
Exception Handling in Goal-Oriented

Multi-Agent Systems

Ibrahim Cakirlar, Erdem Eser Ekinci,
O§uz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

icakirlar,erdemeserekinci@gmail.com

oguz.dikenelli@ege.edu.tr

Abstract. Cooperative, autonomous and distributed properties of multi-
agent systems deduce the dynamic capabilities of multi-agent system ap-
plications. On the other hand, these suitable features increase the error
proneness of these applications. In this paper, we propose an exception
handling approach to make multi-agent system applications more reli-
able and robust. And also we classify the multi-agent exceptions and
implement these levels with our approach on SEAGENT goal-oriented
multi-agent development framework1.

1 Introduction

One of the most important properties that makes a software technology appli-
cable in the industrial settings is robustness. Robust technologies can detect,
diagnose and recover from failures and uncertain situations[11,6]. Traditional
technologies, such as object oriented paradigm, provide an infrastructure to de-
velop robust software applications that have great degree of robustness maturity.
Nevertheless, this problem still stands in front of the multi-agent systems (MASs)
as an important obstacle that frustrates MASs to meet the industry.

Nowadays, developed software applications satisfy the requirement of robust-
ness by exception handling mechanism, which are provided within used program-
ming languages[4]. Exception handling is based on the exception concept that
is de�ned as an error occurred during execution �ow of a program [4,9,12,20].
Programming languages give chance of recovering exceptions by their exception
handling mechanism. When an exception occurs, programming language man-
ages the deviation from the normal execution �ow of the program to the handler,
which is implemented by developer. To make MASs robust, the exception han-
dling approach must be redesigned according to the general characteristics of
the agents.

1 These research is supported by The Scienti�c and Technological Research Council of
Turkey, Electric Electronic and Information Research Group with 106E008 project.



As known, multi-agent systems consist of cooperative, distributed and au-
tonomous software entities, named agent [19]. These primitive properties pre-
vent agents from direct usage of classical exception handling approach[13]. Dis-
tributed but cooperative work of agents mean spreading the program over agent
organization and execution �ow of the program is managed by separate agents at
di�erent times. Handling an exception of this distributed execution �ow requires
to reconstruct the classical handling approach. Moreover, it must be considered
that how the autonomy of agents is e�ected by implementation of such an dis-
tributed handling approach.

In this research we aim to develop an exception handling approach for goal-
oriented MASs. In this type of MAS, cooperation and internal intents of agents
are modeled with goals. In other words, goals are used to de�ne distributed ex-
ecution �ow, spread over agents, and standalone execution �ow of an agent. In
our handling approach, we advocate modeling exception handlers with speci�c
goals to recover exceptions. In addition, exception of an agent may not be re-
covered by that agent and this exception may hamper whole agent organization
to achieve organizational goals. For handling such an exception, cooperation of
agents may be required. In [18], Lamsweerde and Letier also claim using goals
to model exception handlers at the requirement analysis phase of goal-oriented
MAS development. But at design time and runtime only goals are not enough for
handling exceptions of goal-oriented MASs. Plans are another important artifact
of goal-oriented MASs that are used to de�ne detailed internal execution �ow of
agents to achieve agent goals. So, exceptions of plans should also be considered.
In this research, an infrastructure for handling plan exceptions are also de�ned.

This paragraph de�nes how the rest of this paper is organized. In section
2, we criticize other exception handling techniques for MASs. In section 3, we
determined our approach. In sub-sections of section 3, we classify exceptions of
goal-oriented MAS and conveniently, an abstract architecture for handling these
types of exceptions is designed. The next section contains development details of
this architecture which is implemented within SEAGENT Goal-Oriented Multi-
Agent System. Section 5 touches on a case study that shows how e�cient the
implemented architecture works. Finally we conclude the paper in Section 6.

2 Exception Handling Approaches in Multi-Agent

Systems

Up to now, agent researchers have worked on exception handling mechanisms for
MASs and contribute to literature with di�erent notions of handling approaches.
These approaches can be group in two category. First group has an organiza-
tional view, which situated the handling mechanism outside the agent[5,7,17].
So, organizational view approaches bring some organizational entities to MAS
and these entities monitor agents by listening their internal events and mes-
sages to detect exceptional situations. Approaches subsumed by organizational
view can be grouped in two sub-category; centralized and decentralized views.
Centralized organizational view, de�ne an exception handling entity in the archi-



tecture of MAS for handling exceptions. Conversely, decentralized sub-category
of organizational view spread responsibility of handling exceptions through more
than one organizational entity. The other main category of handling approaches
have an agent view. Researches grouped in this category similarly listen mes-
sages and events of the agent, but they propose a mechanism to handle the
exceptions inside the agent[10,15]. In the following paragraphs of this section,
we give brief de�nition about these views according to aforementioned exception
handling techniques.

