From Multi-Agent to Multi-Organization
Systems: Utilizing Middleware Approaches

Matthias Wester-Ebbinghaus, Daniel Moldt and Michael K6hler-Buimeier

University of Hamburg, Department of Informatics
Vogt-Kolln-Strafie 30, D—22527 Hamburg

{wester,moldt,koehler}@informatik.uni-hamburg.de

Abstract. Modern software systems share with social organizations the
attributes of being large-scale, distributed, and heterogeneous systems
of systems. The organizational metaphor for software engineering has
particularly been adopted in the field of multi-agent systems but not
entirely exploited due to an inherent lack of collective levels of action. We
propagate a shift from multi-agent to multi-organization systems that we
rest upon an organization theoretically inspired reference architecture.
We further suggest to ultilize agent-oriented technology as a means for
realization. We draw upon the wide variety of organizational modelling
and middleware approaches and establish a best fit between different
approaches and and requirements for different architectural levels.

1 Introduction

The characterization of modern software systems as application landscapes [1],
ultra-large-scale (ULS) systems [2] or software cities [3] carries the comprehen-
sion of as large-scale, inherently distributed and heterogeneous systems of sys-
tems. The various parts of the overall system are embedded in complex and dy-
namic environments, where they co-evolve with various other systems (software
systems, other technical systems, social systems). In this respect, the challenges
in dealing with modern software systems resemble the challenges that organiza-
tions in social societies face. Despite being inherently complex, distributed and
heterogeneous themselves and despite existing in potentially highly complex and
dynamic environments, organizations have to draw and manage their boundaries
in a way that properly supports their goals and purposes. According to Hannan
and Carrol, the main capacities of organizations in comparison to other social
collectivities are precisely their durability, reliability and accountability [4].
Thus, it is not surprising that multiple software engineering approaches have
been brought forth in recent years that take an organization-oriented perspective
on software systems. Many of these approaches are rooted within the multi-agent
system (MAS) paradigm of software engineering as the underlying metaphors
are already socially inspired and thus provide an ideal breeding context for
organization-oriented ideas. A thorough overview of recent and current work
in this field can be found in [5]. While multi-agent system research has made
significant contributions to establishing an organizational metaphor for software
engineering, when relating these contributions to organization theory it becomes

obvious that the true potential of the organizational metaphor is not entirely
exploited. Organization theories are frequently classified along the dimension of
analysis level. On the on hand, organizations can be regarded as systems com-
posed of individuals for whom they provide technical and social contexts. This
conception is what multi-agent system research has focussed on so far. On the
other hand, Scott [6] points out that one cannot comprehend the importance
of organizations in human societies if they are only regarded as contexts for in-
dividual actors. Instead, organizations are collective actors in themselves. They
carry out actions, utilize resources, enter contracts and own property. Indeed,
they are the primary social actors of today’s society. With respect to ever larger
and more complex software systems, it becomes obvious that this conception of
organizations as collective actors is equally vital for software engineering. How-
ever, it has only been taken into account tentatively by multi-agent research. One
might argue that this was just a matter of extrapolating the concepts for the
individual level (agents as actors) to the collective level (organizations as actors).
Approaches for agentifying multi-agent systems [7] and holonic multi-agent sys-
tems [8] pave the way for this advancement. We realize these possibilities, but
at the same time insist that this transition should more heavily rely on results
that organization theory as a discipline with a long tradition in investigating
organizations, their internals, and their environments already has to offer.
Consequently, the aim of this paper is the provision of a software development
proposal that builds upon and extends the multi-agent system approach in order
to account for the true potential of the organizational metaphor. Central to our
proposal is the advancement from the individual agent to the organization as a
software engineering metaphor of higher granularity. In [9] Ferber advances the
distinction between ACMAS (agent-centred multi-agent systems) and OCMAS
(organization-centred multi-agent systems). We consider our approach as one
further step in this shift of paradigm and term the systems introduced by our
approach MOS (multi-organization systems). We do not claim to supplant multi-
agent system philosophy by introducing an entirely new paradigm. The approach
we present completely rests on an underpinning of multi-agent systems. But we
do claim to take an entirely fresh look at the game of organization-oriented soft-
ware architectures. In Section 2 we present the ORGAN-model (Organizational
Architecture Nets) as a ”thinking model” to comprehend systems of systems un-
der a multi-organization perspective. In Section 3 we compare three distinct or-
ganizational models for multi-agent systems that rely on middleware approaches
for deployment. We investigate the prospects of the middleware philosophy with
respect to the engineering of large-scale systems following ORGAN. We conclude
our results in Section 4 and provide an outlook on open issues and future work.

