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Abstract. We consider a resource access control scenario in an open
multi-agent system. We specify a mutable set of rules to determine how
resource allocation is decided, and minimally assume agent behaviour
with respect to these rules is either selfish or responsible. We then study
how a combination of learning, reputation, and voting can be used, in the
absence of any centralised enforcement mechanism, to ensure that it is
more preferable to behave responsibly than selfishly. This result indicates
how it is possible to leverage local adaptation with respect to a set of
rules to achieve an intended ‘global’ system property.

1 Introduction

We are interested in engineering multi-agent systems for applications which re-
quire that the system be:

– open: agents are heterogeneous, may be competing, and may have conflicting
goals;

– fault-tolerant: agents may not conform to the system specification, but the
system should maintain operation, and demonstrate autonomic recovery;

– volatile-tolerant: agents may join and leave the system, but the ‘system’ itself
remains recognisably the same even if all the components change;

– accountable: who performed which action, and to what effect, is significant,
so social relations like trust, reputation, responsibility, liability and sanction
are all significant;

– decentralised: there is no central mechanism for either knowledge or control,
no agent is guaranteed to have full knowledge of the entire system or control
over the behaviour of all other components;

– ruled by law: there is a theoretical limit on those making decisions affecting
the constraints and/or requirements of behaviour of other components;

– mutable: there is a mechanism by which the specification itself can be changed
by the expressed consent of the participants.

Our approach to satisfying these requirements is based on organised adapta-
tion of agent societies. By an agent society we mean a formal specification of:
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(1) a set of social constraints (physical capabilities, institutional powers, norms
(permissions, obligations, and prohibitions), sanctions, and enforcement poli-
cies); (2) a communication language; (3) social structure (roles and the rela-
tionships between roles); and (4) other socio-cognitive relations between agents
(e.g., in particular, trust). By organised adaptation we mean the intentional
modification of such a specification to achieve a commonly-understood goal.
This requires understanding (1) what can be adapted (for example, the set of
social constraints, or individual behaviour wrt. to that set); (2) when to adapt;
(3) how to adapt (e.g. by voting); and (4) evaluating the outcomes of adaptation.

This is a wide-ranging programme of research, but within this paper we
focus attention primarily on the interplay of social constraints and relations
with respect to the adaptation of individual behaviour to address the issue of
fault tolerance (as here understood).

We start from a scenario with multiple agents providing/consuming resources
to/from a central repository. However, the set of resources requested is more
than those available for distribution, so we define a set of social constraints
which determine which agent is allocated resources. Depending on how ‘sociably’
the agents act during this negotiation, the system can be destroyed, either by
agents becoming dissatisfied and leaving the system, or by the over-consumption
of resources. However, due to property of decentralisation and autonomy, the
incentive to behave ‘properly’ must come from the agents themselves.

In this scenario, the allocation of resources is decided by a vote. However,
Arrow’s Impossibility Theorem [1] states that any non-dictatorial voting method
can be manipulated by agents expressing a false set of preferences. Voters are
therefore are capable of either responsible or selfish behaviour, and have the
option to choose between the two. In a system with no social constraints, it is
likely that they will objectively find that selfish behaviour yields a higher return.

This suppression of collaboration has been widely studied in game theory as
the Prisoner’s Dilemma, but can generally be avoided if agents’ reputations affect
their global social standing [2]. In this paper, we show how the combination of
an election to determine the outcome of a negotiation, a reputation mechanism
based on voting histories, and a learning algorithm for adaptation of individual
behaviour, can be used to ensure that, in the absence of any central enforcement
system, it is more preferable (in the long run) to comply with a set of social
constraints than it is to violate them.