One of the organizational approach is Tripathi and Miller's guardian agent[17].
They purpose an agent, named guardian, in a multi agent system that manages
exception handling centrally for global exceptions. Guardian agent, dedicated
to exception handling, encapsulates de�ned rules for general exceptions and
presents exception handling service to the agent system. When a global exception
occurs in MAS, guardian agent perform user de�ned exception handling rules.
For handling the exception, the guardian agents create appropriate exception
handler. At the end of handler execution, agent task can continue or terminate
its execution as de�ned.

Another approach for organizational view is Klein and Dellarocas's Exception
Handling Service(EHS)[7]. They propose a shared service to provide exception
handling to whole multi-agent system. This service is aware of weak points of
multi-agent system. EHS follows all the events in the system for exception de-
tection with specialized agents and performs de�ned rules for correction. At
�rst glance, this approach seems to be in decentralized organizational view but
sentinel agents just responsible for exception detection. These agents intend to
prepare a knowledge base for calling exception handling service. When an excep-
tion occurs, the exception is compared with the prede�ned candidate exceptions
and the general handling policy is determined. To provide this, exception han-
dling service communicates with other agents to de�ne and handle perceived
exceptions.

Klein and Dellarocas improve their approach in [8]. In this version, their
approach become more decentralized by assigning the responsibility of exception
handling to sentinel agents. Every agent in the multi-agent system has a sentinel
agent that control agent communication and have ability of using a centralized
reliability database shared by all sentinels.

Last of the organizational approaches is Haegg's research[5].We position Haegg's
exception handling approach in decentralized organizational view. Because Haegg
proposes special agents, named sentinel, in multi-agent system for exception han-
dling. This approach proposes sentinel agents for each agent in the system. A
sentinel controls agent's communication for error detection and recovery. When
an exception occurs during the interaction between agents or at the execution
cycle, sentinel agent performs error recovery task.

One of the agent view approach is SaGE framework[15]. This framework
handles exceptions in three vertical category; service, agent and role. Souchon et
al. proposes a layered handling approach depending on Java call stack structure.
And also they propose a concerted exception handling mechanism to resolve



errors depending on several agents. When an exception occurs during a shared
operation, the operation is terminated to handle exception and participant agents
are noti�ed. They have extended the standard Java exception mechanism in
order to di�erentiate higher level exceptions from language levels.

An other approach for agent view is Mallya and Singh's commitment proto-
cols [10]. They propose modeling and handling exceptions via commitment pro-
tocols. Exception occurs during the interaction when a protocol is not respected
along agent interactions. These exceptions are handled via the de�nitions of
the recovery plan for the exceptional situation. For example alternate protocol
or the execution �ow of the protocol in an exceptional situation is prede�ned.
They propose an exception handler repository to support handling exceptions
dynamically.

Besides all of the suitable features of aforementioned exception handling ap-
proaches, these approaches have certain shortcomings. Firstly, we criticize weak-
ness of organizational view approaches. When participant agents count reached
huge numbers, its clear that the centralized organizational exception handling
techniques requires great resources for specialized agents to handle exceptions of
whole MAS. Although decentralizing of organizational exception handling tech-
niques remove the resource problems of centralization agent, but also don't solve
problem of performance. Moreover, organizational exception handling techniques
are not e�cient since handlers don't have agent's internal knowledge. Without
this knowledge, an external handler can not �nd the proper solution for recov-
ering from the exceptional situations because of lacks of the agent's knowledge.

On the other hand, agent view approaches use resources e�ciently by assign-
ing exception handling responsibility to agents. Most of them propose the usage
of agent knowledge base to determine exceptional situations. But these handling
techniques don't de�ne how autonomy property of agents e�ects the exception
handling process.

In this paper we purpose an approach, which can be classi�ed in agent view
approaches, by taking care of shortcomings of aforementioned researches. Our
approach is based on goal-oriented MAS and de�ne an architecture how the
exception can be handled with goal oriented MAS artifacts. Hence, agents are
enable to reason for recovering exceptional situations using de�ned artifacts.
Although our approach is classi�ed in agent view, thanks to the using goal
concept, di�erent exception handling patterns can be implemented by assigning
speci�c exception handling goals to di�erent agents. The variety of exception
handing patterns o�er di�erent handling perspectives. Following section explains
our exception mechanism and handling approach.