2 Engineering Systems of Systems: The ORGAN-Model

In this section, we consider characteristics and problems of large-scale software
systems and present the ORGAN-model as an organization theoretically inspired
comprehension model.

2.1 Software Systems in the Large

It is necessary to go beyond the concept of size alone in order to get a grasp of
the nature and effects of software systems of the category ULS system [2]. Their
parts are most often derived from structures and processes of real-world systems.
These include physical and mechanical systems but above all social systems.
Social systems of a certain size are inherently distributed and decentralized.
This condition accounts for the fact, that the accompanying software systems
are not monolithic (which might also yield an enormous size) but rather systems
of systems as characterized in [10]. The several system parts are typically not
only geographically distributed but also independently acquired, deployed and
useful. The overall system is not intentionally formed and developed but evolves
gradually and exhibits a considerable degree of emergent behaviour.

In [2] an analysis of the problems resulting from these characteristics is car-
ried out. The inherent geographical distribution in combination with managerial
and operational independence inevitably lead to decentralization. Besides data
management and operation this affects the evolution of the overall system, its
control and observability. It is not possible to stop the system or to take out uni-
form rollouts and release changes. Instead, the functional range of the system is
extended, adapted or restricted simultaneously to its operation. Thus, the evolu-
tion of the overall system is continuous rather than following well-defined phases.
Governance mechanisms that assume a comprehensive knowledge of system-wide
parameters, the possibility of solving conflicts uniformly, and the effective adop-
tion of a central authority become mostly obsolete. Instead, one has to deal with
decentralized control, the impossibility of global observability and assessment
and difficult estimation of the effects of pertubations.

Organization-oriented MAS engineering addresses many of the just men-
tioned problems. In particular, they deal with autonomous and potentially het-
erogeneous system parts subsumed under joint superstructures. In the Section 3
we will elaborate on some related concepts. Nonetheless, one drawback of multi-
agent system approaches to systems of systems engineering becomes obvious.
The sheer size of the software systems addressed in this paper entails the neces-
sity to distinguish different levels of abstraction. Degree of abstraction relates
to the granularity of the system units that are studied at each respective level.
The core metaphor of multi-agent system research is the individual agent, which
is of rather small granularity. As mentioned in the introduction, one common
distinction regarding organization theoretical studies is whether an individual or
a collective level of analysis is chosen. Collective level issues are not inherently
rooted in the agent paradigm. Like stated in the introduction, recent compre-
hensions of MAS put a stronger focus on the system/organization level and
some approaches even address the topic of multiple agents acting “as a whole”
and thus exhibiting corporate agency. These efforts narrow the gap between
the agent paradigm and the demand for collective level perspectives. However,
there remains the risk of a mismatch between the applied core metaphor and the
required conceptual level, at which application problems have to be addressed.

For this reason, we advocate a temporary departure from the agent paradigm
at this point. Instead, we introduce the ORGAN reference model for comprehend-
ing systems of systems under an organization-oriented perspective.

2.2 Universal Model of an Open, Controlled System Unit

The underpinning of ORGAN is the universal model of an open and controlled
system unit from Figure 1 that is applied at all system levels.! Three types

Periphery Processes

| =

Integration

Integration Processes

System Unit

Fig. 1. Universal model of an open, controlled system unit

of internal system units and system processes are distinguished respectively.
Internal system units are categorized as operational units, integration units and
governance units.?> Integration units together with operational units represent
the “here and now” of the system unit in focus. The operational units are so to
say the intrinsic units and carry out the system’s primary activities. They are
dependent on the integration units which offer a technical frame via intermediary,

!This model has an underlying reference net semantics [11]. Reference nets carry
some extensions compared to ordinary coloured Petri nets. They implement nets-
within-nets concept where a surrounding net can have references to other nets as tokens.
Synchronous channels allow for bi-directional synchronous communication between net
instances. In [12], we show how the approach of modelling system units with reference
nets allows for straightforward prototyping and simulation.

2It is important to note that operation, integration and governance are in the first
place analytical aspects of system units. However, they are carried and backed up
by certain (individual or collective) actors, hence the classification of internal system
units. Although analytically distinct, the three aspects are intrinsically interwoven and
interdependent. The three sets of internal system units do not even have to be disjoint.
Instead, particular system units might fulfill multiple analytical roles.

regulation, and optimization services in the course of integration processes. The
governance units represent the “there and then” of the system unit in focus.
They offer a strategical frame via goal/strategy setting, boundary management,
and transmitting their decisions to the other internal system units in the course
of governance processes.

