Coping with Exceptions in Agent-Based Workflow
Enactments*

Joey Sik-Chun Lam, Frank Guerin, Wamberto Vasconcelos, and Timothy J. Norman
{j.1lam, f.guerin, w.w.vasconcelos, t.j.norman } @abdn.ac.uk

Department of Computing Science
University of Aberdeen, Aberdeen U.K.
AB24 3UE

Abstract. A workflow involves the coordinated execution of multiple operations
and can be used to capture business processes. Typical workflow management
systems are centralised and rigid; they cannot cope with the unexpected flexibly.
Multi-agent systems offer the possibility of enacting workflows in a distributed
manner, by agents which are intelligent and autonomous. This should bring flex-
ibility and robustness to the process. When unexpected exceptions occur during
the enactment of a workflow we would like agents to be able to cope with them
intelligently. Agents should be able to autonomously find some alternative se-
quence of steps which can achieve the tasks of the original workflow as well as
possible. This requires that agents have some understanding of the operations of
the workflow and possible alternatives. To facilitate this we propose to represent
knowledge about agents’ capabilities and relationships in an ontology, and to en-
dow agents with the ability to reason about this semantic knowledge. Alternative
ways of achieving workflow tasks may well require an adjustment of the original
agent organisation. To this end we propose a flexible agent organisation where
agents’ roles, powers and normative relationships can be changed during work-
flow enactment if necessary. We use an example to illustrate how this combination
allows certain workflow exceptions to be handled.

1 Introduction

The Workflow Management Coalition (WfMC) defines a workflow as “the automation
of a business process, in whole or part, during which documents, information or tasks
are passed from one participant to another for action, according to a set of procedural
rules” [34]. Workflows can be formalised and expressed in a machine readable for-
mat, and this makes it possible for them to be employed in service-oriented computing
scenarios. In such scenarios we may be dealing with open heterogeneous computing
systems, where errors and exceptions are likely to occur. We would like the computing
systems to cope with these exceptions. Ideally we would like to be able to deal with
the unexpected; while we could write specific exception handling routines to deal with
some common exceptions which we expect to arise, it will be difficult to anticipate all
possible exceptions. Hence it would seem that we need some type of intelligence to
deal with the unexpected. Typical workflow management systems (e.g., Taverna [24],
Kepler [22]) are centralised and rigid; they cannot cope with the unexpected flexibly.
Moreover, they have not been designed for dynamic environments requiring adaptive

* This work is funded by the European Community (FP7 project ALIVE IST-215890).

responses [6]. To overcome this we argue that it will be necessary to use agents to con-
trol the enactment of a workflow in a distributed manner; agents can be endowed with
sufficient intelligence to allow them to manage exceptions autonomously. This should
bring flexibility and robustness to the process of enacting workflows.

Different types of exceptions may arise during the enactment of an agent-based
workflow. We can identify different levels of adaptivity, and exceptions can occur at
any level. The following are the levels of adaptivity [1]:

— Organisation level: exceptions due to changes in the environment may mean that
the current organisational structure makes it impossible for a workflow to progress.
The organisation must be changed to adapt to the current situation.

— Coordination level: there are exceptions due to changes in the environment, or the
agents and their organisational position. For example, some roles may be empty so
that the workflow cannot progress. The workflow itself must be altered, possibly to
find alternate pathways on which the tasks may be completed.

— Service level: this is the lowest level at which exceptions occur, and the simplest to
deal with. A web service is unavailable and an alternative must be found. This may
be possible without changing the existing workflows.

It is often the case that exceptions at lower levels can be dealt with by the next higher
level; this is indeed one of the main advantages of using an agent based approach rather
than a typical workflow execution engine. For example, agents can be used to man-
age the invocation of Web services, and then they can manage the Web services in an
intelligent way [4]; such techniques can also be used to cope with exceptions intelli-
gently. A service-level exception could be one in which a required Web service has
gone offline; in this case an agent can use semantic matching [25] or service composi-
tion techniques [32] to search for a replacement. For example, if the equipment supplier
is not available to give a quote for the required robotics equipment, agents can search
for a supplier whose services are described semantically, the replacement supplier can
be either an exact match or more general than the one currently specified. Thus coping
with service-level exceptions can be done to some extent with existing techniques [35].

Higher-level exceptions are more problematic. For example if the powers or prohi-
bitions in the agent system do not allow the agents to complete the workflow and this
leaves the workflow deadlocked at a certain stage. Methods for coping with such ex-
ceptions have not been addressed in the literature so far, to our knowledge. If we are
to cope with these types of exceptions it would seem that we need organisational flexi-
bility, or the ability to change the social relationships among roles as necessary. Again,
higher levels can deal with exceptions at lower levels To facilitate this we make use of
an institutional framework with certain speech acts which can modify the roles, powers
or obligations of agents in the organisation. For example, suppose that there is a single
agent a in the organisation who is empowered to authorise equipment purchases, and
that agent is currently unavailable. If an agent b urgently needs an equipment purchase
to be authorised, a request can be made to a manager to appoint a suitable stand-in for
a, with the appropriate power. This will be further explained in Section 4.

For agents to cope with the unexpected autonomously they must have some under-
standing of the operations of the workflow and possible alternatives. This means that
the tasks specified in the workflow cannot be meaningless labels, but must be associ-
ated with some semantic information. To satisfy this requirement we provide an OWL
ontology [3] representing the background knowledge for the organisation. This allows

agents to reason about the capabilities of agents in the organisation and find alternative
ways to deal with workflow tasks when exceptions arise.