3 Exception Handling Mechanism for Goal-oriented

Multi-agent Systems

To explicate proposed exception handling approach for MAS, �rst we have to
classify exceptions then we must de�ne an approach to handle the instances of
these classi�cations. Exceptions are generally speci�ed as deviations from the



regular execution �ow of a program. In MAS, execution �ow with the terms
of cooperation and standalone. So, to classify MAS exceptions that cause de-
viations, entities directly used in di�erent types of execution �ows have to be
speci�ed.

In a goal-oriented multi-agent system, execution �ow of agents (standalone
and cooperation) are designed by system goals, agent goals and plans as di-
rectly used executable entities. System goals are used to de�ne execution �ow
of MAS from the cooperation perspective. System goals model the cooperation
of participant agents to achieve organizational aims by de�ning roles, goals, and
communication protocols between these goals. System goals also composed of
agent goals. Agent goals are used to de�ne internal execution �ow of an agent.
Although goals are used to specify agent and MAS execution �ow, they are not
enough for detail execution on their own inside the agent. At this point, plans
are required to specify execution details of an agent to achieve agent goals.

Our MAS exception handling approach is inspired with the idea of modeling
exception handling mechanism on the simplicity principle[3]. Conveniently to this
principle, we claim that each exception should be handled with the executable
entities that are same level with the exception occurred in. If it can not be
handled in the same level, it hampers the execution �ow of one upper level. So,
it should be handled in the upper level. In other words, if standalone execution
�ow of an agent crashes, initially it must be tried to �x internally by agent. If
it can not be �xed and causes crash of cooperative execution �ow, it has to be
compensated cooperatively by participant agents to provide robustness of MAS.

As adverted previously, an agent's internal execution �ow is designed with
agent goals and plans. In particular, plans de�ne the execution �ow more specif-
ically than agent goals and agent goals de�nes what to do for agent in more
generic perspective. According to the our approach, if a plan crashes, it must
be handled by another plan. If a plan level exception is not handled, the goal
that the agent want to achieve by executing this plan also can not be achieved.
Similarly, exceptions of agent goals may be handled via other agent goal(s).

Through agent organization perspective, execution �ow of cooperation that
is designed by system goals, can be broken down for the reason of irregular
behaviors of participant agents. In this circumstance agent organization try to
make new decisions to achieve its organizational goals. These exceptions can
only be handled via cooperative handling.

3.1 Exception Levels

We categorized exceptions of multi-agent systems due to hierarchy of executable
entities de�ned above. In our approach, according to the executable entities
of MAS, exceptions are classi�ed in three levels; plan level, agent level and
MAS level exceptions. In [13], Platon also de�nes a classi�cation for MASs.
In his research, there are two classi�cation levels; agent level and code level.
This classi�cation is extended by adding one more upper level of MAS level
exceptions. These entities and our exception levels are shown in Table 1 and
following paragraphs de�ne these levels in detail.



Exception Level Entity Standalone Cooperative

MAS Level System Goal - X

Agent Level Agent Goal X X

Plan Level Plan X -
Table 1. Classi�cation of MAS Exceptions

1. Plan Level Exceptions: Agent performs plans to achieve designed agent
goals in its life cycle. Along life cycle of an agent, plans can crash for the
reason of the logical, implementation, system, communication or knowledge
base errors. In detail, a plan may be implemented inadequately according to
domain requirements or to programming requirements such as unexpected
parameter types or values. System that executes the plans, planner of the
agent in our case, may not work properly and cause exceptions. Additionally
un-reached or improper messages according to the communication protocol
also make a plan crashes. Finally, the knowledge that is used during execu-
tion of a plan can cause an exception for the reason of inconsistent operations
with the knowledge base. All these types of exceptions are classi�ed in Plan
Level Exception for the reason of causing a deviation in the execution �ow
during plan execution.

2. Agent Level Exceptions: Agents try to achieve agent goals corresponding
to objectives. An agent may not be able to achieve its goals for several rea-
sons. For example, an agent may decide to achieve an agent goal. Along life
cycle of agent knowledge base errors, unhandled plan exceptions and system
errors may frustrate the agent to achieve the speci�ed goal. Occurrence of
several exceptional situations hamper execution of agent goal. For example
occurrence of an uncertain situation in agent beliefs, unreached agent mes-
sages, agent system failures generate exceptional situations. All these type
of execution errors are classi�ed in Agent Level Exceptions for the reason of
causing a deviation in the execution �ow during agent goal execution.

