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Abstract. Complexity of today’s systems prevents designers from knowing 

everything about them and makes engineering them a difficult task for which 

classical engineering approaches are no longer valid. Such a challenge is 

especially encountered in actual complex systems simulation in which 

underlying computational model is very tough to design. A prospective solution 

is to unburden designers as much as possible by letting this computational 

model self-build. Adaptive multi-agent systems are the foundation of the four-

layer agent model proposed here for endowing systems with the ability to self-

tune, self-organize and self-assemble. This agent model has been applied to an 

application (MicroMega) related to computational biology which aim is to 

model the functional behavior of unicellular yeast Saccharomyces Cerevisiae. 

Keywords: complex system, self-organization, cooperation, biological 

modeling. 

1. Introduction 

Nowadays systems are becoming more and more complex due to, on the one hand, 

the huge number of heterogeneous, autonomous and evolving components and, on the 

other hand, their required features of openness and scalability. A few years ago, 

referring to information technology systems, IBM underlined that “Even if we could 

somehow come up with enough skilled people, the complexity is growing beyond 

human ability to manage it…” and brought out the need of new approaches for 

dealing with complexity. Namely building “autonomic systems” capable of “running 

themselves and adjusting to various circumstances…” [21]. This vision may be 

enforced to every complex system surrounding us, especially biological ones on 

which this paper focuses, since natural complexity prevents designers from knowing 

everything about such systems, let alone controlling them.  

For example, in computational biology, complexity comes from the huge amount 

of constantly increasing heterogeneous data that have to be gathered, visualized, 

exploited or processed. In systems biology, complexity arises from the need of 

modeling large-scale biological interaction networks for which interactions are not 

always known; moreover experimental data are not always available or homogeneous 

[23]. Furthermore integrative biology adds a level of complexity by aiming at 



reconstructing “the whole by putting the parts together (once enough parts have been 

collected and understood)” [29]. In other words, the aim is to assemble several 

different yet coupled models in order to obtain an upper level one that explains a 

higher level of functioning. For instance, at the level of a unicellular organism, 

integrative biology is expected to determine how all genes and their products interact 

to produce the functioning organism [1].  

Due to the lack of satisfactory theories for explaining biological systems, biologists 

usually rely on modeling and simulations to understand their behavior and different 

approaches exist to build these models, from mathematical ones to neural networks-

based ones. The latter ones offer some interesting results in finding correlations and 

extracting some explaining variables but like black boxes they prevent any knowledge 

on the real structure and functioning of the system [14]. Moreover they hardly take 

into account contingency of phenomena that are a bit delayed. 

Many approaches of computational modeling are concerned with biological 

networks [7]: Boolean networks emphase causal and temporal relationships between 

activation of different molecules; Petri nets extend Boolean networks with stochastic 

and non deterministic properties, but both approaches are hard to compose in larger 

models [24]. Interacting State Machines focus on state and produce models of 

transition of states. Process Calculi focus on events and enable modeling causality 

relationships between events. Both offer composition and may work in parallel or be 

given with hierarchical structures (with microlevels of functioning combined in a 

more abstract view of the system) [11][14].  

To combine any of those approaches in a single (rather not simple) model some 

hybridization is possible through discrete event techniques. But all those approaches 

are not able to help scientists to construct models especially when formalism adds 

constraints in discrepancy with biological reality. 

Ideally, biologists would like to understand underlying mechanisms of biological 

systems without requiring very costly in vivo experimentations, or at least would like 

to have means for focusing on really interesting ones. Most of the time the models 

they are provided with are static ones; influencing or modifying them in a dynamic 

way for trying to understand or discover new virtual experiments is usually 

impossible. Models have then to constantly reflect experimental data and user’s 

desiderata in order to be useful and thus need adaptation capabilities to stay functional 

in evolving environments.  

This feature adds some more complexity when designing this kind of systems and 

classical top-down approaches are no longer helpful. New ways of engineering them 

are therefore mandatory for enabling them to self-build, self-tune and self-assemble.  

