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Dimension reduction and manifold learning play an important role in robotics, mul-
timedia processing and data mining. For these tasks strong methods like Unsupervised
Kernel Regression [4, 7] or Gaussian Process Latent Variable Models [5, 6] have been pro-
posed in the last years. But many methods suffer from numerous local optima and crucial
parameter dependencies. We use advanced methods from stochastic search to solve the
embedded optimization problems of Unsupervised Kernel Regression. Furthermore, we
apply a technique from Design of Experiments, i.e. Sequential Parameter Optimization,
to tune the parameters and improve the algorithm’s performance.

1 Stochastic Search in Unsupervised Kernel Regression

Machine learning comprises methods for classification, clustering, regression and dimen-
sion reduction, and has shown outstanding success in the last years. Nevertheless, many
optimization problems in machine learning suffer from numerous local optima. First
results have shown that machine learning optimization problems can successfully been
solved by means of stochastic search [2, 8, 9, 11].

Unsupervised Kernel Regression is an approach for the learning of principal mani-
folds and has been introduced as an unsupervised counterpart of the Nadaraya-Watson
kernel regression estimator [7, 4]. Various optimization problems are necessary for learn-
ing the Unsupervised Kernel Regression model:

• Search for optimal scale factors,

• candidate selection,

• the homotopy problem,

• CV-error minimization, and

• computation of the density threshold.

Because of the limited space for this abstract we refer to [7] for an introduction of the
optimization problems and the kernel regression on latent variables. We make use of
Covariance Matrix Adaptation techniques [10, 3] to efficiently solve these optimization



tasks. The idea of Covariance Matrix Adaptation is to adapt the distribution of the mu-
tation operator such that the probability to reproduce steps that led to the actual popula-
tion increases. This idea is similar to estimation of distribution approaches. Covariance
Matrix Adaptation algorithms approximate the inverse Hessian matrix and are the state-
of-the-art optimizers in stochastic optimization. The advantage of stochastic optimization
is robustness to local optima. Furthermore, evolutionary algorithms are embarrassingly
parallelizable and thus fairly efficient search methodologies in distributed computing sce-
narios. Experimental analyses and statistical tests reveal that the evolutionary algorithm
improves the results of the kernel regression method significantly.

2 Parameter Tuning of Unsupervised Kernel Regression with Sequential Parameter
Optimization

Statistical tools like design of experiments support the parameter tuning process. An ex-
perimental design is the layout of a detailed experimental plan in advance of doing the
experiment. Design of Experiments starts with the determination of the objectives of an
experiment and the selection of the parameters (factors) for the study. The quality of the
experiment (response) guides the search to find appropriate settings. In an experiment,
we deliberately change one or more factors in order to observe the effect the changes have
on one or more response variables. The response can be defined as the quality of the results,
e.g. average fitness values at a given generation or convergence ratios. Bartz-Beielstein et
al. [1] developed a parameter tuning method for stochastically disturbed algorithm out-
put, the Sequential Parameter Optimization. It combines classical regression methods and
statistical approaches for stochastic algorithms. We tune the parameters of Unsupervised
Kernel Regression and the embedded stochastic optimization algorithms using Sequen-
tial Parameter Optimization. Our experimental analysis is focused on a set of known test
problems. In our experiments we observe a significant win in performance and accuracy
after the tuning process. The significance of the experimental results is evaluated using
the non-parametric Wilcoxon test.
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