3. Multi-Agent Level Exceptions: In MAS, agents cooperate to achieve
system goals and these system goals are modeled in a speci�c order. During
the cooperation for achieving a system goal, an agent goal can be broken
down for the reason of exceptions occurred lower levels. Erroneous execution
of one of the participant agent can prevent the achieving of organizational
goal. All these type of execution errors are classi�ed in Multi-agent Level
Exceptions and represent upper level exceptions that are occurred during
this cooperation between agents.

3.2 Abstract Exception Handling Architecture of MAS

To determine exception handling mechanism for agents, the autonomy charac-
teristic should be considered. Agents may have choices to recover exceptions
according to their preferences in their knowledge base. So, the exception han-
dling architecture has to be supported with the decision making mechanism of an



agent. To de�ne an exception handling architecture, how a goal-oriented MAS
works to make decisions should be determined. In goal-oriented MAS, agents
cooperate to achieve a system goal conveniently with their agent goals. So, exe-
cution of a system goal is started soon after one of the participant agents, called
as initiator agent, desires to ful�ll its agent goal that is also designed as sub-goal
of the system goal. After deciding which agent goal to take in execution, plans
that can achieve the agent goal should be matched. Parallely, other participant
agent of the system goal starts to work when the initiator agent's request reach
to cooperate. Participant agent also do the same decision making actions with
initiator one.

In the life cycle of the agent, agent's planner should take place in exception
handling process as well as decision making process. The handling process should
spread over three phase of agent cyclic execution model; perception, reasoning
and action[14]. In perception phase, planner of the agent should listen the ex-
ecution of plans and agent goals, which are in execution. After detection of an
exception for an agent goal or plan, it should decide what to do for handling
this exception. It may �nd proper plans instead of crashed ones by reasoning.
If there are no implemented plans to compensate the execution �ow, the agent
planner should select a new agent goal instead of one with crashed plan. All
these actions are related to adjust the internal execution �ow of the agent. If an
agent can not succeed to correct the internal execution �ow, the cooperation for
achieving organizational (system) goal can be frustrated for the reason of one of
the participant agent's crash. In this circumstance, the agent with the crashed
plan should take in execution of the exceptional system goal.

Fig. 1. Executable Entities Meta model

To provide robustness of MAS application within above mentioned exception
handling process, developers of the MAS application should de�ne the alternative
goals and plans as well as ordinary goals and plans. Figure 1 illustrates a partial
view of goal-oriented MAS meta-model that focuses on exception handling. As
seen in �gure, we extend the general meta-model of MAS by adding special
relationships to the semantics of goal and plan concepts. These added special
relationships can be listed as sameAs, inverseOf and exceptional. The agent



planner should make decision by watching out these semantic relations when an
unexpected state occurs. At such state, the planner �rstly should follow existing
exceptional relations that are de�ned for recovering agent from exceptional state.
If there is no designed exceptional goal or plan for exceptional state, it should try
to �nd alternative goals by querying sameAs relations instead of crashed one.
De�ned sameAs goals aims to �nd a goal with same objective with the crashed
one. So the exceptional state of the agent can be disappeared by trying the same
objective with another alternative goal. Lastly inverse goals should be queried to
roll back the unexpected state. These inverse goals correspond opposite objective
with the crashed one for rolling back the e�ects.

4 Implementation of Proposed MAS Exception Handling

Approach

Previously de�ned abstract exception handling architecture is implemented in
SEAGENT Multi-Agent Development Framework[1]. To clarify how the imple-
mented exception handling architecture works, execution life-cycle of SEAGENT
planner and used artifacts at run-time must be de�ned in detail. The primitive
properties of SEAGENT are semantic web enability, goal orientation and HTN
based plan execution. To support these features, SEAGENT planner[2] uses ar-
tifacts, which are de�ned semantically (with OWL ontologies) and stored in the
knowledge base of agents.

In detail, SEAGENT planner uses semantically described goal and HTN on-
tologies. The HTN ontology resembles to the HTN structure presented in Sycara
et. al [16]. In the HTN formalism, plans, which are composed to achieve a prede-
�ned agent goal, consist of two types of tasks: complex tasks called as behaviors
and primitive tasks called as actions. Each plan has a root task, which is a be-
havior itself consisting of sub-tasks. On the other hand, actions are primitive
tasks, that are directly executable. Nextly, main concepts of goal ontology are
system goal and agent goal. System goal specify the organizational aims and
agent goals de�ne the intents of agents.