Adopting a bottom-up approach to enable a model to build itself by giving the 

basic components and letting them interact in the right way is an imaginable solution. 

Multi-agent systems (MAS) are suited for this.  

For some years now, agent technology is considered as a possible answer to 

biological domain problems [27][2]. Agent-based models are primarily used to deal 

with huge quantities of data [27] or for simulating in virtuo experiments: protein 

docking or folding [3][4], modeling signaling pathways [15][22], modeling 

unicellular organisms alone [25][33] or within a population [12][16]. For example, in 

CellAK [33] complexity is dealt with software engineering principles: a UML class 

diagram expresses inheritance relationships between the different components of a 



eukaryotic cell (membrane, cytoplasm and nucleus) that are decomposed in turn until 

a certain level of complexity is reached. If in this case, agents are a way to obtain 

more easily understandable models compared to models based on differential 

equations like Gepasi [26], such a top-down approach does not make the model 

flexible and able to self-build.  

Simulating biological systems using actual multi-agent systems is still in an early 

stage of study. MAS are very promising for helping understanding underlying self-

organization mechanisms in populations of biological organisms. [31] considers 

interactions between agents representing cells for modeling tissues and focuses on 

self-organization phenomena within these tissues. [30] studies a self-organization 

phenomenon at the molecular level. [10] models the behavior of stem cells within a 

niche to study the emergent global organization of this population. [5] and [20] are 

more focusing on modeling intracellular phenomena. An AGR [13] approach is 

extended in [5] for describing the internal organization of a unicellular organism (E. 

Coli) and proposing a software environment that enables formulation of dynamic 

properties within this organization. [20] extends [5] by focusing on the internal states 

of a cell BDI which are described using temporal relationships between its intentional 

states. Although this approach may help to understand relations between external and 

internal levels of a cell, it does not provide biologists with a tool that enables them to 

discover new phenomena within a cell. Actually, to our knowledge, most of MAS 

aiming at modeling biological systems consider that laws governing components of 

these systems are known, or can be inferred. The organization between agents is 

therefore predefined and static in these models which are unable to evolve and 

dynamically respond to disruptions. Furthermore these laws are generally not 

completely known for all the levels that need to be modeled in a unicellular organism 

(genome, proteome, metabolome) and letting the model learn these rules in order to 

reflect experimental data would alleviate complexity and then modelers’ workload. 

Outlining how complex systems modeling can be engineered in order to make the 

obtained model self-build is the objective of this paper. This is illustrated with an 

application, MicroMega, related to systems biology which aims at modeling the 

functional behavior of the unicellular yeast Saccharomyces Cerevisiae.  

This article is organized as follows. Concepts adopted for making a model build 

itself are described in Section 2. These concepts are applied in section 3 for setting up 

the architecture implementing the MAS related to MicroMega. Some preliminary 

results obtained by simulating the glycolysis metabolic pathway in Saccharomyces 

Cerevisiae are discussed in Section 4 before concluding. 

2. Towards Self-Building Systems 

Few approaches exist for engineering systems with self-organizing or emergent 

properties. For instance, [8] merges an analysis algorithm with simulation runs in 

order to tune variables reflecting chosen macroscopic properties. This approach does 

not completely unburden engineers because the analyzed macroscopic variables have 

still to be identified and the feedback has to be used in the engineering process. 

Engineers’ role has to be reduced by initially providing the system with existing 



expertise and letting it build itself while giving it, if possible and required, some 

minimal feedback from time to time. Under these conditions, making a complex 

system build itself is done by letting it autonomously change the organization 

between its components but also by enabling these latter parts change as well their 

behavior in an autonomous way. Principles of self-organization are an answer to the 

former point [18][9]. The second point can be fulfilled by endowing components with 

abilities of learning what is unknown or incompletely known from experts designing 

the system. This learning concerns their features (for instance, chemical or physical 

laws they apply) as well as they ability to appear into or disappear from the system 

depending on whether they are useful or not. Self-building requires then properties of 

self-organization at the system level, and self-tuning, self-reorganization and 

evolution at the component level. 