In Section 2 we give an overview of our approach. In Section 3 we describe how
we model the agent institution, focusing on the powers and normative notions. In Sec-
tion 4 we describe our example “Equipment Purchase” workflow, and an example of
an exception that can happen. In Section 5 we describe our OWL ontology which cap-
tures essential aspects of our example. Section 6 looks at related work and Section 7
concludes.

2 Proposed Approach

We focus on adaptation at the organisational and coordination levels. To make our or-
ganisation flexible we adopt an institutional framework which allows roles, powers and
normative relations to change dynamically, under agents’ control. To endow agents with
the ability to reason intelligently about how to cope with exceptions, we represent back-
ground knowledge about the organisation, and the knowledge and capabilities of its con-
stituent agents, in an OWL ontology. This knowledge enables the agents to recommend
appropriate changes when exceptions arise. Our system has two types of organisational
knowledge: knowledge about the powers and the norms governing agents are repre-
sented as logical rules, as part of the “institutional facts” of the institution; knowledge
about the capabilities of agents and the hierarchy of the organisation, and constraints
among roles, are represented in an OWL ontology. This separation is appropriate be-
cause the former knowledge (norms, powers and roles) may include norms and powers
which apply under certain conditions, where conditional rules could not be represented
in OWL. This knowledge is also dynamic, being frequently changed by the agents. The
latter knowledge (agent capabilities, hierarchy, constraints) is static, and easily repre-
sented in a description logic based ontology (i.e., OWL DL).

We use examples from a University institution. In our examples we use a multi-
agent system to model the activities in the institution; thus it is not the case that agents
are supporting humans in the institution; it is a simulation where the agents are playing
the roles of the humans. This modelling is an exercise to test if our framework is able
to cope with scenarios arising in human institutions.

3 Modelling the Institution

To model our institution we build on previous work [11] where we described an agent
communication framework which allows rules to be defined to describe how events
(such as messages being sent) lead to modifications in the institutional facts. This is
in line with the “social perspective” [30] on communication; i.e., the institution is not
concerned with private mental states of agents. The rules are first-order logic clauses
implemented in Prolog. We describe it here with a Prolog-style notation. In fact our
institutional framework is quite similar to [26] which uses event calculus to represent
the rules, and implements them also using Prolog. We simply use Prolog directly. We
follow the Prolog convention where a string starting with an uppercase case.

We describe the state of an institution by a pair F' = (R, A) where R describes the
current rules in force in the institution and A describes the state of affairs. Collectively
these are called the institutional facts F'. Rules describe how the speech acts of agents,
or other events, lead to changes in the institutional facts. An example of an institutional

fact of the state of affairs type is having the title “doctor”’; examples of institutional rules
are the rules of a University describing how the title can be awarded and by whom.

Given an institution described by facts Fj at some instant, and a subsequent se-
quence of events ey, e, €3 . . ., we can use the rules to obtain the description of the insti-
tutional facts after each event, obtaining a sequence of facts descriptions: I}, 5, F5
In our examples events are either speech acts (i.e., messages being sent) or timer events.
Note that the above description allows for events which change the rules, although this
will not be used in our examples. Thus all events lead to modifications of A; A is sim-
ply a list of predicates (facts which hold) or clauses (where they hold conditionally, as
in the powers below, for example); events add and remove elements from this list. For
convenience, A has been divided into a number of sub-lists for: roles, world facts, pow-
ers, obligations, prohibitions, pending_acts. We will explain the types of facts which
populate these sub-lists of A after we introduce our running example below. However,
we will firstly explain how speech acts fit within the framework of the institution.

3.1 Speech Acts

The meaning of speech acts is defined by rules in R. These rules define some manipu-
lation of facts in A. We will briefly describe some illustrative examples because there
is insufficient space to give the rules for our speech acts in full. The speech acts as-
sign_role and assign_power define a particularly simple manipulation of A: the new
role or power (as specified in the content of the act) is simply added to the appropriate
list. The allocate_task speech act causes a new obligation to be added for the agent in
question. An inform speech act simply adds the content of the act to the world _facts
within the list A; thus an agent can assert some facts and make them publicly available.
A request speech act adds an obligation for the receiver to reply.

We shall illustrate the notions we introduce below with examples from a University
institution (see figure 4). Later we will define a workflow, and illustrate exception han-
dling, using this same institution. The rules R include speech act rules which can change
agents’ roles. The state of affairs A includes a record of the roles of the institution, and
the agents occupying each role. If agent Ag is currently occupying the role of senior lec-
turer, and the Head of College performs the speech acts “assign_role, [Ag, professor]”
and “remove_role, [Ag, senior_lecturer]”, then Ag will be moved into the role of pro-
fessor. In these speech acts we are just stating the performative and content (a sender and
receiver are also needed to complete the speech act). Some speech acts have more elab-
orate rules; the act assign_temp_role (college_staff, [Ag, hod, Duration]) triggers two
acts to be executed: the act assign_role (college_staff, [Ag, hod]) is executed immedi-
ately, and the act remove_role (college_staff, [Ag, hod]) is placed on the “pending_acts”
list, for execution at time Duration + Current_time. This “pending_acts” list holds
actions that need to be taken at a future time. When the time is reached the action is
executed, much like a speech act, however the sender field is blank, meaning that the
act is simply executed without any checks for power or prohibition.