During the decision making process, all SEAGENT planner internal modules
use aforementioned concepts de�ned in goal and HTN ontology. Life-cycle of
decision making process is shown in Figure 2. The decision making process starts
with an objective that may be sent from outside of the agent or generated by
listening internal events. After an objective is reached, then the planner's goal
resolution module queries the ontologies in the knowledge base to decide what to
do. Soon after deciding on a goal, the plan resolution takes place in the planner
and queries the knowledge-base to �nd proper plan for achieving the found goal.
Nextly, the planner generates a graph that represents the execution �ow of goals
and plans in the reduction phase. After the graph generation, it binds the graph
to the current execution process and executes the nodes (represent goals and
plans) of graph.

Exceptions that are occurred during the execution of the graph are directed
to the planner as recover objective. Initially, plan resolution module queries the



Fig. 2. SEAGENT Planner Decision Making Life-cycle

knowledge base to �nd the proper plan to recover. Found plan that is de�ned
exceptional in plan ontology is selected for the handling process. The reduc-
tion module takes the recovering plan and generates graph and this graph is
bound to the execution dynamically. Otherwise, if there is no de�ned plan for
recovering exceptional plan (that means the intended goal by the plan is also
crashed), then the goal resolution module seeks an alternative goal for handling
the crashed goal, which is aimed to ful�ll with the crashed plan. At this time,
if the goal resolution module �nds an alternative goal for handling, reduction
module converts found goal to graph at reduction cycle and deviated inner model
replaced with the new one to ful�ll exception handling by dynamic binding.

The goal and HTN ontologies are extended to support reasoning ability of
SEAGENT planner for exception handling process. To de�ne handling excep-
tions that are occurred in plans, an exception property is added HTN ontology.
Figure 3 shows partial view of HTN ontology that focuses on exceptions. Agent
plans consist of tasks, and also tasks consist of sub-tasks. Exceptional property
makes the de�nition of handling task between possible agent plan's tasks.

<ow l : c l a s s rd f : abou t="behaviour ">
<r d f s : s u b c l a s s o f r d f : i d=" task "/>

</ ow l : c l a s s>
<ow l : c l a s s rd f : abou t=" ac t i on ">

<r d f s : s u b c l a s s o f r d f : i d=" task "/>
</ ow l : c l a s s>
<owl : ob j e c tp rope r ty rd f : about=" subtask ">

<rd f s : r a n g e r d f : i d=" task "/>
<rdfs :domain r d f : i d="behaviour "/>

</ ow l : ob j e c tp rope r ty>
<owl : ob j e c tp rope r ty rd f : about=" exc ep t i ona l ">

<rd f s : r a n g e r d f : i d=" task "/>
<rdfs :domain r d f : i d=" task "/>

</ ow l : ob j e c tp rope r ty>

Fig. 3. HTN Ontology



On the other hand, into the SEAGENT goal ontology, exceptional, sameAs

and inverseOf properties are added for de�ning the exceptional handling goals.
The ontology is illustrated in Figure 4. Exceptional property is used for de�ning
exception handling goals. The SameAs property is sub-property of owl:sameAs,
and used for de�ning agent goals that achieves same objective with the corrupted
one. And inverseOf property is sub-property of owl:inverseOf and expresses
agent goals achieving opposite objective to roll back e�ects of the crashed one.

<owl :C la s s rd f : abou t="Goal">
<rd f s : subC la s sO f rd f : ID="MasEntity"/>

</ owl :C la s s>
<owl :C la s s rd f : abou t="AgentGoal">

<rd f s : subC la s sO f rd f : ID="Goal"/>
</ owl :C la s s>
<owl :C la s s rd f : abou t="SystemGoal">

<rd f s : subC la s sO f rd f : ID="Goal"/>
<rd f : t yp e r d f : r e s o u r c e="owl−Class "/>

</ owl :C la s s>
<owl :ObjectProperty rd f : abou t="Except iona l ">

<rdfs :domain r d f : r e s o u r c e="Goal"/>
<rd f s : r a n g e r d f : r e s o u r c e="Goal"/>
<rd f : t yp e r d f : r e s o u r c e="owl−ObjectProperty "/>

</ owl :ObjectProperty>
<owl :ObjectProperty rd f : ID=" inver seOf ">

<rdf s : subProper tyOf r d f : r e s o u r c e=" inver seOf "/>
</ owl :ObjectProperty>
<owl :ObjectProperty rd f : ID="sameAs">

<rdf s : subProper tyOf r d f : r e s o u r c e="sameAs"/>
</ owl :ObjectProperty>