A four-layer model for engineering systems having those properties is detailed in 

this section and applied in the following sections on an example coming from the 

biological domain. 

2.1. Self-organization by Cooperation 

The approach proposed here rests on the Adaptive Multi-Agent Systems (AMAS) 

theory in which self-organization is led by cooperation which embodies the local 

criterion that makes agents self-reorganize [6]. When an agent locally detects, at any 

time during its lifecycle, a situation that may be harmful for its cooperative state, it 

changes its relationships with others to stay or come back to a cooperative state. 

Situations that are against the cooperative social attitude of an agent are called Non 

Cooperative Situations (NCS). Furthermore processing these NCS enables an agent to 

constantly adapt to changes coming from its environment and therefore provides it 

with learning abilities. 

Since the objective is to simulate the functional activity of a given system, agents 

of the self-building model represent either elementary domain-related objects or 

functions which manipulate these objects. Usually, elementary objects are easy to 

identify by answering the simple question « What elements are making up my 

targeted system? ». Such a naive approach is usually (and historically) set aside 

because of the tremendous implied computation load of the simulation and the huge 

complexity of the required model design and control. In order to deal with these two 

aspects, we chose to totally rely on the emergence property of Adaptive MAS: 

− Simulation computation load is reduced by the fact that MAS are only composed 

of agents with very light computational capabilities. There is no need of any non 

local control to ensure consistency of the whole system activity. Moreover, as 

agents behave according to purely local and limited information, they are more 

readily to be computed in a distributed way. 

− Model design complexity is greatly reduced by locally cooperation-driven self-

adaptation. The adaptation process is not based on any global feedback from the 

system environment toward the whole MAS; no fitness function neither 

performance measures of the whole MAS are used. On the contrary, this adaptation 

process fully relies on emergence to ensure consistency and keep advantage of low 

computation load, readily distribution etc. 



2.2. A Four-layer Model of Agent 

Within the model, agents are all designed alike and consist of three main modules: 

− RepresentationModule: this module contains all information an agent deals with: 

internal parameters, characteristics, knowledge about other agents etc. All other 

modules have to use the representation module to obtain and store all relevant data; 

− InteractionModule: it manages all kinds of interaction between an agent and its 

environment (including other agents). Since communication between agents is 

often based on message exchange, the default interaction module manages a peer-

to-peer communication system; 

− BehaviorModule: this module defines the agent behavior which consists of two 

parts: the nominal behavior and the cooperative one which is subdivided into 

tuning, reorganization and evolution. Figure 1 shows how these behaviors interact 

with one another and the agent environment (other agents, user, external data). 

Nominal Behavior. The nominal behavior of an agent is based on the perceive-

decide-act lifecycle. Basically, this behavior corresponds to whatever this agent does 

unless the action performed is a learning action. Learning actions modify the agent 

itself or its relation to its environment in such a way that, from now on, it will act in a 

different way than before for at least one situation. In stochastic-driven behaviors 

(like Monte-Carlo), the action of randomly selecting an action according to a set of 

parameters is not a learning action. In that context, the randomized selection IS the 

nominal behavior while the parameters do not change: the fact that the agent acts 

randomly is neither unpredictable nor random... even if the resulting actions are. 

However, nominal behavior can sometimes be so complex (specification of a wide 

range of situations associated with smart actions) that an agent may appear to be 

adaptive whereas it only behaves contextually. The limit between nominal adaptation 

and actual adaptation is often problematic. 

In Fig. 1, one can notice nominal behavior obviously interacts with the agent 

environment (two-sided empty arrow) or a user (dotted arrows) and sometimes it may 

 

Fig. 1. Four-layer model of a self-adaptive agent 



directly trigger tuning or reorganization behaviors (solid arrows) if it is unable to 

execute because of a bad parameter value or a missing link with other agents.  