Each system unit is a Janus-faced entity. It embeds system units as internal
system units and is itself embedded in other system units as one of their internal
system units. Thus, besides the already mentioned internal frames (technical
and strategical) each system unit in focus is externally framed by surrounding
system units to which the system unit in focus (by means of its internal system
units) relates via periphery processes.

To conclude, we take a recursive, self-similar nesting approach, borrowed
from Koestler’s concept of a holon [13] that we extend with a generic reference
model for control structures at each level. We arrive at a modular approach to
comprehend systems of systems. Each system part may be regarded under a
platform perspective and under a corporate agency perspective. This provides
a conceptual basis to systematically study and implement different modes of
coupling, both horizontally and vertically.

2.3 Reference Architecture

With respect to software architectures, a selective distinction of different system
levels has to be carried out. Here, we advance the ORGAN reference architecture
for multi-organization systems.

Overview The core unit now is the organization instead of the agent. This
directly leads to three mandatory architectural levels, the organization itself,
its internals and its environment. As an organization might have different con-
ceptual environments (e.g. different domains within which it operates) and the
architecture targets at the inclusion of multiple organizations we have to deal
with multiple environments. Thus, the need for fourth architectural level that
acts as a system closure arises.

This distinction of architectural levels resulting from rather technical con-
siderations is confirmed by analysis levels that organizational theories target at
according to Scott’s classification [6]. At the socio-psychological level the inter-
nals of an organization in terms of relationships between its individual members
are studied. The organization structure level introduces the perspective on an
organization as a holistic, identifiable entity. It studies structures and processes
that characterize an organization in terms of its parts (departments, teams) and
its analytical components (specialization, communication network, hierarchy).
The ecological level focuses on characteristics and actions of organizations as
corporate actors operating in an even wider network of relations. For this level,
further distinctions are possible. Among them, the level of an organzational
field bears the most comprehensive concept of an organization’s environment.
It consists of organizations that, in the aggregate, constitute a recognized area
of institutional life (key suppliers, consumers, regulatory agencies, etc.). Finally,
the society integrates all fields under a common body of law.

Consequently, four types of organizational units as specific forms of the uni-
versal model of system units from Figure 1 follow for the ORGAN-architecture:
departments, organizations, organizational fields and the society. Figure 2 shows an
illustration. In the remainder of this section, we differentiate the four types ac-

System Closure

:%g Society

logical Organizational Units

I

| . Department \
| i ! + \ \ \
L) [y VoY

' _@ I._

\ physical Executive Units

/ 4 \
T /] \ \ \ v
_@ @ @'.- @ _. ®-(here: Multi-Multi-Agent Systems)

Fig. 2. ORGAN reference architecture

cording to the characteristics that operation, integration and governance take on
respectively (cf. [14] for further details). In addition, we investigate the architec-
tural role of each organizational unit under a software engineering perspective.

Society There exists one organizational unit of the type society (but see the
conclusion). The society represents the upper closure of the system. Each soft-
ware system serves a certain purpose (or certain purposes). This is mirrored
by the architectural role of the society. The society supports a specific extract
of reality from which the purpose of the overall system is derived. The opera-
tional aspect is embodied by different scopes of the overall system (e.g. healtcare,
power supply, e-commerce). For each system scope the society embeds one orga-
nizational field. These fields also make up the integrational aspect by managing
transitions and interactions between each other. Governance is taken care of by
specific fields that constitute the society’s government. It specifies system laws,

some of which have a system-wide validation and some of which only hold for
certain fields. For this purpose the society’s government guards over these laws
and utilizes governance structures at the field level as caretakers for these laws.