3.2 Normative Notions and Institutional Power

Powers and norms (prohibitions and obligations) can be assigned to roles or to agents
themselves. An agent inherits powers and norms from the roles it takes on. We will not
list all the powers and norms of our example scenario here, but there is a power for each
speech act that a role can effectively perform. The following is an example of some of
the more interesting powers:

(1) power(hod, allocate_task (Ag,[Task, Time_limit])) if
role (Ag,cs_dept_staff)
(2) power (hod, assign_temp _role (college_staff,[Ag,hod, Duration])) if
role (Ag,cs_dept_staff) and role (Ag,professor) and Duration <21:00:00
(3) power (hod, suspend_role (college_staff,[Ag, Role, Duration])) if
role (Ag,cs_dept_staff)
(4) power (hoc, assign_role (college _staff,[Ag,hod])) if
role (Ag,cs_dept_staff) and role (Ag,professor)
(5) power (hoc, assign_power (college_staff,[Ag, Power])) if
role (Ag,college staff)
(6) power (hod, authorise_purchase (secretary,ltem))

In these powers the speech acts are written as “performative (receiver,[content])”,
the sender is added when the concrete act is performed. Note that when roles or powers
are changed, the speech act is to be sent to the entire college, so that all staff know
of the new assignment. Line (1) means that the Head of Department (HoD) can allo-
cate a task to anyone who takes on the role cs_dept_staff. Line (2) means that the HoD
can temporarily assign the HoD role to any other professor in the department; the third
parameter within the assign_temp_role is for the duration after which the temporary
assignment will expire — this cannot exceed 21 days. Line (3) allows the HoD to tem-
porarily suspend some agent’s membership of a role; it lasts for a time defined by the
third parameter. These two powers (2 and 3) are to be invoked when the HoD goes on
vacation; the HoD agent will temporarily suspend its own occupancy of the HoD role,
and appoint a replacement. Line (4) allows the head of college (HoC) to permanently
assign the HoD role to any professor in the CS department. Line (5) allows the HoC to
assign a power to an individual agent, or a role.

Obligations are a type of norm. Obligations are always defined with a time limit
before which they must be carried out. Some example obligations are

(6) obliged (bob, complete_task (“upgrade webserver”),“05-June-12:007, 103)
(7) obliged (fred,
complete_task (‘“submit paper to conference”),“09-Sept-18:00", 103)

After the agent completes a task this is reported as completed in the world_facts in
A; this means that compliance with the obligation can be checked by looking at the
facts in A. The final parameter above (103) is the “sanction code” which applies if the
obligation is broken. Following [26] we associate a 3-figure “sanction code” with each
norm violation (similar to the error codes used in the Internet protocol HTTP). The
sanction codes gathered by each agent as it commits offences are merely recorded in a
list. The use of codes is just a convenient way to record sanctions without yet dealing
with them; we would require a separate component to impose some form of punishment.

Obligations do not usually have a condition (as some powers had). If we wish to
model the situation where an agent is obliged to reply if it receives a request, then we
must ensure that the performance of the request creates an obligation to reply; i.e. we
make the request speech act add an obligation. The condition of any norm cannot be
that a speech act is sent because conditions only check facts in A, not events. Thus obli-
gations tend to have a more temporary existence than powers; they are added until they
are fulfilled or expire. Obligations cannot have a negative content; i.e., we cannot state

that an agent is obliged not to do something. To achieve this effect we use prohibitions.
The following is a sample prohibition:

(8) prohibited (hoc, assign_power (college_staff,[hoc, Power]),103)

Again, the final parameter is a sanction code. Lines (5) and (8) model the situation
where the head of college is prohibited from assigning new powers to him/herself but
is nevertheless empowered to do so (i.e., if the prohibition is violated the assignment of
power is still effective).

3.3 Updating the Institutional Facts

We are now ready to present the algorithm which is used to update the instutional facts
when an event happens (shown in Fig. 1).

algorithm UPDATE-INSTITUTIONAL-FACTS

1. Input: a speech act with Sender, Receiver, Performative, Content

2. Check if Sender (or one of the roles he occupies) is empowered to send this speech act: If
not, discard the act and exit this algorithm.

3. Check if there is a prohibition for Sender (or one of the roles he occupies) sending this
speech act: If not, go to the next step; If so, apply the specified sanction.

4. Check if there is an obligation which requires that Sender (or one of the roles he occupies)
send this speech act. If so remove the obligation from A.

5. Process the act as normal (i.e., follow the rules specified for the act).

Fig. 1: Algorithm to Handle Powers and Normative Relations

It is in this algorithm that roles are consulted to retrieve the names of the agents
occupying the roles; e.g., when checking if an agent who has just sent a message is
obliged, the algorithm will consult the facts to see what roles the sending agent occu-
pies.

The main loop of the institution program is executed repeatedly, and invokes the
above update algorithm as well as doing some housekeeping:

— For each obligation check if it has timed out. If so, apply the sanction to the agent
(or all agents occupying the obliged role) and remove the obligation from A.

— For each pending_act check if it is due. If so, execute it and remove it from A.

— If there have been any events, then UPDATE-INSTITUTIONAL-FACTS

Our model of institution is minimal, possessing only those essential features re-
quired to illustrate our approach. There are other more complete and sophisticated pro-
posals for representing societies of software agents which could have been used instead.
Some of these proposals are, for example, electronic institutions [10], virtual institu-
tions [7] and organisations for agents [8] — such proposals could have also been used
in this paper instead (requiring more space to introduce them, though). Some of the
features of our approach have very clear counterparts in those proposals. For instance,
in our algorithm to update institutional facts (Fig. 1), the “censoring” of unauthorised
utterances which takes place in step 2 corresponds to the governor agents of electronic

institutions [10]; such agents intermediate all communications between external (for-
eign) agents and the institution/society. Governor agents check if the messages that the
external agents want to send are indeed pertinent to the current state of the interactions;
if this is the case, the illocution is forwarded to the appropriate receiver, otherwise the
message is discarded.

4 Workflows

We extend the basic framework above with the definition of workflows, allowing us to
define structured interaction patterns for agents. A workflow can be enacted by a work-
flow engine [17] or it can be controlled by individual agents. In our case we are relying
on the intelligence of agents to take appropriate actions if the workflow enactment en-
counters an exception which prevents it from progressing. For this reason we will have
the workflow executing in a distributed fashion, controlled at each stage by the agent
responsible for that stage.