In the next section, we describe the basic scenario and multi-agent system in
more detail. In Section 3 we describe the three primary mechanisms used in this
paper: the Q-learning method [3], the reputation mechanism, and election pro-
tocol. Section 4 describes experimental results from a ‘society’ of fifteen agents
implemented in the PreSAGE platform [4]. We discuss some related work and
draw some conclusions in Section 5. In particular, we note that just by mak-
ing the assumption of responsible or selfish behaviour (i.e. without comprising
the assumption of heterogeneity), individual learning algorithms can be used to
optimise outcomes of both individuals and of the society to which they belong.
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2 Background

2.1 Scenario and Multi-Agent System

The scenario is based on a ‘tragedy of the commons’ situation based on the
scenario presented in [5]. We also present the animation/simulation platform
which we have used to implement the system: further details of the platform can
be found in [4].

There is a set of agents U , interacting during a sequence of infinite time slices
t0, t1, . . . , tn, . . .; with each agent requiring, at each time slice, access to resources
stored in a bank B.

At each time slice, an agent may be present or absent: the set of agents
present at any t is denoted by At, At ⊆ U . To satisfy each of their individual
goals, each agent a ∈ At offers, at each time slice, an allocation of resources
Oa

t for B, and requests, at each time, an allocation of resources Ra
t from B.

We stipulate that, for all a ∈ At, Ra
t > Oa

t : in other words, the agents can only
satisfy each of their individual goals by mutual sharing their collective resources.

Clearly, not all of the requests can be satisfied without ‘bankrupting’ the
system. Therefore, at each t, the set of present agents At take a vote on who
should have their resource request satisfied. If an agent a receives a number of
votes greater than or equal to a threshold τt then its request is granted. The
problem then is that:

– If τ is too low, too many resources will be distributed, which this will result
in the “Tragedy of the Commons” as the system is bankrupted;

– If τ is too high, too few resources will be distributed, which this will result
in “voting with their feet” as dissatisfied agents leave the system.

The challenge then is for the agents to agree – again by a vote – a new value
for τ in time slice t + 1 based on their prediction of how many agents will be
present, available resources, and so on. In other words, they are adapting the
rule (informally, for a formal expression of the normative rule, see [6, 7]):

the resource controller is obliged to grant access to the resource to a requester,
if the number of votes for the requester is greater than or equal to τ

by manipulating the value of τ . We define responsible behaviour to be recognised
as voting for an a value of next-τ which will not bankrupt the system or under
distribute resources. Consistently voting for a low value of next-τ however, is
considered selfish, especially when communal resources are low.

Formally, the external state of the multi-agent system M is specified, at a
time-slice t, by:

Mt = 〈U, 〈A, ρ,B, f , τ〉t〉
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where:

U = the set of agents
At ⊆ U, the set of present agents at t
ρt : U → {0, 1}, the presence function s.t. ρt(a) = 1↔ a ∈ At

Bt : Z, the ‘bank’, indicating the overall system resources available
τt : N, the threshold number of votes to be allocated resources
ft : At → N0

The resource allocation function ft is constructed by:

ft(a) = Ra
t , card({b|b ∈ At ∧ vb

t(. . .) = a}) ≥ τt
= 0, otherwise

where vb
t : (. . .) → At is the expressed preference (vote) of agent b in time-

slice t, whose inputs are local parameters (in particular agents’ reputations) and
whose output is a preference array of agents in At. Voting for oneself as the most
preferred agent is also considered selfish behaviour.

2.2 Simulation/Animation Platform

To animate this system and experiment with different agent behaviours, we have
used the agent society animation/simulation platform PreSAGE [4]. PreSAGE
is a rapid prototyping tool whose emphasis is on the simulation of agent societies
and the social relationships between agents, intended to facilitate the study of
the social behaviour of components, the evolution of network structures, and
the adaptation of conventional rules. To develop a prototype, it is necessary to
define agent participant types: this can be done by extending the abstract class
supplied with PreSAGE (to guarantee compatibility with the simulation calls
and provide core functionality like message handling etc.) or by defining a new
class.