Organizational Field Each organizational field provides a consistent and
largely self-contained picture of a particular part of the overall system (“living
space”). Fields represent the immediate environments for organizations. Partic-
ipating Organizations as the operational part of a specific field have some func-
tional interest in common and face each other as discrete and co-equal entities
(cooperating or competing out of self-interest). However, they are embedded
in the common environmental frame of the field. Here we can distinguish the
material-resource features as an integrational aspect from the institutional fea-
tures with both integrational and governance aspects. Material-resource features
capture factors directly related to the demand, supply and exchange of products
and services on the field. Thus, they are to a great part inherently constituted
by the participating organizations themselves, but also encompass organizations
that enable and mediate organizational interchange in the first place or offer
auxilliary services (e.g. industry associations, market organizers, assurance com-
panies, banks, consultant offices). Material-resource features always rest on in-
stitutional foundations that are made of practices and symbolic constructions
constituting the organizing principles of the field. Thus, we find organizations
for setting (e.g. regulatory agencies, professional associations) and implementing
(e.g. market oversight or facilities for licensing and certification) the institutional
logics of a field. These institutional logics are available for participants to indi-
vidually elaborate, which fosters a more efficient design of organizations.

Organization Just like agents in agent-oriented software engineering, organi-
zations in the context of the ORGAN-architecture are the central modelling units
that determine, at which level of abstraction the whole system is regarded. Orga-
nizations operate on one or more organizational fields, depending on the variety
of domains, to which they relate. Organizations are composed of departments,
which mirror the complexity that the organizations face in their environments.
Different needs and functions of the organization with regard to their environ-
mental embedding are mapped onto different departments. Contrary to orga-
nizational fields that host distinct and co-equal entities, the departments of an
organization are dependent on the unique organization they belong to and exist
on their behalf. They are fused into a joint superstructure under a joint strategy
to pursue and achieve joint goals. Many departments fulfill an operational as well
as an integrational role. One particular department might act as an integrational
unit for departments that it groups according to the organization’s superstruc-
ture. At the same time, it might act as an operational part towards another
department to whose grouping it belongs. The superstructure is typically hier-
archical in nature but may be augmented by various vertical ties. Finally, the
governance aspect is taken care of by departments that constitute the dominant
coalition (including at least high-ranked managers from within the organization,
but potentially encompassing further actors from within and even without the
organization) of the organization. It sets the organization’s goals and strategies.

Department The departments are the actuators of the overall system. They
represent the final implementation means for all higher-level system activities.
Each department exists on behalf of one unique organization and this orga-
nization determines the department’s characteristics concerning structure and
processes. Here, a continuum of possibilities opens up, from rather bureaucratic
structures (high degree of standardization) to rather organic structures (low de-
gree of standardization). Each department is governed by its management and
its operational members are integrated by their respective positions in the de-
partment’s context.?

To conclude, the ORGAN-model for organization-oriented software architec-
tures provides a conceptual thinking model for large-scale software systems. Con-
trary to an agent-oriented perspective, collective levels of action are inherent to
a truly organization-oriented perspective. However, when it comes to actually
realizing multi-organization systems according to the ORGAN-model, we are of
the opinion that current MAS technology provides an ideal starting point. This
opinion is illustrated in Figure 2 where the organizational units are considered
as logical constructs that have to be incarnated by means of physical executive
units, which is accompanied by a change in paradigm. In the following Sec-
tion 3 we elaborate on our proposal to utilize and combine MAS (middleware)
approaches in order to realize multi-organization systems.

3 Utilizing Multi-Agent Middleware Approaches

Organization-oriented approaches to multi-agent system design employ the mech-
anism of formalization borrowed from social organizations. Formalization in this
context refers to the extent, to which expectations on behaviour are explicitly
and precisely specified, and to the extent, to which these specifications are in-
dependent from the particular occupants of social positions [6]. In this respect,
rationality resides in the social structure itself, not in the individual participants.
Adopting this principle for multi-agent system engineering allows for separation
of concerns. Organizational specifications and the agents that fill these specifi-
cations with life may be designed separately. The aim is to combine local agent
autonomy with the assurance of global system characteristics.

Some approaches carry separation of concerns to the implementation level.
Instead of just resting ”in the heads” of the participating domain agents, organi-
zational specifications are encapsulated and managed by an explicit middleware
and thus software technically reified. This allows arbitrarily heterogeneous agents
to participate in the organization as the middleware acts as an intermediary. Fur-
thermore, it is extremely useful in open multi-agent environments where agents

3Having an immaterial concept like an organizational position as an integration unit
at the department level may seem odd at first glance. However, formalizing position
characteristics for social organizations is first step in reifying positions. For software
systems, this may be carried even further as will be shown in Section 3 where we
consider different middleware approaches for organization-oriented MAS engineering.

belonging to different stakeholders continuously enter and leave and the organi-
zational specifications have to be buffered against potentially harmful influences.