 

Tuning Behavior. This behavior is the first cooperative layer of adaptive agents: it 

manages parameters values tweaking for an agent. Basically, agent tuning consists in 

analyzing the nominal behavior computation to find cooperation failures. These Non 

Cooperative Situations (NCS) can be either endogenous (exception or error while 

executing the nominal behavior) or exogenous (messages from other agents, conflict 

or concurrence of actions etc.). Tuning behavior tries to solve these NCS by 

modifying the parameters that take an active part in nominal behavior. 

Figure 1 shows tuning behavior may modify the nominal one (dotted arrow on the 

left), trigger reorganization if it fails to solve a problem and send messages into the 

environment (toward other agents) in order to delegate/propagate non cooperative 

situations. Tuning activation usually comes from messages sent by tuning behavior of 

other agents, nominal behavior failure or reorganization behavior modifications. User 

is free to suspend or resume tuning activity as well as modifying the parameters of the 

tuning algorithm. 

 

Reorganization Behavior. It consists in modifying the way in which an agent 

interacts with its environment and other agents. Cooperation failures that require 

reorganization can occur either during nominal or tuning behavior. Usual NCS that 

lead to agents reorganization are: 

− partial or total uselessness: an agent needs to establish a link with a new partner 

because it is currently not able to execute its nominal behavior; 

− incompetence: an agent is unable to perform a satisfying behavior (other agents 

always send requests) and the tuning behavior seems unable to cope with the 

problem. 

As illustrated in Fig. 1, reorganization behavior is caused by tuning failure, new 

agent appearance (evolution) or messages reception (other agents are looking for 

some help). Sometimes, a nominal critical failure can directly lead to reorganization-

related actions: for example an agent whose main behavior consists in adding two 

numbers provided by two other agents cannot execute this if it is only connected with 

zero or one agent. 

 

Evolution Behavior. It is the last kind of modification an agent can perform to solve 

any problem coming from the previous layers and, more precisely, coming from 

reorganization failures (see Fig. 1). Evolution1 actions concerns system openness and 

consist in creating new agents or removing itself. New agents are generally created 

when the reorganization process is unable to find new agents to solve uselessness. 

Agent self-removal can only be performed when agents are in total uselessness. 

As a matter of fact, the model is continuously evolving according to the data it is 

perceiving while the cooperative behavior is enabled and non cooperative situations 

are detected. Nevertheless this adaptation is not transient (purely instantaneous) 

because cooperative behaviors must remain consistent with past learnt states. So, the 

                                                           
1 Evolution here is not related to Darwin’s theory of evolution (species evolution) but only 

refers to the dynamics of the system from an openness point of view (add/remove agents). 



model is supposed to converge towards a stationary state. Once this state is reached 

cooperative behaviors can be disabled or even removed, the only remaining behavior 

being the nominal one. 

The next section details how this framework has been applied for modeling a 

biological complex system. 

3. System Architecture in MicroMega 

MicroMega2 application aims at simulating the functional behavior of a yeast cell. 

The computational model has to integrate phenomena from genomic level (e.g. genes 

activity) to macroscopic data (e.g. quantity of consumed/produced O2, CO2, glucose 

etc.). Since chemical elements involved into cellular activity are hugely numerous as 

well as their transformations/interactions, MicroMega has to be designed taking into 

account the need of autonomous building and tuning of the yeast model according to 

experimental data and user wishes as well as adaptive capabilities toward user 

interaction to help or drive this highly complex process. 

MicroMega is based on a unified model with a multi-agent system that simulates 

chemical reactions from RNA production at genomic level to exchanges of substrates 

with extracellular environment. The system is made up of two main classes of agents: 

functional agents (elements or reactions) or viewer agents. These different types of 

agent and the way the simulation is handled to control their computations are 

presented hereafter. 

3.1. Functional Agents  

In MicroMega, functional agents represent either physical elements or chemical 

reactions. Elements and reactions interact: reactions produce or consume elements 

and elements may act as regulators for reactions. 