To define the participant class for our purposes, we extend the PreSAGE ab-
stract participant with the following data and functions (we drop the superscript
a since it is implicit from context):
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〈 Name a,
Presence p : t→ {0, 1},
Resources offered O : t→ N,
Resources required R : t→ N,
π a set of predictor functions which compute |At+1|
Q(state, action) State-Action evaluations for successful

actions to effect reinforcement Learning
Reputation Monitor r : U → {0, 1}
Satisfaction σ ∈ [0..1],
Satisfaction Increase Rate α ∈ [0..1],
Satisfaction Decrease Rate β ∈ [0..1],
v voting function which maps a list of agents’

historical actions, to an ordered list of agents Ap

representing a preference array 〉

The combination of Q(state, action) ie. Q-Learning, reputation tracking and
voting are defined in section 3 as the tools we use to show how we can harness
peer pressure in the system.

Each time slice sees each active agent follow the system cycle:

Phase 1: set threshold
At = {a|a ∈ U ∧ ρt(a) = 1}
each agent a ∈ At uses πa to propose and vote on a value for τt

Phase 2: resource request
each agent a ∈ At offers resources Oa

t , and requests resources Ra
t

each agent a ∈ At computes reputation values for each agent b ∈ At

Phase 3: resource assignment
each agent a ∈ At uses va to vote for a vector of agents comprised of a ∈ At

ft is computed from the votes cast and τt
Phase 4: update
Bt is updated according to the resources allocated
each agent updates its satisfaction rating (see below)
each agent updates its Q-Value estimates for reinforcement learning

Phase 4 is where an agent evaluates its personal success and potentially changes
its behaviour to try to improve its standing. In section 3, we elaborate in more
detail how our participants use their Q-Values and reputation monitors towards
this goal.

2.3 Related Research

Although the use of learning techniques to change system parameters is ad-
dressed in [8, 9], the scenario described here defines an institution to be the
sum of its participants rather than a separate entity. The research most closely
aligned with the current work is the foundational work of Axelrod [10] on the
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evolution of norms1. In this work, he posited a norms game, in which an individ-
ual has an opportunity to defect against a norm, as determined by its propensity
to boldness. If it defects, then it gets a positive payoff, and all the others get a
negative one. A defecting agent may or may not be seen (to defect); if it is seen
by another agent then the agent may choose to punish or not, as determined by
its propensity to vengefulness. If it chooses to punish then the punished agent
(the defector) gets a large negative outcome, and the punishing agent a small
negative outcome (i.e. there is a cost associated with enforcing a norm).

Axelrod ran computer simulations where the population changes over a se-
quence of generations, whereby those agents with more successful boldness/venge-
fulness strategies produce more descendants than less successful ones (keeping
a fixed population size). The outcome was, starting from an average level of
boldness and vengefulness: first boldness fell, because it was costly to be bold
when vengeance was (relatively high); then vengefulness fell, as was is costly to
be vengeful without direct benefit; then boldness rose sharply, destroying the re-
straint originally shown – as Axelrod notes: “a sad but stable state” ( [10]:p1100).

To redress this situation, Axelrod introduced a variant of the game with a
metanorm, in this case the punishment of defection may or may not be seen, and
not punishing itself may be punished. So there is some incentive to be vengeful.
Axelrod simulations now showed that if a population started with ‘sufficient’
vengefulness the restraint could be maintained, but if not, then the metanorms
game collapsed just like the norms game.

To some extent, the scenario in this paper is a partial reconstruction of Ax-
elrod’s norms game, with some important variations. The four phases of each
time slice are comparable to one path in the norms game, where (Phase 1) the
agents vote either selfishly or responsibly (defect or do not defect); (Phase 2)
every agent sees what each other agent has done; (Phase 3) agents punish defec-
tors through the reputation mechanism; and (Phase 4) agents update behaviour
through Q-learning (notionally equivalent to the production of the next genera-
tion).

