Design of Computer Experiments for Packet Communication
Networks

Ben M Parker
June 2, 2009

1 Introduction

1.1 Packet Communication Networks

Packet communication networks transmit information from a sender to a receiver by gathering
the information into small fragments called packets; these packets are sent across a transmission
medium where they are reassembled by the receiver according to a pre-determined protocol. The
exact mechanisms used for this transfer are beyond the scope of this work, but suffice it to say that
packet communication networks account for the vast majority of information transferred through
the Internet, and other communication channels.

In an industrial context, manufacturers of networking equipment and also Internet service
providers expend a great deal of resources in trying to measure networks, both in order to assess
any faults with a service, and to provide accurate service level information to clients for use in
billing, or assessing success against contractual agreements for service provision, for example.

Perhaps strangely, there is little understanding of how to measure these communications net-
works on a fundamental level. In our work, we show that by regarding measurement procedures
on packet communication networks as experiments that can be optimised in the traditional sense,
we can improve current industrial best practice in measurement.

Consider, for example, the case of a broadband user who wants to confirm that his Internet
service provider is providing the agreed bandwidth: having no privileged access to the system, he
may only send exploratory or probe packets at whichever rate he chooses, and measure the time
that these packets take to arrive at their destination. What rate best allows him to determine the
bandwidth? The problem of users seemingly not getting contractually agreed bandwidth has been
recently discussed in the popular media, e.g. [1].

Essentially here, we have a classic bias-variance trade-off. By increasing the rate of the probe
packets, our broadband user will gathers data which allows him to determine the bandwidth more
precisely (lower variance). Conversely, sending more probe packets means that there will be more
packets in the system; the system may become overloaded, and probe packets may become delayed,
which decreases the accuracy of the probing regime (higher bias).

1.2 Computer Experiments

Computer experiments are often used in applications where it is impossible or expensive to perform
real experiments; for example in calculating climate change or modelling a nuclear fallout, or in
more mundane situations such as weather forecasting. We have a set of inputs, made up of
controllable factors and environmental (uncontrollable) parameters, and a set of outputs which
represent the real data we wish to model. In general we seek to provide a simulation which
approximates the true behaviour of the underlying model accurately and precisely. [7] and [§]
provide a good introduction to designing computer experiments.

Typically in computer experiments, a complex system is modelled by a simulator. Each run
of the simulator may take many hours, or days, such that experimental runs are expensive. We
must therefore use our experimental time effectively, and in particular choose the inputs of our
simulation such that we accurately explore the input space.

We typically investigate an appropriate choice of simulator inputs by constructing an emulator,
a simplified model of the original system; this emulator is very quick to get results, enabling us to
quickly explore how our output might vary with our inputs, and allow us to choose useful inputs
for our simulation.

1.3 Packet Networks as Computer Experiments

We present here a way of regarding measurement experiments on data networks as computer
experiments.

We regard a complicated computer network as a simulator. In both cases, we have a large
number of inputs, some of which we can control, and we wish to find some information about the
system from the responses. The difference between computer experiments and network models is
that, typically, computer experiments take a long time for each run, whereas network models may
only be valid for a few seconds (while user behaviour is constant).

In order to find out about how a simulator runs, we build an emulator. In order to find how
a complex network operates, we approximate it as a queue or series of queues which we can then
"emulate”.

One important difference in emulation of networks is that is common within the electronic
engineering community to use stochastic models of queues; networks are deeply stochastic, and it
is common within the electronic engineering literature to use a stochastic emulator; we will adopt
this convention here.

2 Previous Work

There seems to be little research on designs for stochastic simulation. Recently van Beers and
Kleijnen[9] have made an interesting contribution in optimally (and sequentially) designing queue-
ing experiments; they seem to take some inspiration from the field of computer experiments in
studying the M/M/1 queue.

