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1 Introduction

In this paper we present a unified discussion of different approaches to identifi-
cation of smoothing spline ANOVA models. The ‘classical” approach to smooth-
ing spline ANOVA models can be referred to in the line of Wahba (1990) and
Gu (2002). Recently, Storlie et al. presented ‘a new regularization method
for simultaneous model fitting and variable selection in nonparametric regres-
sion models in the framework of smoothing spline ANOVA’. This method is
an improvement on the COSSO (Lin and Zhang, 2006), penalizing the sum
of component norms, instead of the squared norm employed in the traditional
smoothing spline method. Storlie et al. introduce an adaptive weight to be used
in the COSSO penalty which allows for more flexibility to estimate important
functional components while giving heavier penalty to unimportant functional
components.

In a ‘parallel’ stream of research, using the the so-called State-Dependent
Parameter Regression (SDR) approach of Young (2001), Ratto et al. (2007)
have developed a non-parametric approach which is very similar to smoothing
splines and kernel regression approaches, but which is based on recursive filter-
ing and smoothing estimation (the Kalman Filter combined with Fixed Interval
Smoothing). Such a recursive least-squares implementation has some key char-
acteristics: (a) it is couched with optimal Maximum Likelihood estimation, thus
allowing for an objective estimation of the smoothing hyper-parameters , and
(b) it allows for greater flexibility in adapting to local discontinuities, heavy
non-linearity and heteroscedastic error terms.

The purposes of this paper are:

1. develop a formal comparison and demonstrate equivalences between the
‘classical’ tensor product cubic spline approach with reproducing Kernel
Hilbert space algebra (RKHS) and the SDR approach;
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2. discuss advantages and disadvantages of these approaches;

3. propose a unified approach to smoothing spline ANOVA models that com-
bines the best of the discussed methods, in particular the use of the recur-
sive algorithms can be very effective in detecting the important functional
components, adding valuable information in the ACOSSO framework.

2 State Dependent Regressions and smoothing
splines

2.1 Additive models

Denote the generic mapping as z(X) and assume without loss of generality that
X € [0,1]7, where p is the number of parameters. The simplest example of
smoothing spline mapping estimation of z is the additive model:

FX)=fot+ > fi(X)) (1)
j=1

To estimate f we can use a multivariate smoothing spline minimization problem,
that is, given A, find the minimizer f(X}) of:

Ly X2pA1”X2dX 2
D= 10+ i | iera, 2

k=1

where a Monte Carlo sample of dimension N is assumed.

This minimization problem requires the estimation of the p hyper-parameters
Aj (also denoted as smoothing parameters). Various ways of doing that are
available in the literature, by applying generalized cross-validation (GCV), gen-
eralized Maximum Likelihood procedures (GML) and so on (see e.g. Wahba,
1990; Gu, 2002). Here we discuss the estimation approach, where the addi-
tive model is put into a State-Dependent Parameter Regression (SDR) form of
Young (2001) and as applied to the estimation of ANOVA models by Ratto
et al. (2007). We synthesize here the key features of the recursive algorithms of
SDR, by considering the case of p = 1 and 2(X) = g(X) +e, with e ~ N(0,02),
i.e. we rewrite the smoothing problem as z; = s + ex, where k =1,..., N and
sk is the estimate of g(X}).

In order to recursively estimate the s in SDR, it is necessary to charac-
terize it in some stochastic manner, borrowing from non-stationary time series
processes. In general this is accomplished by assuming that the evolution of
sy follows one member of the Generalized Random Walk (GRW) class on non-
stationary random sequences (see e.g. Young and Ng, 1989; Ng and Young,
1990). In the present context, the integrated random walk (IRW) process pro-
vides the same smoothing properties of a cubic spline, in the overall State-Space
(SS) formulation:

Observation Equation: 2z = si+ e
State Equations: S = Sp_1+dp_1 (3)
dp = drg—1+ Mk



where dj is the ‘slope’ of sg, np ~ N(0,0‘%) and 7y (‘system disturbance’ in
systems terminology) is assumed to be independent of the observation noise e,.

In order to estimate s; using the recursive Kalman Filter (KF) and the
associated recursive Fixed Interval Smoothing (FIS) algorithm (see e.g. Kalman,
1960; Young, 1999, for details), the Monte Carlo sample has to be sorted in
ascending order of X, i.e. the k and k — 1 subscripts in (3) denote adjacent
elements under such ordering.