4.1 Workflow Specification Language

We have developed a simple workflow language. The workflow language assumes that
a workflow has a finite number of numbered places, with transitions between them
(Figure 2 shows a workflow, with places depicted as relationships). A workflow which is
currently in progress may occupy one or more places. If the workflow has no branches it
will only occupy one place at any time, but if it branches several places may be occupied
simultaneously. Figure 3 gives a concrete example of a workflow specification, using a
Prolog style notation. A workflow specification has a place predicate for each numbered
place. The first parameter of a place predicate specifies the number identifying this
place in the workflow; this is followed by the role which is responsible for executing
the statements in this place, with an identifier in parenthesis for the agent who is taking
up that role (e.g. “secretary(D)”). The remainder of a place is completed by a sequence
of statements to be executed in order by the agent taking up the role. Statements may
be variable assignments, or actions, or if.. . then ... else constructs. Actions include any
action the agent can take such as performing a speech act, querying a Web service, etc.;
some actions (e.g. calling a Web service) may return a result. Variable assignments may
include (as their right hand side) actions which return results.

Speech acts within our framework typically have four parameters: sender, receiver,
performative, content; however, when a speech act is sent as part of a workflow we add
information so that the recipient knows which workflow is being executed and what
stage it is at. Thus every message which passes control to another agent includes the
number of the next stage to be executed. This ensures that an agent receiving a message
can look up the workflow specification and find what is to be done for this stage. It
also serves to disambiguate between potentially confusing states: it is possible that a
workflow might have two different states where the message being sent to the next
agent is the same, thus an agent receiving the message would be unsure about what
point had been reached in the workflow. In our example workflow shown in Figure 3 it
can be seen that every speech act sent includes, as the final parameter, the name of the
workflow (“ep”’= equipment purchase) and the state that has been reached within it (e.g.
“lep,2]”). Speech acts are written in the form speechAct(sender, receiver, performative,
content, workflow).

For example in the workflow below (Figure 3) 2:technician (T) means that this
is stage 2 and is to be carried out by some agent occupying the role of technician,

and that T is the variable to be used to hold the name of the actual technician who
is carrying out this stage. For example, when the secretary receives the message from
the technician, she assigns the variable T to be the name of the technician, and can
subsequently send messages to T. On the other hand, if the secretary performs a speech
act with technician as the receiver, then it can be sent to any agent occupying the
role, and not necessarily the same technician identified as T previously.

4.2 Example: The Equipment Purchase Workflow

5 ol if not enough £ Rl
1. Purchase 2. Get Quote » Elete budget - Rejec
. >) —> Equipment Purchase
from Supplier quip
Equipment pp Budget
else

_approved 5. Approved by
Department rejected

6. Place Order

Fig. 2: Diagram of “Equipment Purchase” Workflow

We consider a simple workflow example — a purchasing equipment workflow in a
university — to give an idea of how agents do reasoning to deal with unexpected circum-
stances during the enactment of workflows. Figure 2 graphically depicts the example.
Firstly a research staff issues a request of purchasing a Robotics equipment (1), this
request goes to the technician. The technician gets a quote from a supplier via a web
service (2), and then finds the cost C and passes the request to the department secretary.
The secretary checks the equipment budget (3). If the budget is not enough for purchas-
ing, then the purchase request is rejected and the workflow terminates (4). Otherwise,
the purchase request is then passed to the HoD for approval (5). The HoD is responsible
for deciding to authorise this purchase (6) or reject it (4).

Apart from speech acts, there are three other types of actions that can be required at
a stage of the workflow: web_service, local_service, query_expertise. Only speech_act
changes the institutional facts, the other acts give a result which only changes the agent’s
internal mental state. The web_service simply invokes an external web service, while
the local_service action queries a local computer system, for example the department’s
finance system. The query_expertise action is used when an agent needs to query his
own internal knowledge base; in the example below the HoD must execute this action,
to query his own internal expertise in robotics equipment and make a decision about
whether the robotics equipment proposed is in fact useful for the experiment proposed.
This set of actions is known to all agents, although not all agents can carry out all ac-
tions; certain actions require certain expertise. For example, to execute query_expertise
actions to answer queries about a particular topic will require that the agent has expert
knowledge in its own knowledge base.

The workflow is a coordination device for agents, in the same way as agent interac-
tion protocols; the powers and prohibitions of agents are not overridden by the workflow
— agents are still bound by them. However, the rule which processes a speech act has
been extended; when the speech act includes the workflow parameter, then the speech

place (1, research_staff (R), [
speech_act (R, technician, request, [purchase, Equipment, Experiment], [ep,2]

1) .

place (2, technician(T), [
web_service (T, supplier_service, request, [quote, Equipment], Result),
select part (Result, cost, C),
speech_act (T, secretary, request, [Equipment, C, Experiment], [ep, 3]

1) .

place (3,secretary (D), [
local_service (D, dept_data, query, [equipment_budget], Budget),
(if C > Budget
then
speech_act (D, T, inform, [reject, Equipment], [ep,4]1)),
(if C <= Budget
then
speech_act (D, hod, request, [approve, Equipment, Experiment], [ep,5]))

1) .
place (4,secretary (D), [
speech_act (D, T, inform, [reject, Equipment])

1) .

place (5,hod (H), [

query_expertise (H, Equipment, is_appropriate_equipment (Equipment, Experiment), Useful),

(if Useful
then

speech_act (H, D, authorise_purchase, [Equipment], [ep,6]
else

speech_act (H, D, reject_purchase, [Equipment], [ep,4]))

1) .

place (6, secretary (D), [
web_service (D, supplier_service, request, [place_order, Equipment], _)

1) .