They choose an initial design, and perform a number of experiments (simulations) at each
design point. From these, they take a mean of the outputs, and use these means to fit a Kriging
model across the design space, where the model is fitted by treating the means at each design
point as if they were the outputs of a deterministic process at that design point. They now take
a candidate set of design points from a space filling design (they take all points halfway between
existing design points as candidates), and resample (bootstrap) from the data, using the existing
simulated points, to work out which candidate point has the highest prediction variance, and this
becomes the new design point, where a number of new experiments are performed. In total n
experiments (simulations) are performed, encompassing both the initial experiments, and those at
the design points found by Kriging. The method compares well to a simple space-filling design for a
low number of simulations (n = 10), but that there is no significant improvement over space-filling
designs for larger designs (n = 50).

The technique is detailed, and has much to recommend it: it uses ideas from computer ex-
periments in a stochastic framework. Potential criticisms are that the space-filling design candi-
date points seem to be fairly arbitrarily chosen, and the range considered for load is limited to
0.1 < p <0.9; we see later that considering high loads may be important. Van Beers and Kleij-
nen’s method is computationally complicated, and may be difficult to implement practically for a
“real-time” system, which may be desirable in network monitoring applications.

2.1 Emulation as a Markov Chain

In previous work[5], we are interested in measuring the probability that a network is busy at any
given time. For complex networks, this is a difficult problem.

We therefore constructed an emulator of a system, which represents any complex network,
where we model the network as a system with two outputs- an empty /full binary state. The system
evolves, according to a transition matrix P which we parameterise via P = 1 ;p 1 g r)' Our
question was then, given we can observe the system at discrete time points 0,1, 2, ..., and we have
a fixed number of observations T , at what time points should we measure to allow us to make the
most inference about our parameters under study (here p and r)? We concluded that monitoring as
frequently as possible was sub-optimal, and presented methods for determining what the optimal
rate was. Some current research involves generalising this to an arbitrary Markov chain with any
number of unknown parameters.

3 Stochastic Emulation by the Regenerative Method

Let us suppose we perform an emulation where we have a series of longitudinal observations on
data y1,ys,..., which depend on some experimental factors, x, which we may vary, and some
unknown parameter 6, which we wish to estimate by making inference from the y;. Typically,
these observations will be generated by stochastic simulation.

Suppose further that the y; are autocorrelated, and thus the problem of inferring 6 from the
data is tricky. Conventional techniques include aggregating the data into batches, and using the
means of the data as approximately independent statistics from which to make inference (Batch
Means); running the experiment several times, and forming a summary statistic from each run
(Independent Replications); or indeed some combination of these. (See e.g. [6])

The weakness of these methods is that the summary statistics for each run or batch are only
approximately independent, and in practice choosing the batch size, run length, and burn-in param-
eters is often tricky. Large burn-in periods are often chosen which result in inefficient simulations.
The question of how to choose these simulation parameters is an open question in the literature.

Other techniques include imposing a model for the autocorrelation at the analysis stage, and
seeking to remove the autocorrelation by some transformation of the data. If this model is not
known, or is dependent on the unknown 6, this approach may break down.

We propose to revisit an existing method, called the regenerative method, to show how we can
impose normality on aggregate statistics found. By appealing to the normality of these statistics,
we can then present an optimal experimental design for systems we can use the regenerative method
for.

3.1 Overview of the regenerative method

Instead of correcting for the autocorrelation found by experiment using such a transformation of
the data, we seek to provide a method for removing it from the data gathered by measuring the
physical process a different way. We adopt the regenerative method. This idea was first suggested
in 1961 by Cox and Smith[2], and a clearly presented review of the method was described in 1977
by Crane and Lemoine [3].

For a given simulation, we pick a regenerative state, which is a state that our system returns to
with non-zero probability. We then form our statistic(s) for the experiment by making calculations
on data taken from each regenerative cycle in turn, now regarding each regenerative cycle as the
unit level at which we gather data. As the regenerative cycles are by construction independent
and identically distributed, we have removed any dependence in our data.