 

Element Agents. These agents are representative of physical items that constitute the 

cell: RNA, substrates, proteins, protons (H+), water etc. Their core function is to 

manage the quantity of the element they represent during the simulation. As this 

quantity is generally not uniformly distributed in the cell, each physical element is 

actually represented by a group of element agents in which each agent manages the 

quantity into a given compartment (extracellular, cytoplasm etc.). 

However, element agents are quite passive from a functional point of view: they do 

not actually modify or compute their quantities by themselves because these 

modifications are computed by reaction agents (see below). Some information like 

unitary mass or internal energy of an element can also be managed by element agents. 

Element agent tuning behavior is able to handle incompetence: the agent receives a 

message from either a viewer agent or a reaction agent it regulates. This message 

requests a different quantity value. The agent modifies its current quantity value 

according to the requested one and sends requests to the reaction agents it is linked 

                                                           
2 Project funded by ANR (National Agency for Research) under the number 05-BLAN-0202-05. 



with to increase or decrease their reaction speed (and therefore be more or less 

consumed or produced for tuning their quantity). 

Reorganization behavior handles: 

− uselessness: an element agent with no reaction agent is useless: it has to broadcast 

messages to inform reaction agents that it is available; 

− incompetence: an element agent receives messages related to its quantity value 

from either viewers (value not matching experimental data) or reactions whose this 

element is a regulator (the reaction agent wants to change its context – see below). 

This element agent has tried to change its quantity during its tuning behavior and 

this is not sufficient. Therefore the confidence it may have toward its current 

partners is going to decrease and it may search for new partners in order to regulate 

other reactions.  

Reaction Agents. They manage all transformation and transportation of elements 

within the cell. Chemical reactions are reduced to two elementary subtypes of 

reaction:  

− Synthesis: a given element is broken down into two parts. An example of basic 

synthesis reaction is the electrolysis of water to give hydrogen and oxygen: 2 H2O 

→ 2 H2 + O2. 

− Catalysis: two elements are docked together to build a new one. Hydrogen 

combustion (2 H2+ O2 → 2 H2O) is a well-known example of such a reaction. 

1 Fructose1,6DP + 2 ADP + 2 NAD+ → 2 Pyruvates + 2 ATP + 2 NADH,H+ (1) 

 

Fig. 2. Agentification of the complex reaction (1) catalyzed by one protein. Names of 

elements are prefixed by MI_ because this reaction takes place in the mitochondrial 

compartment 



Each synthesis or catalysis agent is also characterized by its stoichiometry, that is 

to say the quantitative relationship between the reactants and products of the chemical 

reaction, or -from a practical point of view- the weights of inputs and outputs of 

reaction agents. By combining these two subtypes of reaction and using intermediate 

elements, more complex reactions can be built. Figure 2 shows a combination of 2 

synthesis (stars), 2 catalysis (octagons) and 3 intermediate elements (E20, E21, E22 –

squares) to achieve transformation of 1,6 DP to pyruvate with one protein (PE3) as 

the reaction speed regulator (dotted lines represent regulation influence). 

Two types of reaction agents manage transport: 

− Passive carriers which produce/consume ambient energy (temperature, pressure). 

This energy is usually dissipated or absorbed around the reactive site; 

− Active carriers which need to consume high energy (from ATP for instance) to 

achieve transportation. 

Carrier agents are only used for intercompartment transport because we assume 

elements are uniformly distributed in each compartment. 

Moreover genes are modeled as reaction agents: they consume several metabolites 

and produce one RNA and one protein. Genes design is peculiar because they must be 

paired with an RNA element. This RNA is produced by a gene but can also be 

consumed by this gene and is involved as a regulator of its activity. 

During the simulation, each reaction agent consumes and produces elements this 

agent is linked with according to its stoichiometry and a contextual reaction speed. 