Fig. 3: Specification of “Equipment Purchase” Workflow

act rule inspects the workflow and adds obligations for the receiving agent to perform
its stage of the workflow.

So far agents have not been given any knowledge about each others’ capabilities,
or about the capabilities required to perform tasks in the workflow. In order for agents
to make intelligent decisions about what action to take when a workflow breaks down,
agents will need to know about tasks and capabilities, so that tasks may be reassigned
to others; without this knowledge they can only blindly follow a workflow. We encode
the required knowledge in an ontology and endow agents with the ability to reason with
the knowledge in this ontology, in order to make intelligent decisions when workflows
break down.

5 An OWL Ontology

An ontology [33] formally captures a shared understanding of certain aspects of a do-
main: it provides a common vocabulary, including important concepts, properties and
their definitions, and constraints regarding the intended meaning of the vocabulary,
sometimes referred to as background assumptions.

More formally, An ontology O consists of a set of terminology axioms 7 (TBox)
and assertional axioms A (ABox), that is, O = (7, A). An axiom in 7 is either of the
form C'C D or C' = D, where C and D are arbitrary concepts; an axiom in A is either
of the form C'(a) (where C' is a concept and a is an individual name; a belongs to C),

or of the form R(a, b) (where a, b are individual names and R is a role/property name;
b is a filler of the property R for a). The OWL-DL [15] ontology language is a variant
of SHOZN (D) [16] Description Logic, which provides constructs for full negation,
disjunction, a restricted form of existential quantification, and reasoning with concrete
datatypes. OWL DL benefits from many years of DL research, the benefits include well
defined semantics, well-studied reasoning algorithms, highly optimised systems, and
well understood formal properties (such as complexity and decidability) [2].

The organisation in the university is represented by the OWL DL ontology, Uni-
versity.owl! (part of which is shown in Figure 4). The ontology models persons, the
role hierarchy, constraints (such as mutually exclusive roles, cardinality, prerequisite
roles) [29], and the range and domain of properties. A person can take more than one
role; a role can have many persons. An example of mutually exclusive roles is that the
head of college cannot be the head of department simultaneously (see axiom 1 below);
a course organiser supervising a student’s project cannot mark that student’s project
(see axiom 2 below). Maximum and minimum cardinality constraints are also used. For
example, only one person can fill the role of the head of department; a student has to
take at least one course (see axiom 3 below). The concept of prerequisite roles means
a person can be assigned to role 71 only if the person already is assigned to role 72.
The Role hierarchy is also modeled in the ontology to reflect authority. More power-
ful roles are shown toward the top of the hierarchy and less powerful roles toward the
bottom. This role hierarchy is consulted by the agents when an exception occurs in a
workflow and the agent encountering the problem needs to report to a higher authority.
The agent with higher authority may appoint agents to different roles, or change powers
to overcome the problem; this is why it is important that the agents have knowledge of
the relevant constraints on such appointments. The following shows some of the axioms
of the ontology and SWRL rule which are pertinent to our example exception, and its
resolution.

1.HoD C — HoC

2. 3 supervises.(3doesProject.Project) = =3 marksProject.Project

3. Student C”> 1 takesCourse

4. 3 teaches.Course C 3 hasExpertise.Course

5. Professor(dave) // dave is a professor

6. teaches(dave,Robotics) // dave teaches Robotics

7. T CV teaches.Course // range(teaches) = Course

8. query_expertise C 3doneBy.(Person M3hasExpertise.Expertise)

9. Equipment(?q) A Expertiment(?x) A isNeededBy(?q,?x) — is_appropriate_equipment(?q,?x)

5.1 Exception in Equipment Purchase Workflow

In general, upon the failure of a message delivery, the ontology O must be queried to get
the manager of the intended recipient, R (i.e., the next higher agent in the hierarchy).
This query in SPARQL [27] can be done as follows:

Prefix uni: (http://www.csd.abdn.ac.uk/~jlam/University.owl)

SELECT ?manager

WHERE { “R” uni:managedBy ?manager }

This manager agent then inspects the tasks in the workflow at this place, in order to

find a suitable agent who can perform them. As mentioned above, there are only four
types of task: querying expertise, a local service query, a web service, or the sending

! http://www.csd.abdn.ac.uk/~jlam/University.owl

managedBy prerequisite T

xperitmental Equipment

.(Professor @
\\ R A
AN managedBy
Robotics Equipmen

Fig. 4: Parts of the University.owl ontology

of a speech act. Local services and Web services could be done by any agent, however
querying expertise can only be done by an agent with the required expertise, and per-
forming a speech act can only be done by an agent with the required institutional power.
Therefore when the manager agent inspects the tasks which need to be delegated to a
new agent, for each “query_expertise” task’ the manager must find an agent that has the
required expertise. This can be found by the following query, if the expertise is robotics:

Prefix uni: (http://www.csd.abdn.ac.uk/~jlam/University.owl)

SELECT ?person

WHERE { ?person uni:hasExpertise “Robotics” }

For speech acts that need to be delegated to a new agent, the manager may search the
institutional facts to find a suitably empowered agent. However, the manager of a group
of agents may typically be empowered to grant new powers to the team he manages,
and this is an alternative which can be used to ensure that a nominated agent can fulfill
all the tasks required at a place in the workflow.