The specific characteristics of a given middleware approach depend on the
characteristics of the organizational specifications that are to be supported. Here,
we examine three distinct approaches. Afterwards, we analyze how the benefit
of separation of concerns can even be extended with respect to not only separat-
ing organizations and domain agents but also different system levels of software
systems in the large. We specifically consider the levels introduced by the OR-
GAN-architecture from Section 2.

3.1 Middleware Approaches

To distinguish different modelling approaches we adopt the approach taken
in [15] where distinctions are made based on different organizational dimensions
that are supported.

MOISET /S-MOISET The MOISE' modelling language [16] incorporates a
structural, functional and deontic dimension. In the structural dimension, roles
and groups are specified. Roles are related to one another via inheritance re-
lationships. Groups consist of a set of roles where for each role the minimal
and maximal cardinality is specified. In addition to inheritance, additional links
(compatibility, authority, communication, acquaintance) with either an intra-
group or inter-group scope may exists between roles.

The functional dimension consists of a set of social schemes. A scheme is
a goal decomposition tree where the root is the initial organizational goal the
scheme targets at. Groups may be linked to schemes. Roles belonging to the
group are then assigned to coherent sets of the scheme’s goals (so called missions)
via permission or obligation links in the deontic dimenston.

S-MOISE™ [17] is the middleware for supporting MOISE™ specifications in
open multi-agent systems. Figure 3 gives an overview of its architecture. Domain

Communication
Layer

[Middleware Communication

Layer

Organizational
OrgManager OrgBox 1 OrgBox 2 OrgBox n
nan

_. _. @ @. @ ._ Application

Layer

Fig. 3. S-MOISE™ middleware approach (adapted from [17])

agents connect to the organization via proxys called OrgBoxes that offer an API
representing the agents’ possibilities to act as members of the organization. All
requests for changes in the state of the organization (e.g. role adoption, group

creation, mission commitment) are routed to a central OrgManager. Requests
are only fulfilled if no organizational constraints are violated. The OrgManager
can also act proactively, for example by informing agents (mediated by their
OrgBoxes) of missions they are enforced to commit to or goals that have become
ready to pursue. Agents have access to the organizational specification and are
free to interpret it to optimize their organization-aware reasoning.

ISLANDER/AMELIE ISLANDER [18] introduces a conceptual shift from or-
ganizations to institutions. Instead of being constructive in terms of goal/task
trees (MOISE™ /SONAR) to achieve certain organizational objectives in a divide-
and-conquer style, ISLANDER focuses on the regulative character of institutions.

ISLANDER supports a strutural, dialogical/interactional, and a normative di-
mension. The structural dimension differs from the MOISET structural dimen-
sion in that it does not relate roles and groups but so called scenes. Scenes
represent the interactional dimension. A scene is basically a collection of roles
in interaction with each other following a well-defined interaction protocol. Each
scene embodies a largely self-contained collective activity of the overall system.
In the structural dimension, relationships among scenes are established by a so
called performative structure. It specifies the network between scenes and defines
transitions between scenes. Transitions define which agents playing which role
under which circumstances can move from one scene to another and whether
new instances of scenes have to be brought up upon firing transitions.

An additional normative dimension specifies consequences of agent actions.
A norm defines, which obligations hold after certain communicative acts have
(or have not) been uttered in certain scenes and certain side conditions hold.

AMELIE [19] is the middleware for supporting ISLANDER specifications. Fig-
ure 4 gives an overview of its architecture. Just like in S-MOISE™, agents do

Communication
Layer

{ Middleware Communication

Private

Institution Scene Scene Transition Transition
Manager Manager 1 = u|s | Manageri Manager 1 =|= = [Manager m
‘ [Governor 1] [Governor 2] ean Governor n

®e g @ ¢ © ey

Social Layer

Public

Fig. 4. AMELIE middleware approach (adapted from [19])

not interact directly but connect to middleware mediators, in the case of AMELIE
these are the governors. Contrary to S-MOISE™ there exist different roles in
managing the institution. An institution manager is in charge of the institution

as a whole. I starts the institution, authorises agents to enter and manages the
creation of new scene executions. Each scene execution is managed by a separate
scene manager overseeing the execution according to the associated scene pro-
tocol. Transition managers are in charge of managing agent transitions between
scenes. The different management parts communicate with each other and with
the governors. Each governor manages multiple conversations with its respective
connected agent, one conversation for each scene and transition participation.
In addition, it keeps track of the norms that concern its associated agent.