Fig. 4. Goal Ontology

Details of exception handling in the graph structure is speci�ed on an ex-
ample in Figure 5. The example based on a system goal SG1 corresponds an
organizational objective of Role1 and Role2. SG1 consist of agent goals AG1
and AG2 related with aforementioned roles. The B1 is the root behaviour of
the plan corresponds the agent goal AG1. The right side of the �gure illustrates
graph model of the B1. The model includes the normal and exceptional execution
�ow of the B1. The dotted arc between A1 and A3 sub-tasks of B1 emphasize
the exceptional execution �ow. This link has speci�c semantic that shows reduc-
tion of the behaviour on exceptional cases. Although the link relates two HTN
actions in this case, it can be de�ned on any type of tasks.

When an exception occurs, during the execution of the A1, the execution of
whole model, for B1, is aborted to start the recovery process. Plan resolution
module selects A3 plan for handling the exception. Reduction module converts



A3 to graph and dynamic linking module replace A2s' graph model with A3s'
one. The execution of the recovered graph model for B1 has to be continued
from the deviation point to ful�ll the handling task.

Fig. 5. Planner Executable Entities Sample

The extended planner determines the handling level from lower to higher.
If the exception perception is about for an erroneous plan, the plan resolution
module queries agent knowledge base to �nd a proper plan for the recovery of the
aborted one. But, if there is no way to �x the crashed plan, that means intended
goal crashed, then the goal resolution module queries agent knowledge base to
�nd a proper agent goal to recover the aborted one. This process is executed by
reasoning exceptional, sameAs and inverseOf in sequence. The goal resolution
module �rstly queries agent goals that handles the exception, de�ned in goal
ontologies with exceptional property. Afterwards the agent goal for the same
objective with crashed one ,de�ned with sameAs property tries to be found. And
lastly the agent goal achieves rolling back the e�ects of crashed one, de�ned with
inverseOf, tries to be reasoned. Thereafter, the discovery of �nding the proper
agent plan for selected one is started. As a result of goal resolution, an agent
plan for the found exception handling agent goal, is converted to graph model.
The deviated inner model of the aborted agent goal is replaced with the new
one.

For example agent goals AG1 and AG2 are sub-goals of the SG1 system goal
as shown in Figure 5. When an exception occurs during the execution of the
graph model for AG1, execution of the whole graph is aborted to start recovery
process. If the goal resolution module can not �nd a proper agent plan, for



recovering B1, tries to �nd a proper agent goal instead of AG1. As a result
of reasoning process an agent goal that is de�ned as exceptional, sameAs or
inverseOf with AG1 recovers the AG1 from the corruption. Proper agent plan
for handling goal is converted to the graph and dynamically replaced with the
AG1s' graph model.

At higher level, if the exception perception is about for an exceptional agent
goal, goal resolution module queries agent knowledge base to �nd a proper sys-
tem goal for the recovery of the aborted one. System goals related with the
crashed one is queried with the exceptional, sameAs or inverseOf order previ-
ously de�ned. As a result of reasoning, selected system goal's sub-goals is started
to handle the occurred exception during cooperation. Figure 5 depicts the com-
position of the system goal SG1. If an exception occurs during the execution
of the SG1 sub-goal AG1, execution of the whole graph for AG1 is aborted to
start recovery process. If goal resolution module can not �nd a proper agent
goal for AG1, tries to �nd a proper system goal for SG1. As a result of reasoning
process a system goal that is de�ned as exceptional, sameAs or inverseOf with
SG1, recovers both the AG1 and AG2 from the corruption. The exception han-
dling sub-goals related with each role of SG1, is about to be started to start the
recovery process of SG1.

5 Case Study

An electronic barter application is implemented as a case study with SEAGENT
Multi-Agent Framework. In this application, base scenario is achieved by the
Customer, Barter and Cargo roles assigned to the agents. Customer agents are
responsible for adding, evaluating barter proposals. The Barter agent manages
all trades in the system. This agent is responsible for collecting barter proposals,
matching proper barter proposals and tracking the bargaining process between
Customer agents. After �nalization of bargaining, Customer agents send engage-
ment message to the Barter agent. Then, the Barter agent noti�es the Cargo
agent for transporting barter products between Customer agents. This scenario
is completed by the acceptance of all participant agents. The goal model of this
scenario is shown in Figure 6.