We now consider a scenario where an exception arises during the enactment of
the Equipment Purchase (EP) workflow. As described above, when the HoD goes on
vacation he/she is supposed to appoint another member of the department to temporarily
act as HoD to cover the vacation period. We consider a scenario where the HoD has
failed to do this. The EP workflow then gets stuck at stage 5. The exception is picked
up by the secretary who is notified (by the agent platform) of a delivery failure on
her message (which should pass control to the HoD and enter stage 5). The exception
handling routine is invoked, and this requires that the secretary propagate the problem
to the next higher authority of the HoD, the HoC.

The secretary sends the undelivered message to the HoC, and this allows the HoC
to know the relevant variable bindings; in this case the HoC will know that the “Equip-
ment” is robotics equipment. By inspecting the protocol an agent can see what needs
to be done next, however no agent is empowered to authorise an equipment purchase,
except the HoD (see line (6) in Section 3.2). The HoC must rectify this situation by nom-
inating a suitable agent who could authorise the purchase. The query_expertise action is
one which requires special capabilities; the second parameter of query_expertise indi-
cates the type of expertise required (the variable “Equipment” is bound to “robotics”).
Thus when the HoC inspects this part of the workflow by querying the ontology (see
axiom 8 above), she knows that in order to execute this it is required that the agent must
have expertise in robotics. The HoC will perform an ontology query to find an agent
with the appropriate expertise. Axioms 4 to 7 implicitly encode the knowledge that
“dave” has expertise in robotics. Furthermore, the agent must have power to authorise

or reject equipment purchase requests. The HoC can grant the appropriate power to any
agent according to power (6) above.

6 Related Work

Many research efforts have been undertaken on distributed workflow enactment mech-
anisms based on the agent paradigm, their aim is to support flexible and adaptive work-
flows in open and dynamic environments. In this section, we focus on exception han-
dling in multi-agent systems and workflow management systems.

6.1 Multi-agent Systems

Exception handling in the agent community has been researched in order to build more
reliable multi-agent systems. Klein and Dellarocas [19] proposed the use of specialised
agents that handle exceptions. Their approach focuses on observing agent behaviour,
diagnosing the possible fault and taking appropriate remedial action. The exception
handling service is a centralised approach; the service is characterised as a kind of
coordination doctor which actively diagnoses agents’ illnesses and prescribes specific
treatment procedures. The aim is to simplify agent development and have the agent in-
frastructure provide the fault-tolerance. Klein and Dellarocas [21] constructed a semi-
formal Web-accessible repository of exception handling expertise for learning purposes.
They firstly identified an exception taxonomy which is a hierarchy of exception types,
and then described the exception management meta-process. The meta-process speci-
fies which handlers should be used when for what exceptions. Klein et al. [20] describe
a domain-independent exception handling services approach to increasing robustness
in open agent systems. A directory of agents is used to keep track of the “death” of
agents, so that exception which arise due to “agent death” problems can be handled
with minimal resource wastage. All of these works use some device which is added
into the system to deal with exceptions, for example: specialised agents, an exception
repository, or a directory to keep track of agents. In contrast, our approach aims to en-
dow the agents of the system themselves with the ability to deal with exceptions by
querying ontologies and changing the organsational structure.

6.2 Workflow Management Systems

The standard approach to representing workflows in business is the Business Process
Execution Language (BPEL) [18]. Buhler and Vidal [5] proposed the use of the Busi-
ness Process Execution Language for web Services (BPEL4WS) as a specification lan-
guage for expressing the initial social order of a multi-agent system, which can then
intelligently adapt to changing environmental conditions. Since BPEL4WS describes
the relationship between Web services in the workflow, agents representing the Web
service would know their relationships a priori. Buhler and Vidal [4] further proposed
to integrate agent services into BPEL4WS-defined workflows. The strategy is to use the
Web Service Agent Gateway to slide agents between a workflow engine. The workflow
engine calls the target agent instead of the Web service directly; the agent can be config-
ured to respond flexibly. From the above mentioned papers, Buhler and Vidal describe
approaches to create adaptive workflow capability through decentralised workflow en-
actment mechanisms that combine Web services and agent technologies; they claim
that that agents representing semantic Web services can organise themselves to enact
workflows flexibly.

Similarly, Guo et al. [12-14] address the downside of current workflow engines
which are centralised and suffer from single point-of-failure weakness; they describe
the development of a distributed multi-agent workflow enactment mechanism from
a BPELAWS specification. They proposed a syntax-based mapping between some of
main BPEL4WS constructs to the Lightweight Coordination Calculus (LCC). The au-
thors claim that with their approach, a BPEL4WS specification can be used directly for
constructing a multi-agent system using Web services composition; therefore, its ben-
efit is that existing workflow development methodologies and business process models
can be used as much as possible for MAS development. The papers do not cover how
their approach deals with unexpected circumstances during the enactment of workflows
at runtime.

In [9, 28] the authors address the same problems of workflow management systems
which have rigid, centralised architectures that do not offer sufficient flexibility for dis-
tributed organisations. In their system, Coloured Petri Nets (CPNs) are used to represent
the workflow. A process agent executes a workflow instance by assigning tasks to re-
source agents which can be seen as representing Web services and can be dynamically
discovered. Their aim is to assign suitable resource dynamically to a task. However
the resulting solution is still centralised to some extent, as an agent is managing the
enactment of the workflow and calling on resources to do the individual tasks; a truly
agent-based enactment should allow each agent to control their part of the workflow
(as in the other related works above). In our work, the workflow tasks are dealt by au-
tonomous agents without a central control from a manager agent, resulting in systems
that exhibit decentralised flow control.

Similar to our approach, the above mentioned works aim to enable the flexibility
of decentralised multi-agent workflow-enactment to deal with dynamic Web services;
agents are able to intelligently diverge from prescribed workflows when needed. Al-
though the above works sometimes do not give the details of how they would deal with
exceptional circumstances, their techniques can be extended to deal with exceptions.
We further include organisational knowledge, such as agents’ capabilities represented
in OWL ontologies; agents are then able to modify the roles, powers, obligations in the
organisation. We believe that the use of ontologies to describe aspects of the organisa-
tion and domain can be valuable here, as agents are part of an organisation and will be
unable to deal with exceptions entirely on their own.