3.2 The regenerative method

Let us suppose we wish to find an estimate of some unknown Y from a stochastic process , which
we estimate as Y. We follow the following algorithm:

1. Observe the system for n regenerative cycles. (A regenerative cycle is the period of time
between regenerative points occurring in our system)

2. Compute Yy and ay, for each cycle k, where Y}, is the sum of the waiting times,) Y;;, over
the k-th cycle. «y is the length of the k-th cycle.

3. Compute the following statistics:
- z z
= . k> = k>
n
ZYk
Zak
S12 = ZYOéJ ZYk Zak
k=1

n—l

Q1 =i

S11 =

S22 =

2 = S11 — 2Y812 + Y S99

4. Due to the fact that the lengths of cycles «; are independent and identically distributed (IID)
for k =1,...,n, and the values of Y, are similarly IID (although a4 is not independent of
Y} for fixed k) we can use the central limit theorem and form a confidence interval for Y as

?:I:SCI) Y- %)

1)
2

an
where @ is the standard normal cumulative density function.

Note that the estimate produced may be biased, but asymptotically (if we take large enough
n), the distribution for Y is correct.

3.3 Calculating the Fisher Information

We can shown using the regenerative method that our data is distributed normally with mean and
variance depending on the queueing system.

yi ~ N(m(z;), v(x))

In the general case, we may not know the form of these mean and variance functions m(.) and

v(.).

‘We omit the derivation here, but it can be shown that our Fisher Information for some unknown
parameter p with data Y is

2 . .
Ey [<_86M109[L(ﬂ3yi)}>] = v(z:) + 20 (22 (1)

where m’ () = 222 and similarly o/ (z;) = 22424

Due to additivity under expectation, if we perform the experiment more than once, we can form
the Fisher information in performing multiple experiments at x = (x1, 2, ...,z,) from equation

(1) as
I(x) = Z]EY <—88Mlog[L(u;yi)>] ; (2)

which we can take the reciprocal of to find our Cramer-Rao Lower Bound.

4 Example:The M/G/1 queue

Let us suppose that we have a complex problem, and for the sake of demonstration of our re-
generative method, we emulate this as a single server queue, where arrivals occur such that the
inter-arrival times are exponentially distributed with parameter x. Customers are served in the
order they arrive, and if the server is busy, they must wait until the customer who arrives immedi-
ately before them has been served. The customers are served at mean rate u. The service protocol
may be further specified, but in general this is an M/G/1 queue.(If the service time is fixed, this
is the M/D/1 queue. If the service time is exponentially distributed, this is the M/M/1 queue.)

We can the regenerative method to the M/G/1 queue. Crane and Lemoine show ([3], section
3.5) that as the number of regenerative cycles tends towards infinity , the choice of regenerative
state is irrelevant to the confidence interval obtained. A natural regenerative state to choose is
the one in which the queue is empty after a packet is serviced, as we know that all queues with
p < 1 return to this state with non-zero probability (and indeed for the M/D/1 queue spend a
proportion of their time equal to 1 — p in this state).

We find by simulation that the regenerative method is effective in practice in producing data
with the correct mean, and which are also normally distributed. This simplifies our design problem
as we now know by design that the error distribution of our data is normal.

We now consider the design problem for the case where the service rate u is unknown, and we
with to estimate it. We initially set our arrival rate z; for one simulation (experiment), which will
give us one data point y; formed from the regenerative method; we can then form an estimate of
u for this simulation using an appropriate estimator.