This speed determines how fast the reaction is running and as a consequence how 

much of the quantities of elements the reaction consumes and produces. Speed is 

contextual because reactions are regulated by their environment: some elements can 

speed up the reaction rate or slow it down. These elements define the reaction context 

as the vector of their current quantities. Thus one speed is associated with each 

possible vector in order to define the discrete function which enables speed 

computation.  

Reaction agent tuning behavior handles the following NCS: 

− Unproductiveness: the current context is unknown so the agent has to use a default 

context (with a speed value of 0). The agent tries to solve this NCS by adding a 

new context which corresponds to the current situation. 

− Incompetence: the agent receives requests from neighbor element agents to change 

a previous consumption or production. The agent tries to adjust either its 

stoichiometry values or the speed. Speed adjustment can be performed by 

modifying the speed associated with the context used or by influencing the 

selection of contexts. The selection can be changed either by adjusting the ranges 

of regulators of the existing contexts or by requesting different values from the 

regulators themselves to switch situation for one that will allow to select a better 

context. 

Reorganization behavior handles uselessness (missing consumption/production 

link) and incompetence. For instance, if a reaction agent is unable to tweak the speed 

of a given context (because two different speed values are alternately requested in the 

same context); it may find a new regulator to help distinguishing the two situations. 



3.2. Viewer Agents 

Viewer agents enable interactions between functional agents and the system user by 

extracting comprehensible data (for analysis and display purposes) and injecting 

experimental data and constraints specified by this user. This is a way to inject 

experts’ knowledge into the model. Two types of viewers are currently used in 

MicroMega: 

− ElementViewerAgent: this basic type of viewer agent is dedicated to gather 

quantities of a given list of element agents. It is possible to specify experimental 

values associated with these quantities to dynamically compare them with 

simulation results; 

− ElementSetterAgent: this is a viewer agent which remotely controls the quantity 

value of a given list of element agents. Whatever the computed quantity value of 

the element an ElementSetterAgent will nominally set the quantity value according 

to its database. These viewer agents are used to control the activity of specific 

elements during simulation (some regulators, genes etc.). 

However, other kinds of viewer agents could be defined: 

− BioMassCheckerAgent: this viewer agent evaluates the whole mass of the cell by 

summing the mass of all elements of the system; 

− CompartmentsAgent: this viewer agent analyses the system focusing on carrier 

agents to identify different compartments within the cell. This information could be 

useful if the system is able to self-reconfigure and the user might wish to control 

such a critical parameter in order to limit changes at the global cell structure level. 

The nominal behavior of viewer agents consists in accessing data of functional 

agents and storing the gathered values. Viewer agents which compare the gathered 

data to experimental ones can also compute errors. These errors will be used during 

the tuning part which usually deals with conflicts. If the error computed during 

nominal behavior differs from 0, the viewer agent sends a positive reinforcement 

message to the involved element agents; otherwise it sends them quantity error 

messages.  

3.3. Simulation Control and Computation 

MicroMega simulation process is handled by a single thread and decomposed into 

elementary time steps. Each step represents an arbitrary discrete item of time and is 

decomposed into two phases (each one is handled by a scheduler): the nominal 

computation and the cooperative computation which is itself broken down into tuning, 

reorganization and evolution (according to the model given in section 2.2). 

Nominal computation corresponds to simulation computation. Within each step, 

the nominal scheduler notifies each agent of the system to execute its nominal 

behavior. These behaviors actually manage yeast simulation through chemical 

elements quantity updates and trigger data gathering and injection in the case of 

viewer agents. As a matter of fact, nominal scheduling is decomposed as follows for 

each step t: 

1. Activation of each reaction agent to compute quantity variations of elements; 



2. Activation of each element agent to update its quantity according to the quantity 

variations computed by reaction agents; 

3. Activation of all viewer agents to update data from agents and/or check whether 

MAS organization and parameters fit with the user data (experimental data, for 

example). 