However, in our scenario, there is pre-established conventional rule, and the
norm is to effect a ‘sociable’ adaptation of that rule. Therefore we do not deal
with generations of agents and the evolution of norms, but with one generation
(whose numbers may change, e.g. when a new selfish agent is introduced) and
the robustness of its norms wrt. maintaining a stable state in face of potentially
disruptive components (i.e. when a new selfish agent is introduced). Our agents
do not perform game-theoretic decision making along boldness vs. vengefulness
dimensions, but instead express a preference (a vote) based on a larger number
of local parameters, thus the internal complexity of our agents, while hidden
from general view, is greater than the individual players of Axelrod’s game.

1 N.B. An Axelrod norm refers to a general social norm, which can arguably be decon-
structed in terms of the norms defined by Pitt et al [7]. As an example, a guest at
a dinner party is generally obliged to request permission to smoke from an empow-
ered entity; which by convention is the host. We do not make a distinction between
defecting against an Axelrod norm, or a Pitt norm.
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Furthermore, the two votes required, one for the value of τ and one for
the candidate order, require each agent to express preferences. This signalling
introduces an element of communication which side-effects the game, and in
combination with the reputation system and learning (individual adaptation)
provides the robustness to resist the disruption of selfish agents.

3 Mechanisms for Peer Pressure

3.1 Overview of mechanisms

Reinforcement Learning Voting Functions Reputation Monitor

Phase 1: Set Threshold
Phase 2: Request Resources

Phase 3: Resource Assignment
Phase 4: Learning Update

Voting Behaviour

Candidate information

Fig. 1. The mechanisms and dataflow for each timecyle

Figure 1 illustrates the cycle through which we can maintain a stable system
with self-enforcing behaviour using peer pressure. The voting functions and pat-
terns of each agent are public, and will feed into the reputation monitors of each
participant. The reputation monitor then generates a list of preferred agents
derived from how socially each agent is perceived to be acting. This vote gener-
ates a result which depending on a win or loss of resources, drives the learning
algorithm of an agent. An agent will then choose a voting behaviour (social or
antisocial) which the learning algorithm calculates to give the highest return.

3.2 Voting Functions

As defined in section 2.1, τ will symbolise the threshold number of votes an agent
requires from the population to receive resources. In order to select an appropri-
ate value we must ensure that the electorate is not split. To avoid this we select
τ using a two round election system where round one consists of suggestions for
τ , and round two a vote between the two most popular suggestions. This way
even if the responsible voters are split on their suggestions, it is probable that
at least one of the popular choices is closer to theirs than a selfish one.

Once τ has been decided we can move on to resource requests, offers, and the
main vote for who will receive resources this time slice. For simplicity we have
fixed the resource requests and offers as we believe the significance of the intro-
duction of a normal distribution would not justify the increase in complexity.
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We have found a plurality vote in this round to be ineffective for discouraging
antisocial behaviour. Statistically the ideal value of τ for a system cycle, tends to
be less than or equal to the number of votes that an agent is granted to use. For
example if each agent is allowed to vote for two candidates to receive resources,
the value of τ which will ensure a stable resource stockpile for a responsible
population, tends to oscillate around two. Therefore if we allow agents to use
these votes for themselves, selfish behaviour will almost always be rewarded. We
need to force agents to be less introspective, as the solution to this problem lies
in the opinion an agent has of its neighbours.

To this end we have changed the system’s main voting protocol to Borda
which requires agents to vote in the form of an ordered preference list2. Repe-
titions in the list will be ignored and incomplete lists will be penalised. Agents
behaving selfishly are loyal to no one and will rank themselves before anyone
else. Responsible agents however, will conscientiously rank the voters, leaving
selfish agents with no extra Borda points. It will therefore be the agents behav-
ing responsibly who will receive on average a larger number of Borda points.
The interpretation of a Borda preference array can be viewed in table 1 in which
x = the number of agents receiving points; we define this to be approximately
half of the total population.

Preference Array Vote weight

p1 x

p2 x-1

. .

. .

px+1 2

px 1

px−1 0

. .