SONAR SONAR [20] is a mathematical model of multi-agent organizations
based on Petri nets. It has a structural, functional, and interactional dimension.
However, structural and functional dimension are inseparable. The functional
part consists of a Petri net, where each place models a task and each transi-
tion models the execution of the task associated with the unique place in the
transition’s preset. Task executions may introduce subtasks, which results in a
multi-tree structure with multiple roots associated with core tasks. This func-
tional specification is enriched with structural information by partitioning the
Petri net by means of so called organizational positions. Consequently, each po-
sition is responsible for the execution of some tasks and possibly permitted to
delegate (sub-)tasks to other positions.

The interactional dimension comes into being by relating each place with a
set of roles and each transition with an interaction protocol. Thus, tasks cor-
respond to the implementation of roles and task executions to the interactions
that have to be carried out between these roles. Subtasks correspond to the
refinement of roles into subroles whose implementation is further delegated.

The SONAR middleware approach is illustrated in Figure 5. It differs from

coordinator
GorS oo
l PC2 l l delegate l
firm A firm B

osition
P member O formal = _ membership

agent agent channel

Fig. 5. SONAR middleware approach (adapted from [21])

the two already presented ones. It does introduce a middleware layer, but this
layer is not physically distinguishable from the application layer. Instead, the
layer logically consists of position agents, one for each organizational position.

Position agents are launched on behalf of the organization. Domain agents have
to connect to them in order to act as members of the organization. Position
agents mediate interactions and take care that the organizational specifications
are honoured. But contrary to S-MOISET and AMELIE, SONAR advocates com-
plete distribution. Each position agent only knows its local context (“upwards”
and “downwards” delegation partners, own tasks, own task executions, associ-
ated roles and interactions patterns). There is no central facility (or some central
facilities) that keeps a global picture and exploits centralized coordination.

3.2 Multiple Layers of Middleware

The benefit of separation of concerns fostered by middleware approaches basi-
cally aims at separating domain agent and organizational concerns. However,
the “agent neutrality” of middleware layers can be carried forward to separate
the engineering of different system levels in the context of large-scale software
systems. Figure 6 shows an illustration of this idea. To realize it, both organiza-

4 middleware N - middleware

I
P9 500 @® %.0@0@

Fig. 6. Iterating middleware layers

tional modelling languages and their supporting middleware frameworks would
have to incorporate a Janus-faced character. In the case of “looking downwards”,
not much changes. In case of “looking upwards”, organizational modelling lan-
guages would have to take into consideration processes that are not entirely
enclosed by the modelled system in focus. The accompanying middleware im-
plementations need to be able to connect to other middleware layers themselves
and to mediate activity not only horizontally but also vertically.

The concepts of a Janus-faced character and periphery processes were also
stressed in the context of the ORGAN model in Section 2.2. Thus, we consider the
approach from Figure 6 as a promising realization strategy to engineer software
systems in the large according to ORGAN. The whole idea of recursive, self-similar
nesting is by no means new to multi-agent system research and is for example
incorporated by the concept of holonic multi-agent systems [8]. In our opinion,

nested middleware layers foster such an approach in the context of large-scale
systems where there exists a strong need for the modular design, creation, and
maintenance of distinct system parts.*

3.3 Pooling of Competencies

Like stated in Section 2, different levels of a system call for different modes and
paradigms (not only degrees) of coupling and organizing. Here we may avail
ourselves of the broad spectrum of already existing organizational /institutional
multi-agent approaches supported by middleware. We exemplify this potential
by relating the three approaches from Section 3.1 to the different layers of the
ORGAN-architecture from Section 2.2. A primary distinction was already men-
tioned. While MOISE™' and SONAR are rather constructive in terms of achieving
certain organizational purposes, ISLANDER is rather declarative in focussing on
regulations. For this reason, we consider ISLANDER ideally suited for the level
of organizational fields and the other two approaches best suited for the level of
departments and organizations.

Department Level For the department level, a high degree of detail is nec-
essary. Ultimately, departments are both source and sink for all activities. It is
not only necessary to model activities but also under which circumstances and
conditions they come into being. MOISE™T is very rich when it comes to model
relationships between actors in terms of role inheritance, various types of ad-
ditional links (compatibility, authority, acquaintance, communication) between
roles and clustering of roles into groups. For this reason, MOISE™ is ideally
suited for the level of departments. Even the lack of an interactional dimension
in some way suits the department level. Social schemes might be considered as
abstract programs but how these programs are actually followed for particular
instances might be open to mutual adjustment (only possible if all participating
roles shared mutual communication links).