Cooperative computation corresponds to yeast model adaptation according to both 

internal problems (for example, if model state becomes inconsistent by computing 

negative element quantities) and external data (for example, if collected data no 

longer fit experimentally probed quantities or well-known properties of the cell). Each 

agent sequentially executes parameters tuning (adjustments of quantities, of reaction 

speed etc.), reorganization (addition/removal of reaction regulations or 

producer/consumer link between reactions and elements etc.) and evolution 

(addition/removal of new elements or reaction agents). During each step t, the 

cooperative scheduler activates agents following the reverse order of the nominal 

phase: 

1. Activation of each viewer agent to notify functional agents if they detect any 

problem for the parameters computed during step t of nominal computation; 

2. Activation of each reaction agent to check if they have received any message 

(under- or overestimated speed) or have detected any computation problem (like an 

unknown contextual value or speed, missing element agents) while performing 

their production/consumption during step t-1; 

3. Activation of each element agent to check inconsistent parameters (negative 

values) or bad/good quantity values (from step t-1) notified by quantity-related 

messages from either viewer agents or reaction ones. 

As one can acknowledge, all the agents of each group (element, reaction, and 

viewer) can be readily triggered simultaneously because no direct interaction occurs 

between agents that belong to the same type. 

4. Simulation Results 

To test MicroMega we have first addressed glycolysis modeling as an example of 

biochemical pathway. Glycolysis allows cells to transform absorbed glucose into 

energy or smaller metabolites like pyruvate that roughly are used in biomass 

production. Mathematical models in cell biology are overcome by the complexity of 

described systems and are limited to linear dynamic systems in steady state. Model 

reduction is of major use to produce more simple and stable models that balance 

between approximation accuracy and numerical efficiency [19]. 

Biochemical network models transpose metabolic systems into differential 

equation systems like: s(t) = Nv(s(t); p) where s is the vector of metabolite 

concentrations and v is the vector of reaction velocities. The vector p contains the 

kinetic parameters, and the stoichiometric matrix N contains coefficients for 

corresponding reactions [17].  

When MicroMega is provided with a set of reactions (see left part of Fig. 3) under 

the shape of a stoichiometric matrix, it will produce a multi-agent system (see right 

part of Fig. 3), containing quantitative elements (including reaction intermediates) and 



functional elements. A second matrix containing data of regulation can be loaded to 

help the system during the learning of interactions. 

For a case study, a simpler model of glycolysis has been produced and 

implemented in MicroMega. This toy model has no biological validity, since it has 

been given with arbitrary kinetic values, but shows MicroMega platform about 

context selection functioning. Figure 4 presents some curves of this virtual 

experiment with 2 pulses of glucose. 

It is of interest to notice that curve profiles are different after first and second 

pulse. Differences of kinetics are based on different intracellular concentrations of 

some metabolites. Therefore previous states of the system influence its current 

behavior.  

Another interesting consequence of MicroMega simulation process is visible on 

Fig. 4 (zoomed area) and concerns emergence of combined kinetics based on 

oscillation between different states. As it can be seen in A and B, a mean speed results 

of quick oscillation between two or more very different speeds.  

Behavior of the system is the result of given or learned kinetic parameters and of 

previous states of the system; under these conditions MicroMega goes beyond 

classical steady state description of metabolic reactions. Each reaction agent locally 

observes its context of functioning and consequently determines a kinetic. By this 

way any reaction agent can become aware of transient states triggered by some 

fluctuating values of element agents. A consequence is visible in Fig. 4 (zoomed box), 

the appearance of high frequency oscillations in A and B enlightens us of at least two 

underlying concomitant states. Steady state models could only express such a 

phenomenon with a mean kinetic.  

As it can be seen on the curves related to products of glycolysis CO2 and acetate 

(red and yellow ones, Fig. 4) after the second pulse of glucose, the glycolytic activity 

of the model is more important than after the first glucose pulse. This difference is 

Fig. 3. Simplified yeast glycolysis metabolic pathway (on left) and MicroMega graph 

visualization associated (on right, legend is the same as in Fig. 2) 



due to specific repartition of intracellular metabolites that sets up during the first part 

of the simulation. 