. .

pm 0

Table 1. Borda preference array interpretation used when aggregating the votes

3.3 Reputations and Behaviours

For responsible behaviour in Borda elections, agents must diligently rank their
neighbours in a preference relation. This requires the use of a reputation moni-
tor which can distinguish between selfish and social behaviour. Then depending
on individual reputation values the preference relation can be constructed. For

2 τ in this case, represents the minimum number of Borda points required to receive
resources.
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agents which have identical reputations we make sure to randomise their posi-
tions between one another. This can be achieved by basing a preference relation
on a random variable which takes the reputation as an input rather than a strict
ordering based on historical behaviour.

Due to their activity profiles agents do not have perfect knowledge of the
system. They may rejoin with no reputation information on a number of new
agents. It is important that we carefully define how to recognise antisocial be-
haviour as quickly as possible. The system has therefore been specified in terms
of two poles of behaviour, responsible and selfish. Agents behaving responsibly
are defined to be altruistic capitalists, putting the needs of the system before
their own, but expecting some sort of return for their efforts. The priority lies in
avoiding the tragedy of the commons and bankrupting the system. Responsible
agents also have a duty to the system to exclude agents which behave selfishly.

Agents behaving selfishly are somewhat simpler than their responsible coun-
terparts as their duty is only to themselves. They will always vote so that they
are first on their preference list and try for the lowest value of τ available. These
actions cannot be hidden from their neighbours so the gamble is that the ‘pro’
of voting for oneself will offset the ‘con’ of a poor social standing. Needless to
say, a system comprised solely of selfish agents would bankrupt, so our aim is to
create a set of norms that rewards responsible behaviour while punishing selfish.

The difficulty is finding a method that predicts a τ value responsibly, but
avoids a universal consensus. In the El-Farol Bar problem a group of entities
with access to the same information and the same prediction facilities will unan-
imously decide on an action. The example cited in [11] describes a population of
residents who use the same function to predict if it is worth going to the local
bar. If the bar is between 50% and 60% capacity, then the patrons will have a
good evening, otherwise the bar will either be too full or too empty. However if
all agents come to the same prediction, the bar will always either be completely
full, or completely empty.

The solution lies in a range of prediction functions randomly initialised and
distributed among the agents. Agents will use their predictor functions with
historical information of what a good value of τ would have been in the previous
timecycles and verify this with what the best value would have been for the
current time cycle. Functions returning a value close to this will be ranked above
less accurate predictions. This should result in an easily observable ‘responsible’
behaviour when compared to agents who always vote for τ = 0.

We employ a set of predictors, each constructed using a randomly weighted
average of historical values. We take xi to be a random value between zero and
one adhering to a uniform distribution.

wi =
xi∑
∀j xj

pred =
∑
∀i

wi.ai

where ai refers to the historical values.
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The historical information is selected by collating all the votes and ranking
the most popular agents. We then hypothetically give each agent resources until
all the offered resources have been exhausted. The last agent to receive resources
then becomes the benchmark for τ , and we enter the number of votes that it
received as the historical τ threshold.

3.4 Reinforcement Learning

Reinforcement learning is a non-essential addition to the experiment but is useful
to demonstrate how an initially selfish agent can be ‘rehabilitated’ through peer
pressure. Q-Learning specifically provides us with an unbiased evaluation of sets
of actions. For example, if a selfish agent is successfully excluded from the agent
society will receive no resources causing the Q(state, action) value for selfish
behaviour to continually decrease. An agent becomes ‘fed up’ with the status
quo when the Q(state, selfish) value falls below that of the Q(state, responsible)
value. It is at this point that an agent will try behaving responsibly to see if this
provides a better return.

In accordance with Axelrod’s work on cooperation [2] the rest of the agents
will quickly forgive a repentant agent and cease ostracising it; as manifested by a
better average position in the preference array vote of a responsible agent. This
will in turn increase the number of resources allocated to an agent and therefore
raise the Q(state, responsible) value. This illustrates the intuitive interpretation
of a Q(state, action) value: a metric representing the previous success of an
action in a system state.

