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We consider a deterministic numerical code which computes the infrared signature of
an aircraft in its surroundings. This code takes as input parameters a large number of
variables describing the aircraft and its environement characteristics. However, the code
gives a result for a known physical configuration. Its use is then limited. Indeed, the code
doesn’t allow to know the envelope describing the set of possible values of the signature,
this envelope resulting from a partial knowledge of the aircraft and its environement cha-
racteristics. More precisely, for a given attack scenario, some of the variables are only
known through their probability density function, like meteorological variables, and some
other variables through their variation interval. This envelope is essential to estimate the
detection performance of infrared sensors. The search of this envelope leads to the esti-
mation of the integral of a function h, with unknown analytic form, defined on a large
dimensional space. Typically, the dimension can be of order 30 up to 60.

The first idea could be the use of the standard Monte Carlo method (MC) which
consists in estimating the integral with a mean of h function values at points taken ran-
domly and uniformly. It exists also variants of this method which allow to draw the points
with a probability density chosen a priori. However, in the case of our numerical code, for
cost reasons, the size of the h values sample is limited. Thus, the quality of the integral
estimator is not always satisfactory. When the dimension is small, about 10, the precision
can be better with the Quasi-Monte Carlo method (QMC). In this case, the points are
selected in a determinist way. However, when the dimension is greater than 10, according
to the Koksma-Hlawka inequality [Hla61], the QMC estimator quality decreases compared
to the MC estimator one. That’s why we want to reduce the dimension before applying
the QMC method.

To reduce the dimension, we could use design of experiments [DFS02] or functional
analysis of variance [ES81]. However, these two approaches require assumptions which are
not fulfilled in the case of infrared signature. We can cite as an example the variables
independence assumption which is not satisfied for two significant input data : the tem-
perature and the relative humidity. That’s why we have proposed a new method where
the validity assumptions are less restrictive and which allows to evaluate the variables
significance. This method is based on the computation of indexes which represent the
proportion of variance of h explained by each variable. The number of variables obtai-
ned after the analysis of their significance is similar to the notion of effective dimension
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[MC94]. Thus, we have adapted this notion to the above method.

After dimension reduction, we can apply the QMC method with the no significant
variables fixed to a constant value. However, the QMC method presents another defect.
Indeed, the points sequences used present irregularities on some low order projections.
Such irregularities for important variables could lead to a poor convergence rate. As far
as we know, the existing criteria to estimate the quality of the projection repartition are
not computable in practice and their approximation requires a lot of function h evalua-
tions. That’s why we have introduced a new criterion using the indexes previously defined.
Thus, we can evaluate the adequacy of the sequences to our function of interest h. More
preciselly, we evaluate the adequacy in terms of distribution quality of the projections. In
addition, some numerical results on test functions have shown a correlation between the
criterion value and the corresponding QMC estimator quality.

However, this criterion only allows to choose the best sequence among a set of se-
quences. Thus the chosen sequence is not necessarily optimal for our criterion. That’s
why we have searched to build an optimal sequence of points for our criterion in order to
maximize the corresponding QMC estimator quality.

We will briefly present our method to compute the proportion of variance explained
by the variables as well as our criterion. Then We will present our method of sequence
construction. Finally, We will illustrate these results with numerical simulations.
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