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Abstract

In the context of computer experiments a common way of dealing with ex-
pensive simulation models is to evaluate the simulation at a number of well
designed input values and to replace the simulation by an easy to calculate
surrogate model, which has been fitted to the observations. Then the surro-
gate model is used for optimization, sensitivity analysis or other applications
at hand. As for computer experiments there is usually no random error the
surrogate model has to interpolate the observations. In the literature there
exist different multivariate interpolation methods which can be applied as
surrogate model. The aim of this talk is to provide a comparison of four
of these: Kriging, Kernel interpolation, Natural Neighbor interpolation and
Thin Plate splines. We give suggestions, when to use which method.

The interpolation method commonly used for modeling computer exper-
iments is Kriging [Santner et al. (2003)]. Kriging can be considered as an
adaption of least square regression to the interpolation task by assuming a
special correlation structure, defined by a parametric correlation function
depending on the input points of the computer experiment. The correlation
parameters have to be estimated, for example by maximum likelihood ap-
proaches. Kriging is applied in many practical situations and is well known
for it’s high prediction accuracy.

As an alternative [Miihlenstadt and Kuhnt (2009)] just recently suggested
Kernel interpolation, consisting of two steps: First, a piecewise linear polygon
is fitted to the data. As this polygon is not smooth and only defined for
points inside the convex hull, the linear functions of the polygon are not



just considered locally for the corresponding simplex but globally. Then the
linear functions are weighted in an appropriate way in order to obtain a single
prediction value. In one dimension a piecewise linear polygon is uniquely
defined. But in higher dimensions the polygon depends on the underlying
triangulation used. Here, the Delaunay triangulation is used [Okabe et al.
(2000)]. Under certain conditions for the weighting process it can be shown
that this results in an interpolation function which is differentiable and not
only defined for points inside the convex hull.

Natural neighbor interpolation was proposed by [Sibson (1980)]. It is
defined in terms of the Voronoi diagram. The Voronoi diagram defines the
natural neighbors of the sample input points for a prediction point. Then
for interpolation, a weighted average of the responses of the natural neighbor
points is calculated.

Thin plate splines [Micula (2002)] are considered to be a multidimensional
extension of the natural cubic spline, which is known to have an optimal
smoothness property in one dimension. In two or higher dimensions the
solution to the underlying optimization problem is not a piecewise polynomial
but a special case of interpolation methods using radial basis functions.

These interpolation methods are compared on a set of two dimensional
test functions. The test functions are searched in literature and chosen to
represent different typical behavior.
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