Q-Learning can be based on a Markov Decision Process which takes into
account the history of success and failures of actions in a state transition system.
However due to agent activity profiles and an agent’s incomplete knowledge of the
system, participants were occasionally prone to rapid switching of behaviours.
In an attempt to remedy this, we introduced the threshold suggested in [3]
resulting in Delayed Q-Learning; we used this in conjunction with a Q-learning
rate suggested in [12].

We define the system in terms of actions x ∈ X from states s ∈ S, with
buffers of size m saving reward information rk at time k. The state-action value
function can then be defined using:

Qt+1(s, x) =
1
m

m∑
i=1

(rki + γVki(ski)) + ε

where

Vt = maxx∈XQt(s, x)
rk ∈ [0, 1]
γ ∈ [0, 1]

In our system we have only two Q-Values to update as we have only one state
and two ‘actions’ representing responsible and selfish behaviour.
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Each state-action pair has its own buffer allowing it to evaluate all of the
available actions for a state. But to ensure a delay, the algorithm only updates
state-action Q-values once the buffer has been filled, after which it is then reset.
New Q-Values must change the original by more than 2ε or they will be rejected.
This gives agents longer to evaluate state-action pairs

Learning takes place during the declaration of the election result. The dom-
inant behaviour will interpret the list of winners as r ∈ {0, 1}, and depending
on how full the buffer is etc. will update the Q-value for this action accordingly.
Behaviour for a timecycle is always selected using

a′ := argmaxa∈AQt (s, a)

4 Experimental Results

4.1 Agent Animation

Agents begin their life cycle with a role assignment we assume to have been
established in advance. This can be done through a role assignment protocol as
outlined in [7]. The chair of the session then calls for participation in the system,
and the voters send confirmation messages. A voter has an activity profile which
is linked to a Markov chain, resulting in a stable population, but as mentioned
in previous sections they may refuse to participate if they no longer consider
the system to be viable. A confirmation of participation is tantamount to a
commitment to provide resources in this time slice, regardless of the result.

During the τ selection vote, agents’ votes are kept public so they can update
their reputation monitors accordingly. Specifically an agent is disapproved of if
they vote for an unreasonably low value of τ . We define this to be a vote for
τ = 0 when the stockpile of resources leftover from the previous timeslice is less
than zero ie. the system is in debt. This makes the recognition categorical as
a responsible agent would not perform this action. This allows us to focus on
whether the reputation monitor works in the absence of flawed information.

The main vote follows from the τ selection by opening a ballot for the agents
who voted in the first round. It is at this point that agents need to form their
preference arrays and send them to the chair for collation. After a defined time-
out the chair will accept no more votes and calculate how many resources are
left in the system post distribution. For brevity the optimal value of τ , for use
in the prediction functions, is calculated by the chair and circulated with the
election results. This reduces the complexity of the system significantly.

Once agents know whether they have received resources this timeslice, they
are able to update how successful their state-action pair was this time slice, and
adjust their satisfaction rating. Satisfaction is representative of an agent’s overall
success in the system and is maintained parallel to individual action histories.
We define satisfaction to lie between zero and one, and to be governed by the
equations:

σt+1 = σt + (1− σt)α
σt+1 = σt − σtβ
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where the former is used to improve an agent’s satisfaction in a society, and the
latter to regress it. α and β represent the satisfaction increase and decrease rates
respectively.

4.2 Experiments

Initially we show that this experiment is stable amongst a group of these agents
who have already established a responsible moral context. We do this by setting
the initial Q-Values of responsible behaviour higher than the selfish. We then
add a potentially destabilising element to the system at timecycle 3000, taking
the form of a set of agents whose selfish Q-values are higher than their respon-
sible ones. We will examine how and whether the learning algorithm works in
conjunction with the reputation monitor. We should observe a change in be-
haviour matching a delayed change in satisfaction as the social standing of an
agent improves. If an agent doesn’t manage to learn, they should have a very
low satisfaction by the end of the simulation.

