splitting individual, which is stored in the monitor agent's knowledge base.
This individual is shown in Figure 8.

3 Semantic Web Enabled Multi-Agent Framework, SEAGENT,
http://www.seagent.ege.edu.tr



Fig. 8. The role splitting individual for the �travel agency� role.

This Role_Splitting individual includes the Overloaded_Role individual that
is referenced with �Travel_Agency�. This individual de�nes what should be done,
when the �Travel_Agency� is overloaded. According to this strategy, the origi-
nal travel agency role is split into two role concepts which are hotel agency and
transportation agency roles. So, these two new domain roles have been added
to the de�nition of the �Travel_Agency� overloaded role individual. The �has-
Plan� property of the �Hotel_Agency� role was set with the reference of one
of the �Travel_Agency� role's plans called �Arrange_Accommodation�. Likely,
the same property of the other sub-role called �Transportation_Agency� was
set with the reference of the other plan called �Arrange_Transportation� of the
overloaded role. So, this role splitting individual speci�es when an overloading
is occurred on the travel agency role, when two new roles are created, and when
one of the plans of original roles is assigned to each of these new roles.

The monitor agent which manages the splitting strategy is initialized with
its plans , if the travel agency role is overloaded. During the system execution,
we observed that the travel agency role is split into two sub-roles de�ned in
the design phase, when the number of the travelers in the system increased
considerably.

At the end of refactoring, we observed that workload of the travel agency
reduced remarkably. So, the overloading problem on the travel agency role has
been solved by using our refactoring based load sharing approach. The role
diagram for the travel agency role is shown in Figure 9.



Fig. 9. The role diagram based on the de�ned role splitting strategy for travel agency
role

5.2 Discussion

Figure 10 illustrates the performance results of the implementation. To get these
performance results, the traveler role is assigned to an agent which executes sim-
ple plans to send hotel booking and transportation requests equally to the travel
agency role using an exponential distribution. The travel agency role is executed
by another agent which has two separate plans for hotel booking and trans-
portation selection. In the �rst case, while the system does not apply any load
sharing technique, we observe the response time of the system, as the number of
requests per 10 seconds sent to the travel agency increases. In the second case,
while the system applies the load sharing technique based on refactoring of roles
of agents, we observe the response time of the system as the number of requests
per 10 seconds sent to the travel agency increases. In both cases, agents report
their workload data to the monitor agent at every 10 seconds. When the load
sharing setting is deployed, the interaction diagram is shown in Figure 11.

Fig. 10. The E�ectiveness of the Load Sharing Approach



As seen from the Figure 10, the response time of the system without applying
load sharing increases, as the number of the requests per 10 seconds sent to the
travel agency increases. This result was expected, since the travel agency has to
respond to more requests. In the second test, the monitor agent detects that the
travel agency becomes a sender at a certain point. It then decides on splitting
the travel agency's plans into two di�erent roles as described in the splitting
ontology. It also starts a new agent on another computer and sends one of the
roles to it while reorganizing the other role. As seen from the �gure, the system
applying the load sharing approach shows better performance compared to the
system without applying load sharing, since we share the system's load between
agents that play each sub-role.

Fig. 11. Interaction diagram for role splitting process

6 Conclusion

In this paper, we present a load sharing approach based on refactoring of roles
that have caused agents heavily loaded. In this approach, we identify the roles
that have caused the agent to be overloaded, and then decrease the respon-
sibilities of these roles by splitting them into sub-roles using the load sharing
guidelines de�ned at the design time.

In order to identify the roles that are to be split, we need a complex monitor-
ing mechanism to observe and calculate load of each role of the agents. Therefore,



we have implemented a monitor agent which continuously monitors a multi-agent
organization.

While evaluating the proposed architecture, we observe that the load sharing
approach based on refactoring of roles improves system's performance under
heavy load conditions. In conclusion, �rst results are encouraging and indicating
that e�cient load sharing in multi-agent organizations is sustainable using this
model.

References

1. Kent Beck. Extreme Programming Explained: Embrace Change. Addison Wesley,
1999.

2. Cristiano Castelfranchi. Engineering social order. In Engineering Societies in

the Agents World, volume 1972 of LNAI, pages 1�18. Springer-Verlag, December
2000. 1st International Workshop (ESAW'00), Berlin (Germany), 21 August 2000,
Revised Papers.

3. Mehdi Dastani, Virginia Dignum, and Frank Dignum. Role-assignment in open
agent societies. In AAMAS '03: Proceedings of the second international joint con-

ference on Autonomous agents and multiagent systems, pages 489�496, New York,
NY, USA, 2003. ACM.

4. Sagar Dhakal, Jorge E. Pezoa, and Cundong Yang. Dynamic load balancing in
distributed systems in the presence of delays: A regeneration-theory approach.
IEEE Trans. Parallel Distrib. Syst., 18(4):485�497, 2007. Senior Member-Majeed
M. Hayat and Senior Member-David A. Bader.

5. Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999.

6. F. Giunchiglia, J. Mylopoulos, and A. Perini. The tropos software development
methodology: Processes, 2001.

7. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent
interaction protocols in UML. In AOSE, pages 121�140, 2000.

8. James Odell, H. Van Dyke Parunak, Sven Brueckner, and John A. Sauter. Chang-
ing roles: Dynamic role assignment. Journal of Object Technology, 2(5):77�86,
2003.

9. A. Papoulis. Probability, Random Variables, and Stochastic Processes. Mc-Graw
Hill, 1984.

10. H. Van Dyke Parunak and James Odell. Representing social structures in UML.
In Jörg P. Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors,
Proceedings of the Fifth International Conference on Autonomous Agents, pages
100�101, Montreal, Canada, 2001. ACM Press.

11. Mukesh Singhal, Niranjan G. Shivaratri, and Niranjan Shivaratro. Advanced Con-

cepts in Operating Systems. McGraw-Hill, Inc., New York, NY, USA, 1994.
12. M. Williamson, K. Decker, and K. Sycara. Uni�ed information and control �ow in

hierarchical task networks. In Theories of Action, Planning, and Robot Control:

Bridging the Gap: Proceedings of the 1996 AAAI Workshop, pages 142�150, Menlo
Park, California, 1996. AAAI Press.

13. Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing
multiagent systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol.,
12(3):317�370, 2003.


