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Optimization takes place in many IFP applications: estimation of parameters of numerical
models from experimental data (earth sciences, combustion in engines), design optimization
(networks of oil pipelines), optimizing settings of experimental devices (engine calibration,
catalysis). These optimization problems consist in minimizing a functional that is complex
(nonlinearities, noise) and expensive to estimate (solution of a numerical model based on
differential systems or experimental measurements), and for which derivatives are often not
available, with nonlinear constraints, and sometimes with several objectives in order to find
the best compromise.

At first, we are interested in minimizing, under linear constraints, a function, which is
expensive to evaluate, and for which the derivatives are not available:

min f(z),
by <z < by, byby, €RY,
Az < b, A e R™*" he R™.

In practice, these problems are often resolved by non linear optimization methods subject
to constraints (SQP [10] for example) with derivatives approximated by finite differences.
Although these methods are particularly efficient for the determination of active constraints,
the cost in evaluations of the function to be minimized is usually too high for industrial
problems with expensive simulators. Furthermore, the choice of step for the finite differences,
crucial for the convergence of this method, is generally very difficult, because it depends on
the accuracy of f which is difficult to estimate in practice.

Direct Methods optimize a function without derivative calculation. Among them, Genetic
Algorithms [2] and Pattern Search methods [4] are insensitive to inaccuracies in the calculation
of f but require many evaluations. To overcome this difficulty, a cheap surrogate model of the
objective function is typically used in the optimization to limit the number of evaluations of
the expensive function. These surrogate models are usually global models of f on the domain
under study, constructed from a limited number of evaluations of f chosen according to a
relevant criteria related to the estimation of the prediction error of these models and expected
improvement on the minimization of the function [3, 12]. These models can be kriging models
[3, 9, 12], Radial Basis Functions (RBF), splines ... But they are limited to problems of small
size (10-20 param.).

Then another class of methods based on local surrogate models was proposed by [I, 7,
8, 11]: these methods are inspired by SQP methods with trust region globalization [1]. A
quadratic model is built at each iteration in a neighborhood of the current point, the size
of this neighborhood are updated according to the comparison of the reduction predicted
by the model and the effective reduction calculated by evaluating f. In particular, Powell
[7, 8] proposed a very efficient method, without constraints on problems of medium size (100
param.).

Taking into account constraints in these methods remains a difficulty, penalty methods
are often inefficient in practice. In this paper, an extension of Powell’s method to linear
constraints is proposed, it consists in :



1. choosing the interpolation points in the domain defined by the constraints,

2. minimizing the quadratic model under constraints in the trust region thanks to a SQP
method.

Numerical results for noisy test functions (relative noise level of 10~3) constructed from
the benchmark CUTEr [5] are presented. Bound constraints on parameters are introduced.
The results obtained with the SQA method are compared with two methods :

1. SQPAL, Sequential Quadratic method with gradient of the Lagrangian estimated by
finite differences (step of 1072 and 10~°) and a BFGS approximation of the Hessian
matrix,

2. EGO, a sequential kriging method with the addition of points using expected improve-
ment criteria [9].

Data profiles and performance profiles [5] are used to compare the three methods. They are
presented for two accuracies degined by : 7 = %
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Figure 1: Data profiles for noisy problems

Data profiles in Figure | show that the method SQA solves the largest percentage of
problems for all function evaluation budgets and for all required accuracy .
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Figure 2: Performance profiles for noisy problems

Performance profiles of Figure 2 show that the method SQA is the fastest solver in at

least 60% of the problems, while EGO and SQPAL are each the faster for less than 30% of
the problems (@ = 1). In addition, the SQA method is the most robust because it solves the
largest percentage of problems for all levels of accuracy 7 (o — 00).

An application for production and seismic data matching in the field of oil reservoir

characterization will also be presented.
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