As seen in the goal model, all main goals of the ExchangeBarterProducts

system goal is illustrated. ExchangeBarterProducts system goal consists of eight
main agent goals; prepareBarterProposals, evaluateBarterProposal, evaluateTr-
nasport, startExchangeOfProducts, tradeBarterProposal, matchBarterProposals,

organizeBarterProductsTransportRequest and organizeBarterProductsTransport

goals, which are assigned to the Customer, Barter and Cargo roles. To achieve
ExchangeBarterProducts goal, initially Customer role achieve its prepareBarter-
Proposal goal to request trade from Barter role. Barter role collects these pro-
posal with tradeBarterProposal and tries to �nd proper trades withmatchBarter-

Proposals goals. After �nding convenient trades, the Barter agent noti�es the
related agents that plays the Customer role to start bartering. Then agents play-
ing Customer roles communicates with each other to achieve evaluateBarterPro-



Fig. 6. Case Study Goal Model

posal goals. After they engaged on trading, players of Customer role send en-
gagement messages to the Barter role with startExchangeOfProducts goal. Then
Barter role starts the execution of organizeBarterProductsTransportRequest goal
that triggers organizeBarterProductsTransport goal of Cargo role. The transport
information is noti�ed by all participants and the execution of ExchangeBarter-
Products system goal is completed by engagement messages of Customer roles.

During trading process, Barter agent matches proper barter proposals and
start bargaining between Customer agents. Figure 7 illustrates agent plan that
corresponds evaluateBarterProposal goal. During evaluation process, existing
product database can be unavailable to satisfy the requests. Here we implement
an user-de�ned java exception, named UnavaibleDatabaseException, that cor-
rupts the execution of the BHEvaluateBarterProposal if database is unavailable.
To cause UnavaibleDatabaseException, our planner modules do not commit the
changes in the knowledgebase that is performed by the crashed task. After this
operation over knowledge, the recovery task that handles the occurred exception,
ACHandleDatabaseException, is dynamically added to the model to provide the
robustness of the plan. As a result of execution, database become available by
opening the connection to the database. At the end of exception handling pro-
cess, the plan is recovered from the exceptional situation then agent normally
continues executing the plan and accepts or refuses the barter proposal.

Let us assume that the exception occurred during the execution of evaluate-
BarterProposal agent goal is not handled at plan level. During the execution,
if the same exception, unavailable database exception, is forced to be thrown,
Customer agent tries to handle occurred exception within plan level initially.
But it can not �nd proper plan for recovery then it seeks exceptional, sameAs

or inverseOf goal de�nitions related with evaluateBarterProposal. As a result of
reasoning withDrawBarterProposal agent goal, that is de�ned as exceptional in
the goal ontology, is matched to handle occurred exception and this goal is dy-
namically added to the Customer agent to ful�ll exception handling. This agent



Fig. 7. Plan Level Exception De�nition

goal recovers bargaining between customer agents and starts a new objective
corresponding withdraw of barter proposal. Consequently bargaining between
agents are recovered by withdraw result. Customer role's withdraw request trig-
gers cancelProposal goal of Barter role. This agent goal terminates the bargaining
process between customer agents and withdraws the proposal from the barter
system.

Fig. 8. Agent Goal Level Exception De�nition

Lower level multi-agent exceptions can be handled within the internal life
cycle. But all of the multi-agent exceptions can not be handled via locally. In
our case after the bargaining process between Customer agents, Barter agent
determines the transport of the barter products. The Barter agent requests the
transportation from the Cargo agent. If an exception occurs during the execu-
tion of organizeBarterProductsTransport, the barter process between Customer
agents can not be completed successfully. Transportation of barter products can
not be accomplished due to various reasons such as inconvenient weather condi-
tion at the date of the transportation. This exception can only be handled via
cooperatively because the crash of the organizeBarterProductsTransport, make
other agents goals crashed and all sub-goals of ExchangeBarterProducts system



goal crash. The reasoning process produces a decision that can be handled via a
system goal named CancelProductExchange. When Cargo agent percepts this re-
cover objective, it cancels the execution of current goal and starts the execution
of proper agent plan , ,related with itself in the de�nition of cancelTransport
goal. The execution of cancelTransport goal within the Cargo agent, triggers
cooperation with participant agents. Afterwards, the Barter agent starts the ex-
ecution of cancelBarterMatching goal to cooperatively cancel the barter between
Customer agents' via cancelBarterRequestEvaluation goal.

Fig. 9. System Goal Level Exception Handling

Conclusion

Within this paper, we propose an exception handling approach for goal-oriented
MASs. Initially, we position our work in the literature. In section two, we classify
other researches in two categories; approaches called as organizational view and
agent view. Handling techniques of organizational view propose architectural
elements. On the other hand, agent view proposes some mechanism to handle
exceptions of agents internally.