These results show that simulated system even though in strict nominal 

functioning, has a contextual nominal adaptive behavior.  

These results show that the simulated system even though in strict nominal 

functioning, has a contextual nominal adaptive behavior. We could qualified this 

observed adaptation as “weak” in the sense that neither the system nor one of its part 

does actually learn something but just acts contextually and according to its changing 

internal states. Concentrations of many intracellular metabolites and enzyme cofactors 

provide the model with a kind of memory of previous states that will modify future 

behavior related to environmental changes. 

5. Conclusion 

Due to the complexity of nowadays systems, engineers are no longer able to know 

everything in order to implement them or to fully control them. Although multi-agent 

systems are a recognized paradigm for implementing complex systems, engineering 

them is also a complex task. New ways of engineering complexity are thus required 

and the aim of this paper was to present a model for making such nonlinear complex 

systems self-build in order to lighten engineers’ workload. Self-organization driven 

by cooperation was chosen to enable not only an autonomous evolution of the system 

 

Fig. 4. Simulation results of a simplified model of glycolysis with two glucose pulses (1500 

units), first at t=0 and second at t=1750. Extra-cellular glucose is consumed, in a first stage 

turned into intra-cellular glucose, then metabolized into acetate and CO2 that are stored up in 

this closed model. Emergence of some quick kinetic oscillations in A (glucose consumption) 

and B (mi_pyruvate) after a second pulse of substrate can be seen in the zoomed area 



organization but also an autonomous adjustment of the behavior of its agents. The 

four-layer agent model proposed separates the “basic” behavior of agents composing 

an adaptive MAS from the behavior that enables them to self-tune, self-reorganize 

and evolve. Application of this agent model to an application related to biology is 

then detailed and some preliminary results are given. 

Focusing on a specific domain such as biology, biologists rely on models to 

understand natural phenomena or to discover new laws through less expensive in 

silico experiments. Openness and adaptation are two required features in the modeling 

process, with their inherent potential MAS are becoming a promising answer toward 

automatic modeling. In this sense, we applied the proposed framework for modeling 

the intracellular functioning of S. Cerevisiae yeast. Although the model obtained is 

still incomplete, preliminary results show that it exhibits adaptation abilities when 

disrupted. Among the few multi-agent approaches that exist for modeling biological 

problems, fewer try to deal with dynamical phenomena and disruptions. For example, 

[28] uses features of oRis, a dynamic language, for disturbing the model of the 

MAPK while the simulation is running. Dynamic aspects are then handled however 

the model does not self-build. In [32], a combination of top-down and bottom-up 

approaches for modeling biological networks rests on holonic MAS. Reactions 

(transformation, transport or binding process) are viewed as interactions between two 

holons and several rules. Each holon can manage its rate and stoichiometry by 

inferring from the rule engine. However dynamic configuration is possible at run-time 

to get closer to real situations: user can add or remove substrates or products, change 

rules or regulate the best rate for a reaction and this latter can also be learnt using 

neural networks or genetic algorithms. So, dynamic changes in the model are endured, 

however concluding that the model self-builds is difficult due to the lack of details 

about how learning is done at the level of holons.  

From a pure modeling point of view, MicroMega approach of pathway modeling is 

generic and not restricted to glycolysis: any cellular process that can be described as 

regulated production/consumption mechanisms is potentially transposable into a set of 

element and reaction agents. Nevertheless, offering multi-state and transient 

possibilities using contextual functioning has an important drawback: the list of 

contexts a reaction agent deals with is rather more difficult to visualize and analyze 

than global differential equations.  

Finally this article wants to claim that this self-building ability is the only answer 

for dealing with complexity, notably in biological modeling, and MicroMega aims at 

sustaining this argument. It has been designed in such a way that building and refining 

complex models will be greatly facilitated by a cooperative behavior. Even if some 

phases of the model are still under development (such as the evolution behaviors of 

agents), this approach supports the claim that only an emergent approach has chances 

to permit complex systems to self-build. 
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