6.3 The Commitment Approach

Singh and Huhns [31] propose interaction-oriented programming (IOP) as a technique
for engineering multi-agent systems to flexibly enact workflows. With the emphasis
on facilitating agent autonomy and flexibility in interactions, IOP describes interac-
tions using high-level primitives. The high-level primitive which Singh and Huhns fo-
cus on is the “commitment”. By making this a first class object agents are able to reason
about their commitments to others and vice versa, and can make autonomous decisions
about how to act. With commitments capturing the high level meaning of an interaction,
agents have the opportunity to intelligently reason about alternative ways of satisfying
the high-level goals of an interaction. This approach potentially allows a much greater
flexibility than our approach above, however the challenge is to develop an appropriate
agent reasoning mechanism to enable such adaptive behaviour. This is an interesting
area for future investigation.

Mallya and Singh [23], building on the commitment approach, have proposed novel
methods to deal with exceptions in a protocol. They distinguish between expected and
unexpected exceptions. Unexpected exceptions are closest to the types of exceptions
we tackle here. Mallya and Singh’s solution makes use of a library of sets of runs (se-
quences of states of an interaction) which could be spliced into the workflow at the
point where the exception happens. Mallya and Singh do not describe how these sets of
runs can be created, but it is likely that one would need access to observed sequences
from enactments of similar workflows. The aim of the commitment approach is in line
with our work, as it endows the agents with some understanding of the meaning of the
workflow they are executing, by giving them knowledge of the commitments at each
stage. This would make it possible for agents to find intelligent solutions when excep-
tions arise. Similarly, in our approach, agents are endowed with semantic knowledge
(represented in an ontology) about the capabilities and hierarchy of the other agents so
that they can find suitable candidates to execute tasks in the case of exceptions. In the
future work, we would like to merge our approach with the commitment protocols ap-
proach to model business processes, in which commitments among roles and business
policies can be described.

7 Summary, Discussion & Conclusion

We have shown how workflow exceptions at the coordination or organisational level
could be handled by agents. Our solution has two components: (1) a flexible agent in-
stitution, so that when an impasse arises in a workflow, the agents can reorganise to find
an alternative path to circumvent the problem; by “flexible” we mean that the institu-
tion must include speech acts which allow agent roles, powers and normative relations
to be altered at run-time; and (2) agents endowed with semantic knowledge about the
capabilities and hierarchy of the other agents so that they can find suitable candidates
to execute tasks that are preventing the workflow from progressing; we provided this
knowledge via an OWL ontology. We illustrated our approach with a University insti-
tution example to illustrate how exceptions can be dealt with by agents via ontology
reasoning, a decentralised collection of agents in an organisation cooperate to main-
taing the workflow’s integrity. In general the type of exception we can handle is one
where a task which needs to be done cannot be done because an agent is unavailable, or
available agents are lacking some attribute. In this case agents perform ontological rea-
soning or querying to find alternatives. In our example we simply adjusted the powers
of an agent so that he could fulfil the task. More generally we may allow agents in an or-
ganisation to decide to outsource a task, or to hire a consultant, or send a member of the
organisation for training. To tackle more varied and more complex types of exceptions
we foresee that agents will need to be given more knowledge about their domain and
the tasks and capabilities available. This will require a combination of more ontological
knowledge, and also appropriate reasoning mechanisms so that agents can exploit the
knowledge.

Our solution has split the knowledge of the system in two parts: the institutional
facts (powers, roles, speech act processing rules, etc.) are implemented with Prolog
rules, while the knowledge about the tasks the agents will be able to undertake (knowl-
edge of capabilities of the agents, constraints on roles, and the hierarchy of the organi-
sation) are represented with an OWL ontology. In fact some knowledge is represented
twice; the knowledge about membership of roles is included in both the ontology and

the institutional facts. This information is important both for deciding the institutional
updates, and for finding suitable candidates when coping with exceptions; however, this
duplication is not optimal.

References

1

11.

12.

13.

14.

15.

16.

H. Aldewereld, F. Dignum, L. Penserini, and V. Dignum. Norm dynamics in adaptive organ-
isations. In 3rd International Workshop on Normative Multiagent Systems (NorMAS 2008),
July 2008. (to appear).

. F. Baader, 1. Horrocks, and U. Sattler. Description logics as ontology languages for the

semantic web. In Dieter Hutter and Werner Stephan, editors, Mechanizing Mathematical
Reasoning: Essays in Honor of Jorg Siekmann on the Occasion of His 60th Birthday, number
2605 in Lecture Notes in Artificial Intelligence, pages 228-248. Springer, 2005.

. S. Bechoffer, F. van Harmlen, J. Hendler, I. Horrocks, D. McGuinnes, P. Patel-

Schneider, and L. A. Stein. OWL Web Ontology Language Reference, February 2004.
http://www.w3.org/TR/owl-ref/.

. P. Buhler and J. M. Vidal. Integrating agent services into BPEL4WS defined workflows. In

Proceedings of the Fourth International Workshop on Web-Oriented Software Technologies,
2004.

. P. Buhler and J. M. Vidal. Towards adaptive workflow enactment using multiagent systems.

Information Technology and Management Journal, 6(1):61-87, 2005.

. Paul Buhler, José M. Vidal, and Harko Verhagen. Adaptive workflow = web services +

agents. In Proceedings of the International Conference on Web Services, pages 131-137.
CSREA Press, 2003.