In addition, the centralized management of the S-MOISE' middleware fits
the department level. Departments exhibit the notion of locality in the sense that
the network of interdependencies is quite tight and highly intermeshed. Thus
obtaining a global picture of what is going on is very useful. The drawbacks of
centralized solutions like risk of bottleneck and high response times should pose
no severe problems as number of participants as well as network distances are
typically at small or medium scale for departments.

Organization Level SONAR models on the other hand are more abstract and
much better suited for the organizational level where not individuals but de-
partments are related to one another. The core unit of abstraction in SONAR

4The middleware approaches from Section 3.1 tend to establish anonymity between
domain actors. As the explanations from Section 2.2 should have made clear, this con-
ception is not adequate for software systems according to the ORGAN-model where
there may exist a quite high degree of penetration and visibility between certain or-
ganizational units. It is a matter of designing organizational/institutional processes in
an appropriate way to establish the desired degrees of coupling and acquaintance.

is the position rather than the role. Each position is unique like it is typically
the case for departments in an organization. The level of detail MOISE™ of-
fers for relating roles to one another (e.g. inheritance, compatibility, cardinality)
is not necessary when relating departments instead of individuals. The most
frequently adopted view when regarding organizations nowadays is a business
process perspective. Entities related to those processes are characterized by ab-
stract service interfaces that define which functionality each respective entity
contributes. SONAR exactly offers such a process-centric perspective. Each posi-
tion is responsible for the execution of several tasks and may delegate (sub-)tasks
to other positions. This can be considered as the abstract service description of
each position (“offers”, “uses”) and clearly defines what each position has to
contribute to business processes. An explicit interactional dimension is vital as
business processes may relate entities that are quite depart from one another
(locally as well as conceptually), which mostly prohibits mutual adjustment.
Starting business processes and actually supplying services is a matter of the
underlying MOISE" departments.

The completely distributed middleware approach taken by SONAR perfectly
matches organizations as large and widely distributed entities. Maintaining a
centralized comprehensive picture of a whole organization would be very costly
and induce an enormous information overhead. It is not even necessary in the
first place. Networks at the organizational level are less intermeshed than it is the
case for members at the department level. Organizations are better characterized
by (partly overlapping) clusters of frequent interaction.

Organizational Field and Society Level Ascending to the level of organi-
zational fields, there no longer exist explicit notions of joint goals or strategies.
Instead, organizations cooperate and compete as co-equals in order to serve
their respective distinct purposes. At the same time, governance structures en-
force common institutional logics that field participants have to adhere to. Here
lies the core competency of ISLANDER. It specifies an environmental framework
that regulates the behaviour of participants by specifying what one is allowed,
forbidden or obliged to do in certain institutional contexts. The inherent goal is
to let participants pursue their respective goals, but on the basis of well-defined
practices and symbolic constructs. ISLANDER’s performative structure and scene
protocols are open for participants to elaborate in order to fit their individual
behaviour into the institution. With ISLANDER applied to the field level, SONAR
organizations are to adjust their business process specifications in a way to act
in and travel between scenes.

Each organizational field might be represented by one single scene or by a
set of scenes. As ISLANDER’s performative structure provides transitions between
scenes it scales in order to include an arbitrary number of fields and thus also
addresses the level of society.

Fortunately, AMELIE offers a distributed middleware approach that is needed
for the field and society level. However, scene managers might become overloaded
if a field was embodied by one or just a few scenes.

4 Conclusion and Outlook

We have presented a proposal to progress from multi-agent to multi-organization
systems, which we consider a necessary transition in the face of software sys-
tems of ever growing size and complexity. We see one main contribution in the
explicit identification and differentiation of collective level aspects in our con-
ceptual framework ORGAN. It features different modes of collective action that
are adequate for different contexts. The accompanying concepts and principles
are deeply rooted in organization theory. The rationale behind this approach
is to learn from the adaptivity, robustness, scalability and reflexiveness of so-
cial (multi-)organization systems and to translate their building principles in
effective information technology.

In addition, we have made a suggestion of how to utilize agent-oriented tech-
nology as a realization means. One particular point is to take advantage not
only of current middleware implementations but also of the variety of underly-
ing modelling approaches in order to establish a most adequate fit between them
and the requirements of different system levels. While this proposal is somewhat
preliminary and the current state-of-the-art of the presented middleware ap-
proaches does not match the requirements of our nested middleware proposal,
we consider it a promising vantage point.

