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Let X = (X1, . . . , Xn) a Gaussian vector of dimension n. Many problems of
simultaneous statistical inference correspond to the computation of the proba-
bility of X to be in an hyper-rectangle.

The evaluation of such a probability for n of the size of (say) 1000 seems
very difficult. In can be conducted in two steps: the first uses elementary
conditioning and the change of variable formula to transform the probability
into an integral over the unit hyper-cube:

∫

[0,1]n
h(t)dt.

This transformation already implies an important reduction of variance if a
Monte-Carlo (MC) method is used.

The second step uses an evaluation on the integral over the hyper-cube using
a lattice rule that generate low discrepancy sequences.

More precisely, let n be prime and let Z1 be a “nice integer sequence” in Nn,
the rule consist of choosing

ti =
{ i.z

M

}
and computing Î =

1
M

M∑

i=1

h(ti)

where the notation
{}

means that we have taken the fractional part componen-
twise. M is chosen prime.

Theorem 1 (Nuyens and Cools, 2006) Assume that h is the tensorial product
of periodic functions that belong to a Koborov space (RKHS). Then the minimax
sequence and the worst error can be calculated by a polynomial algorithm.

This result concerns the “worst case” so in many cases, the convergence is faster.
Numerical results show it is roughly O(M−1) thus much faster than MC.
If h does not satisfies the conditions of the preceding theorem we can still hope
QMC to be faster than MC and a reliable estimation the estimation error can
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be obtained by adding a Monte-Carlo step:

Let (ti, i) be the lattice sequence, the way of estimating the integral can be
turn to be random but exactly unbiased by setting

Î(U) = 1/M
M∑

i=1

h
({

ti + U
})

where U is uniform on [0, 1]n. It is clear that E
∮

Î(U) = I and general consid-
erations on QMC integration imply that Î(U) has small variance.

So we can make N independent replications of this calculation, computing

̂̂
I = 1/N(Î(U1) + · · · + Î(UN )

and construct Student-type confidence intervals. This interval is correct what-
ever the properties of the function h are. In practice N is chosen rather small
(12) so that the MC implies roughly a loss of speed of

√
12 with respect to a

pure QMC method. But on the other hand we have a reliable estimation of
error.

We will present some numerical applications and also application to design of
experiments in large dimension making a comparison with LHS and Othogonal
Arrays.
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