First, it is necessary to optimize the hyper-parameters associated with the
state space model (3), namely the white noise variances 0> and 2. In fact, by a
simple reformulation of the KF and FIS algorithms, the IRW model can be en-
tirely characterized by one Noise Variance Ratio (NVR) hyper-parameter, where
NVR= 0‘% /o?. These NVR values are, of course, unknown a priori and need to
be optimized: for example, in the above references, this is accomplished by max-
imum likelihood optimization using prediction error decomposition (Schweppe,
1965). The NVR plays the inverse role of a smoothing parameter: the smaller
the NVR, the smoother the estimate of s, (and in the limit NVR=0, s will
be a straight line). Given the NVR, the FIS algorithm then yields an estimate
Sk of si at each data sample and it can be seen that the 8y from the IRW
process is the equivalent of f(Xj) in the smoothing spline model. At the same
time, the recursive procedures provide, in a natural way, standard errors of the
estimated 5y, that allow for testing their relative significance.

We need to clarify here the meaning of the ML optimization in this recursive
context. In the ‘classical’ smoothing spline estimates, a ‘penalty’ is always
plugged in the objective function (GCV, GML, etc.) used to optimize the \’s,
in order to limit the ‘degrees of freedom’ of the spline model. For example, in
generalized cross-validation, we have to find A that minimizes

>ok(ze — Fa(Xi))?
(I—df(\)/N)? ~

where df € [0, N] denotes the ‘degrees of freedom’ of the spline and where we
have explicitly indicated the dependency on A in the GCV formula. In the
recursive notation just introduced, we could equivalently write

Doz — §k|N)2
(1—df(NVR)/N)?’

GCVy = 1/N -

(4)

GCVyvr =1/N -

()

Without the penalty term, the optimum would always be attained at A =0
(or NVR — o), i.e. perfect fit. In the SDR recursive context, however,
the penalty concept is intrinsically plugged in by the fact that the prediction
error decomposition (ML) estimate is based on the filtered estimate Sklk—1 =
Sk—1+dg—1 and not on the smoothed estimate 8|, namely we find NVR that
minimizes:

N
—2-log(L) = const+ Z log(1 + Pyjr—1) + (N —2) - log(c2)
k=3
N s 2
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where Py is the one step ahead forecast error of the state 8y ;—1 provided
by the Kalman Filter. It seems useful to underline here that 8y ;_; is based
only on the information contained in the sample values [1,...,k — 1] while
smoothed estimates use the entire information set [1,..., N]. Therefore, it can
be easily seen that, for the recursive case, the limit NVR — oo (A — 0) is
no longer a ‘perfect fit’ situation, since a zero variance for e implies 85,1 =
Sk—1 + dp—1 = zx—1 + di_1, i.e. the one step ahead prediction of zj is given
by the linear extrapolation of the adjacent value zp_1, so implying a non-zero
prediction error in this limit case. So, it is clear the ‘perfect fit’ will not be, in
general, the optimal solution.

To complete the equivalence between the SDR and cubic spline formulations,
we need to link the NVR estimated by the ML procedure to the smoothing
parameters \. This is easily accomplished by setting A = 1/(NVR - N4).

In the general additive case (1), the recursive procedure just described needs
to be applied, in turn, for each term f;(X;x) = 3; 4N, requiring a different
sorting strategy for each 8, n. Hence the ‘backfitting’ procedure, as described
in Young (2000, 2001), is exploited. Finally, the estimated NVR;’s can be
converted into \; values and the additive model put into the standard cubic
spline form.

2.2 ANOVA models with interaction functions

The additive model concept (1) can be generalized to include 2-way (and higher)
interaction functions via the functional ANOVA decomposition. For example,
we can let

P P
FX) = fo+ D F(X)+ D f14(X5, X0) (7)
j=1 §<i

In the ANOVA smoothing spline context, corresponding optimization prob-
lems with interaction functions and their solutions can be obtained conveniently
with the reproducing kernel Hilbert space (RKHS) approach (see Wahba 1990).
In the SDR context, an interaction function is formalized as the product of
two states s; - s2, each of them characterized by an IRW stochastic process.
Hence the estimation of a single interaction term 2z(Xy) = f(X1 5, Xo k) + ek is
formalized as:

Observation Equation: Zr = sik . Sé,k + e
State Equations: (j = 1,2) s{k = sJI»f,%l + d]I» Bl (8)
i = dj_1+nj4

where I = 1,2 is a multi-index denoting the interaction term under estimation

and nj{k ~ N(0, 072731_). The two terms s;k are estimated iteratively by running

the recursive procedure in turn, i.e.
e take an initial estimate of sik and sik by regressing z with the product

1,0
Js

of simple linear or quadratic polynomials p1(X7) - p2(X2) and set s
Pi(Xin);
e iterate 1 =1,2:

s

Ii—1 . Ii . .
— fix 55, and estimate N VR and $1', using the recursive procedure;



— fix s} ;C and estimate NV R and 52 . using the recursive procedure;

e the product s1 k 32 k obtained after the second iteration provides the
recursive SDR estimate of the interaction function.

Unfortunately, in the case of interaction functions we cannot derive an ex-
plicit and full equivalence between SDR and cubic splines of the type mentioned
for first order ANOVA terms. Therefore, in order to be able to exploit the es-
timation results in the context of a smoothing spline ANOVA model, we take a
different approach, similarly to the ACOSSO case.

2.3 Very short summary of ACOSSO

We make the usual assumption that f € F, where F is a RKHS. The space F
can be written as an orthogonal decomposition F = {1} & {@g—:l F;}, where
each Fj is itself a RKHS and j =1, ..., ¢ spans over ANOVA terms of various
order. We re-formulate (2) for the general case with interactions as the function
f that minimizes:

q

1 & 1
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j=1"

where P7f is the orthogonal projection of f onto F; and the g-dimensional
vector of §; smoothing parameters needs to be optimized somehow. This is
typically a formidable problem and in the simplest case 0; is set to one, with
the single A\¢ estimated by GCV of GML. The COSSO (Lin and Zhang, 2006)
penalizes the sum of norms, which allows to identify the informative predictor
terms f; with an estimate of f that minimizes

N q
Z 2= FXR)2+ AP flF (10)
k:

Jj=1

using a single smoothing parameter A. COSSO improves considerably the prob-
lem (9) with 8; = 1 and is much more computationally efficient than the full
problem (9) with optimized 6;’s.

In the adaptive COSSO (ACOSSO) of Storlie et al., f € F minimizes

N q
Z (2 = FXR)? A wy | P f - (11)

j=1

where 0 < w; < oo are weights that depend on an initial estimate of f , either
using (9) with §; = 1 or the COSSO estimate (10). The adaptive weights are
obtained as w; = [P f||7, with v = 2 typically and the Ly norm || P/ f| 1, =

(f (P f(X))?dX)"/>.



2.4 Combining SDR and ACOSSO for interaction func-
tions

There is an obvious way of exploiting the SDR identification and estimation
steps in the ACOSSO framework: namely, the SDR estimates of additive and
interaction function terms can be taken as the initial f used to compute the
weights in the ACOSSO. However, this would be a minimal approach while the
SDR identification and estimation provides a more detailed information about
fj terms that is worth exploiting. We define IC(;y the reproducing kernel of an
additive term F; of the ANOVA decomposition of the space F. In the cubic
spline case, this is constructed as the sum of two terms Ky = Koi¢jy & Ky
where o1 ;) is the r.k. of the parametric (linear) part and Ky ¢y is the r.k. of the
purely non-parametric part. The second order interaction terms are constructed
as the tensor product of the first order terms, for a total of four elements, i.e.

Kisy = Koigy © Kigy) @ (Koigy @ Kigyy) (12)
= (Koiwy ® Kogjy) @ (Korgay @ Kigzy) ® (Kigy ® Kowgjy) @ (Kigsy ® Kagyy)

In general, considering the problem (9), one should attribute a specific co-
efficient 6.y to each single element of the r.k. of F; (see e.g. Gu, 2002, Chapter
3), i.e. two @’s for each main effect, four 6’s for each two-way interaction, and so
on. In fact, each F; would be optimally fitted by opportunely choosing weights
in the sum of K.y elements. This, however, makes the estimation problem
rather complex, so, usually, the tensor product (12) is directly used, without
tuning the weights of each element of the sum. This strategy is also applied in
ACOSSO.

Now, considering the SDR estimate of the interaction (8), we can see that
it is given by the product of two univariate cubic splines. So, one can easily
decompose each estimated §JI into the sum of a linear (87, <j>) and non-parametric
term (8! <j>). This provides a decomposition of the SDR interaction of the form

5187 = 8G10us) + Bouw Sy + 310 301y + 31 1y (13)
that is a proxy of the four elements of the r.k. of the second order tensor product
cubic spline.