Another future issue is to soften the 4-layer restriction of ORGAN. Following
a multi-perspective approach, an organizational unit might be able to occupy
multiple architectural roles in multiple instances at the same time. This puts
stronger emphasis on the relations between units instead of the units themselves.
Depending on relation, units may take on different manifestations in terms of
architectural roles. This allows for example for federations (organizations em-
bedded in organizations as departments), subfields (fields embedded in fields as
organizations) or societies of societies (societies embedded in societies as fields).
The universal basis of all organizational units in form of the model of a system
unit from Figure 1 fosters such a multi-perspective conception.

References

1. Lankes, J., Matthes, F., Wittenburg, A.: Softwarekartographie: Systematische
Darstellung von Anwendungslandschaften. Wirtschaftsinformatik 2005 (2005)

2. Northrop, L.: Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon (2006)

3. Hess, A., Humm, B., Voss, M., Engels, G.: Structuring software cities - a multi-
dimensional approach. In: Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007). (2007) 122-129

4. Hannan, M., Carroll, G.: An introduction to organizational ecology. In: Organiza-
tions in Industry: Strategy, Structure and Selection. New York: Oxford University
Press (1995) 17-31

5. Wester-Ebbinghaus, M., Moldt, D., Reese, C., Markwardt, K.: Towards
Organization—Oriented Software Engineering. In: Software Engineering Konferenz
2007 in Hamburg: SE’07 Proceedings. Volume 105 of LNI., GI (2007) 205217

10.
11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Scott, W.R.: Organizations: Rational, Natural and Open Systems. Prentice Hall
(2003)

Rolke, H.: Modellierung von Agenten und Multiagentensystemen. Logos Verlag
Berlin (2004)

Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation
for the organization of multiagent systems. In: Holonic and Multi-Agent Systems
for Manufacturing, First International Conference on Industrial Applications of
Holonic and Multi-Agent Systems (HoloMAS). Volume 2744 of Lecture Notes in
Computer Science., Springer Verlag (2003) 71-80

Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organi-
zational view of multi-agent systems. In: Agent-Oriented Software Engineering
IV, 4th International Workshop, AOSE 2003. Volume 2935 of Lecture Notes in
Computer Science., Springer Verlag (2003)

Maier, M.: Architecturing principles for systems-of-systems. Systems Engineering
1(4) (1999) 267284

Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)

Wester-Ebbinghaus, M., Moldt, D.: A janus-faced net component for the proto-
typing of open systems. To appear, accepted paper for the 15th Workshop on
Algorithmen und Werkzeuge fiir Petrinetze (AWPN’2008) (2008)

Koestler, A.: The Ghost in the Machine. Henry Regnery Co. (1967)
Wester-Ebbinghaus, M., Moldt, D.: Structure in threes: Modelling organization-
oriented software architectures built upon multi-agent systems. In: Proceedings of
the 7th International Conference an Autonomous Agents and Multi-Agent Systems
(AAMAS’2008). (2008) 1307-1311

Boissier, O., Hiibner, J., Sichman, J.S.: Organization oriented programming: From
closed to open systems. In: Proceedings of the Seventh International Workshop on
Engineering Societies in the Agents World (EASW 2006). (2006)

Hiibner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional
and deontic specification of organizations in multiagent systems. In: Proceedings
of the 16th Brazilian Symposium on Artificial Intelligence (SBIA’02). Volume 2507
of Lecture Notes in Artificial Intelligence., Springer Verlag (2002)

Hiibner, J.F., Sichman, J.S., Boissier, O.: S-moise: A middleware for developing
organised multi-agent systems. In: International Workshop on Organizations in
Multi-Agent Systems: From Organizations to Organization-Oriented Programming
(OOOP 2005). (2005) 107-120

Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and
norms. In: Pre-Proceedings of the 8th International Workshop on Agent Theories,
Architectures and Languages (ATAL-2001). (2001) 106-119

Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In: Proceedings of the 3rd International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2004). (2004) 236-243

Kéhler, M.: A formal model of multi-agent organisations. Fundamenta Informati-
cae 79(3-4) (2006) 415430

Kohler, M., Wester-Ebbinghaus, M.: Closing the gap between organizational mod-
els and multi-agent system deployment. In: Multi-Agent Systems and Applications
V. Volume 4696 of Lecture Notes in Computer Science., Springer-Verlag (2007)
307-309