. O. Cliffe, M. De Vos, and J. Padget. Answer Set Programming for Representing and Rea-

soning about Virtual Institutions. In Katsumi Inoue, Satoh Ken, and Francesca Toni, editors,
Computational Logic for Multi-Agents (CLIMA VII), volume 4371 of LNCS, pages 60-79.
Springer-Verlag, May 2006.

. V. Dignum. A Model for Organizational Interaction: Based on Agents, Founded in Logic.

PhD thesis, University of Utrecht, Utrecht, The Netherlands, 2004.

. L. Ehrler, M. Fleurke, M. Purvis, and B. T. R. Savarimuthu. Agent-based workflow manage-

ment systems(wfmss) : Jbees- a distributed and adaptive wfms with monitoring and control-
ling capabilities. Information Systems and E-Business Management, 4(1):5-23, 2006.

. M. Esteva. Electronic Institutions: from Specification to Development. PhD thesis, Univer-

sitat Politecnica de Catalunya (UPC), Barcelona, Spain, 2003. IIIA monography Vol. 19.

F. Guerin and W. Vasconcelos. Component-based standardisation of agent communication.
In Matteo Baldoni, Tran Cao Son, M. Birna van Riemsdijk, and Michael Winikoff, editors,
Declarative Agent Languages and Technologies V (DALT), volume 4897 of Lecture Notes in
Computer Science, pages 227-244. Springer, 2007.

L. Guo, D. Robertson, and Y. Chen-Burger. Enacting the distributed business workflows
using bpeldws on the multi-agent platform. In Third German Conference on Multiagent
System Technologies, MATES 2005, pages 35-46, Koblenz, Germany, 2005.

L. Guo, D. Robertson, and Y. Chen-Burger. A generic multi-agent system platform for busi-
ness workflows using web services composition. In 2005 IEEE Intelligent Agent Technology,
pages 301-307, Compiegne University, France, 2005.

L. Guo, D. Robertson, and Y. Chen-Burger. Using multi-agent platform for pure decen-
tralised business workflows. Journal of Web Intelligence and Agent System, 6(3), 2008.

L. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic sat-
isfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the 2nd
International Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in
Computer Science, pages 17-29. Springer, 2003.

I. Horrocks and U. Sattler. A tableaux decision procedure for SHOZ Q. In Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 448-453, 2005.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

IBM. BPWS4J, 2004. http://www.alphaworks.ibm.com/tech/bpws4;.

IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. Business process
execution language for web services version 1.1. Technical report, July 2003.
http://www.ibm.com/developerworks/library/specification/ws-bpel/.

M. Klein and C. Dellarocas. Exception handling in agent systems. In AGENTS '99: Pro-
ceedings of the third annual conference on Autonomous Agents, pages 62-68, New York,
NY, USA, 1999. ACM.

M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent exception
handling services to enable robust open multi-agent systems: The case of agent death. Au-
tonomous Agents and Multi-Agent Systems, 7(1-2):179-189, 2003.

Mark Klein and Chrysanthos Dellarocas. Towards a systematic repository of knowledge
about managing multi-agent system exceptions. Technical Report ASES Working Report
ASES-WP-2000-01, Massachusetts Institute of Technology, 2000.

B. Ludischer, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and
Y. Zhao. Scientific workflow management and the kepler system: Research articles. Concurr.
Comput. : Pract. Exper., 18(10):1039-1065, 2006.

A. U. Mallya and M. P. Singh. Modeling exceptions via commitment protocols. In AAMAS
'05: Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 122-129. ACM, 2005.

T. Oinn, M. J. Addis, J. Ferris, D. J. Marvin, M. Senger, T. Carver, M. Greenwood, K. Glover,
M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of
bioinformatics workows. Bioinformatics Journal IEEE Computer, 20(17):430453054, 2004.
M. Paolucci, T.Kawamura, T. Payne, and K. Sycara. Semantic matching of web services
capabilities. In ISWC ’02: Proceedings of the First International Semantic Web Conference
on The Semantic Web, pages 333-347, London, UK, 2002. Springer-Verlag.

Jeremy Pitt, Lloyd Kamara, Marek Sergot, and Alexander Artikis. Formalization of a voting
protocol for virtual organizations. In Proceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS’05), Utrecht, July 2005.
ACM Press, 2005.

E. Prud’hommeaux and A. Seaborne. ~SPARQL Query Language for RDF. W3C
Recommendation, 15 January 2008. Available at http://www.w3.org/TR/
rdf-spargl-query/.

M. Purvis, B. T. R. Savarimuthu, and M. Purvis. A multi-agent based workflow system
embedded with web services. In second international workshop on Collaboration Agents:
Autonomous Agents for Collaborative Environments (COLA 2004), pages 55-62, Beijing,
China, 2004. IEEE/WIC Press.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. Computer, 29(2):38-47, 1996.

M. P. Singh. Agent communication languages: Rethinking the principles. IEEE Computer,
31(12):40-47, 1998.

M. P. Singh and M. N. Huhns. Multiagent systems for workflow. International Journal of
Intelligent Systems in Accounting, Finance and Management, 8:105-117, 1999.

K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery, interaction
and composition of semantic web services. Journal of Web Semantics, September 2003.

M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Applications. The
Knowledge Engineering Review, 1996.

WIMC. Workflow management coalition terminology and glosary. Technical Report
WFMC-TC-1011, Workflow Managemtn Coalition, 1999.

K. Wiesner, R. Vaculin, M. Kollingbaum, and K. Sycara. Recovery mechanisms for semantic
web services. In René Meier and Sotirios Terzis, editors, DAIS, volume 5053 of Lecture
Notes in Computer Science, pages 100-105, 2008.