Our approach provides goal and plan level exception mechanism inside the
agent. Hence, it can be classi�ed within the agent view. But, MAS level excep-
tion support, via system goal exception goals, makes our approach applicable in
organizational level like other organizational view approaches. This makes our
approach unique in terms of supporting both views using the goal concept. Ad-
ditionally, proposed handling mechanism respects to autonomy of agents. The
autonomy of the agent is provided within its planner's decision making life-cycle,
which consists of three main phases: perception, reasoning and action. We spec-
ify our exception handling mechanism with the decision making phases and we
extend the agency meta-model of MAS by adding exception semantics.



The approach also implemented in SEAGENT. To show its ability, we im-
plement a case study on barter domain. It is observed with the case study that
our approach and implementation support robustness with respect of agents
autonomy.

References

1. Oguz Dikenelli. Seagent mas platform development environment. In AAMAS
(Demos), pages 1671�1672, 2008.

2. Erdem Eser Ekinci, Ali Murat Tiryaki, Onder Gurcan, and Oguz Dikenelli. A plan-
ner infrastructure for semantic web enabled agents. In OTM Workshops, volume
4805 of Lecture Notes in Computer Science, pages 95�104, Vilamoura, Algarve,
Portugal, 2007. Springer.

3. John B. Goodenough. Exception handling design issues. SIGPLAN Not., 10(7):41�
45, 1975.

4. John B. Goodenough. Exception handling: issues and a proposed notation. Com-
mun. ACM, 18(12):683�696, 1975.

5. Sta�an Haegg. A sentinel approach to fault handling in multi-agent systems.
In Revised Papers from the Second Australian Workshop on Distributed Arti�cial
Intelligence, pages 181�195, London, UK, 1997. Springer-Verlag.

6. Gal A. Kaminka, Milind Tambe, and C. M. Hopper. The role of agent modeling
in agent robustness. In AI meets the real world: Lessons learned (AIMTRW-98),
1998.

7. Mark Klein and Chrysanthos Dellarocas. Exception handling in agent systems. In
AGENTS '99: Proceedings of the third annual conference on Autonomous Agents,
pages 62�68, New York, NY, USA, 1999. ACM.

8. Mark Klein, Juan-Antonio Rodriguez-Aguilar, and Chrysanthos Dellarocas. Using
domain-independent exception handling services to enable robust open multi-agent
systems: The case of agent death. Autonomous Agents and Multi-Agent Systems,
7(1-2):179�189, 2003.

9. J. L. Knudsen. Better exception-handling in block-structured systems. IEEE
Softw., 4(3):40�49, 1987.

10. Ashok U. Mallya and Munindar P. Singh. Modeling exceptions via commitment
protocols. In AAMAS '05: Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, pages 122�129, New York, NY,
USA, 2005. ACM.

11. R. A. Maxion and R. T. Olszewski. Improving software robustness with depend-
ability cases. In FTCS '98: Proceedings of the The Twenty-Eighth Annual Interna-
tional Symposium on Fault-Tolerant Computing, page 346, Washington, DC, USA,
1998. IEEE Computer Society.

12. Robert Miller and Anand Tripathi. Issues with exception handling in object-
oriented systems. Lecture Notes in Computer Science, 1241:85�103, 1997.

13. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. An architecture for exception
management in multi-agent systems. International Journal on Agent-Oriented
Software Engineering, 2008.

14. Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach, chap-
ter Intelliget Agents, pages 42�45. Prentice-Hall, Englewood Cli�s, NJ, 2nd edition
edition, 2003.



15. F. Souchon, C. Dony, C. Urtado, and S. Vauttier. Improving exception handling
in multi-agent systems. In Advances in Software Engineering for Multi-Agent Sys-
tems. Springer-Verlag, 2003.

16. Katia Sycara, M. Williamson, and K. Decker. Uni�ed information and control
�ow in hierarchical task networks. In Working Notes of the AAAI-96 workshop
'Theories of Action, Planning, and Control', August 1996.

17. Anand Tripathi and Robert Miller. Exception handling in agent-oriented systems.
pages 128�146, 2001.

18. Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented
requirements engineering. Software Engineering, 26(10):978�1005, 2000.

19. Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed
Arti�cial Intelligence. MIT Press, 1999.

20. Shaula Yemini and Daniel M. Berry. A modular veri�able exception handling
mechanism. ACM Trans. Program. Lang. Syst., 7(2):214�243, 1985.