4.3 Results

We include here an example of a simulation of 15 agents. We start with a commu-
nity of 10 responsible and stable agents, and introduce a set of 5 selfish agents. In
this example four of the initially selfish agents learn to behave responsibly, but
one does not. We have chosen a small example as it is difficult to demonstrate
trends in this system. Trends of the selfish population exist only insofar as they
either change their behaviour and get absorbed into the responsible population,
or they don’t and leave the system. These two outcomes can happen at any time
and statistical analysis tends to average away all the interesting details3.

Figures 2 and 3 show the average satisfaction of the initial population of
responsible voters to be stable. Even when the selfish agents are introduced at
cycle 3000 the satisfaction seems to remain high universally. What is actually
happening here however, becomes clearer on looking at figures 4 and 5.

Figure 4 shows that most of the selfish agents are learning to change their
quite rapidly, resulting in a better reputation, and a higher satisfaction. However
on comparing figures 3 and 5 we see that as the system gradually recognises agent
13 as a selfish element, the ‘Benefit of the Doubt’ eventually disappears, and it
receives no more resources, resulting in an extremely low satisfaction rating. It
is effectively ostracised and ends up leaving the system altogether.

4.4 Summary of Results

The experiments reported here offer additional supporting evidence for Axel-
rod’s original claims, make their own contribution, and serve as a basis for a
successively richer set of experiments in further work. The experiments confirm,
3 We have performed this experiment several times with fifty agents, and found the

system to behave in the same way.
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as stated by Axelrod, that norms and conventions are a powerful mechanism
for resolving conflicts of interest in disputes between multiple parties even in
the absence of a central authority. In addition, social norms (e.g. the ‘norm’ is
to vote for a ‘reasonable’ value of τ) and social constraints (i.e. the reputation
mechanism) work well in preventing minor defections given that the cost of en-
forcement is low. In their own right, the experiments show how effective it is
to give control over the adaptation of rules to those whose outcomes are most
directly affected by the adaptation (cf. [13]), and how it is possible to leverage
local adaptation with respect to a set of rules to achieve an intended ‘global’
system property.

There are several lines of further investigation opened up by this work. One
is a more fine-grained behaviour rather than responsible or selfish. Rather,
we would have a propensity to selfish behaviour, and correspondingly allow
a propensity to punish. This would necessitate a more subtle implementation
of forgiveness which is an important element of autonomic systems for self-
repair [14]. A second line of investigation concerns a peer to peer system allowing
‘gossiping’ between agents to allow groups to converge their opinions. For this,
we could use the models of opinion formation formalised by [15].

5 Summary and Conclusion

In this paper we have outlined an agent society which maintains fault tolerance
through peer pressure. We chose three mechanisms to create this dynamic: The
reputation monitor, the reinforcement learning, and the voting functions out
of which emerged emerged a group of responsible agents which when pitted
against selfish individuals effectively pressurised the latter into their preferred
way of behaving (i.e conforming to a norm, in the sense of Axelrod). If agents
refused to conform they were eventually permanently identified as anti-social
and received no votes at all.

Through the platform PreSage, we have shown that a social norm can be en-
forced in a system with a strong moral pretext without the use of a centralised
enforcement agency, given that the cost of enforcement is low or non-existent.
However, it would be interesting to investigate the effects of scale (size of popu-
lation) and the corresponding increased cost of a more centralised enforcement
mechanism. For example, in a relatively small society, enforcement could be
based on peer-pressure, word-of-mouth or other reputation mechanism (as here)
with low or no cost. In a relatively large society, central reputation registers could
be provided, with punishment provided by the equivalent of a ‘police force’, but
at a much higher cost.

On a closing note, we also agree with Axelrod [10] when he observes that the
probabilistic effects and complexities of population diversity make it difficult (if
not impossible) to determine the consequences of a given behavioural model.
However, computer simulation techniques offer a viable alternative which can
reveal the system dynamics and stable states, as well as specific influence of
identified agent behaviour profiles.
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