This is implies that the optimal use of the SDR identification and estimation
in the ACOSSO framework is to apply specific weights to each element of the
r.k. K. .y, using the Ly norms of each of the four elements in (13).

3 Examples

We compared the combined SDR-ACOSSO approach with ACOSSO and DACE
on several examples (full details including routines are freely available at re-
quest). First we checked the behavior of SDR in identifying single 2-way interac-
tion functions, i.e. we took a number of surfaces z(X1, X2) = g(X1, X2)+e, with
e ~ N(0,0), using different levels of signal to noise ratios SNR = V(z)/V (e):
very large (SNR > 10), middle (SNR ~ 3), very small (SNR ~ 0.1). We com-
pared SDR results with standard GCV estimation and with DACE (extended
to include observation noise) using a training MC sample X of 256 elements and



method | p =4 ‘simple’ p =4 ‘nasty’ p =38 ‘simple’ p = 10 ‘nasty’
SDR-ACOSSO 0.9994 0.8633 0.9928 0.1922
ACOSSO 0.9986 0.7910 0.9163 0.1963
DACE 0.9932 0.8174 0.9715 -0.0247

Table 1: SDR-ACOSSO, ACOSSO and DACE: average R? (out of sample)
computed on 100 replicas for different types of the Sobol” g-functions.

tested the out-of sample performance of each method in predicting the ‘noise-
free’ signal g(X;, Xs) using a new validation sample X* of dimension 256. We
repeated this exercise on 100 random replicas for each function and each SNR.
We considered 9 types of surfaces of increasing order of complexity (i.e. 27 dif-
ferent surface identification, each replicated 100 times). Only for one out of the
nine surfaces, DACE outperformed SDR or GCV estimation. In the other cases,
SDR and GCV gave similar results, when the four terms in (13) have similar
weights, while SDR was extremely efficient in better identifying surfaces char-
acterized by different weights. These results suggested that SDR identification
step can provide significant added value in smoothing spline ANOVA modelling.

We then performed full emulation exercises, considering the analytic Sobol’
g-function (Saltelli et al., 2000) with different dimension p and degree of inter-
action (denoted as ‘simple’ and ‘nasty’ in Table 1). We considered a training
sample of dimension 256 to estimate the emulators and used a new validation
sample of the same dimension to check the out of sample performance. We
repeated the analysis 100 times for each function and each method. The results
in Table 1 indicate that SDR identification provides a very significant added
value in smoothing spline ANOVA models, making it favorable also compared
to DACE.

4 Conclusions

In general, it is not possible to identify a method (among ACOSSO, DACE,
SDR-ACOSSO) which outperforms the others in all examples. SDR is extremely
rapid, efficient and accurate in identifying additive models: the use of recursive
algorithms, in fact, avoids the inversion of large matrices which is needed in the
other methods (ACOSSO, DACE). In the case of ANOVA models with inter-
action components, ACOSSO confirms entirely its good performances in terms
of efficiency and relatively low computational cost. When the model includes
interactions, SDR combined with ACOSSO improves ACOSSO in many cases,
although at the price of a significantly higher computational cost. So, while for
additive models the advantage of SDR is in both low computational cost and of
accuracy, when interactions are included the greater accuracy of SDR-ACOSSO
has a cost. SDR-ACOSSO also compares very favorably with respect to DACE
in many cases, even if there are cases where DACE outperforms SDR-ACOSSO
in out-of-sample prediction. In terms of computational burden, we suggest that
SDR (for additive models) and ACOSSO (for models with interactions) are
taken as the first choice for a rapid and reliable emulation exercise. Should
ACOSSO be unable to explain a large part of the mapping, SDR-ACOSSO or
DACE should be taken into consideration. We also noted that DACE is not
necessarily the best choice when the model is supposed to be very complex and



with significant interactions. DACE, as an any interpolation method, tries to
exploit the ‘zero-uncertainty’ at observed samples of the mapping z. However,
when the model is complex, it can wrongly identify spurious interaction terms
involving unimportant X'’s, possibly explaining the number of cases of poorer
performance in out-of-sample predictions with respect to smoothing methods.
SDR-ACOSSO, on the other hand, can provide detailed information about the
form of each additive and interaction term of a truncated the ANOVA decom-
position, often allowing very good out-of-sample predictions.
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