For an M/G/1 queue, we find the Pollaczeq-Khintchine formula for the mean of the waiting
time[4] as

m(z) = % 1r@e)t 1
B — % 2 %
where o is the standard deviation of the service time such that, for example, o5 = 0 for the M/D/1
with constant service rate, and o, = % for the M/M/1 queue with exponentially distributed service
times.
For the M/D/1 queue, with deterministic service time we can show

m(x;) = — 3
(=) 2u(p — ;) p ®)
and hence
/ zi(wi — 2p) — 2(p — x3)?
i 4
' (x:) % (4)
Similarly
Az — x?
v(z;) (5)

and hence

i (—6p® + dpa; — a3)
63 (p — ;)3

V' () =

. (6)

Figure 1: CRLB against x; for u =5

12

1.0
o

CRLB
0.6

>(I

Substituting equations (3) and (5) into equation (1) provides the CRLB for the M/D/1 case
with one observation. We can now see how the CRLB varies with x; which we plot graphically as
Figure 1, demonstrating for p = 5.

This shows clearly that the optimal design in the M/D/1 case is to take our observation at
the point z; = p or at x; = 0. Both of these are a physical nonsense; in the former, we take
experimental readings at u, which we are trying to determine by experiment! In the latter case,
taking x; = 0 would mean we gather no data as we are not inserting any packets into the queue.

Furthermore, performing more than one experiment would not make this difficulty disappear:
from equation (2) it is clear that the optimal design is to take all observations at the start or end
of the range.

Our result, although not practical in terms of finding an optimal design, agrees with our in-
tuition; if we wish to find p with certainty, we can either send packets into a queue as far apart
as possible so that they are almost certain to reach the queue when the buffer is empty, meaning
the length of time in the queue is simply the service time. We can thus determine this entirely
accurately in this simple M/D/1 case where the service time is deterministic. Alternatively, we
put packets into the queue as fast as possible, such that the queue is likely to become full. We can
then calculate the service time from the difference between exit times of the packets.

4.1 Applying the results in practice

There are some criticisms when using the regenerative method as we have.

Firstly, all of the theory used above only applies to queues in equilibrium; the queueing theory
used is not valid for z; > u, and developing a general theory for this case is tricky as results will
depend on the simulation parameters, such as the length of the simulation and the number of
regenerative cycles examined. More simply, there will not be a stable mean to measure. As we
do not know what the value of u is before performing the experiment, we may have difficulty in
constraining x; to the appropriate region where the theory is valid. However, a similar criticism
applies to other methods in the literature, and this we are generally only interested in measuring
queues in equilibrium.

There are other criticisms sometimes made of the regenerative method. It is difficult in some
circumstances to identify a regenerative point, although we know that queues operating with arrival
rate less than their full capacity p will always return to zero, so this is not a problem here.

A related criticism is that regenerative cycle times can be long; especially at high loads, it may
take a very large amount of time to perform (or to simulate) enough regenerative cycles from a
queue to ensure normality.

Note that the approach described in this work is not a sensible technique for evaluating p in
the specific example of an M/G/1 queue, A better estimator is to take the minimum time spent
in the system by any packet, as each packet has a (1 — ﬁ) chance of finding the queue empty.
If a packet enters a queue which is empty, it will proceed immediately to service and thus have
a system time of 1. We could thus find the waiting time with m packets with a (1 — £)™ level
of confidence, which is maximised as x — 0. We have presented the likelihood method of taking
aggregated averages here as this would be a standard technique with more complex queues, and
to demonstrate opportunities with the method.

The reader may question how [9] is able to present optimal designs. Firstly, a different question
is being asked. The research is trying to find a regression model within a fixed class that accurately
explains the behaviour of the queue, for example in CT-TH curves in industry. The regression
problem is different, but related, to trying to estimate the parameters of the queue, on which the
model will act. Also, the paper restricts the design space to 0.1 < p < 0.9. Clearly, within these
constraints, our method would put the optimal design point at one of the two limits of the design
space.

5 Conclusions

We have described problems that emulation using simple Monte Carlo simulations may lead to, in
particular when separating the effects of design parameters and simulation parameters. Although
there are some criticisms, the regenerative methods seems to solve many of these problems.

This approach would seem to be a valuable method to use in finding designs with other stochas-
tic emulations, which has not been considered in previous research on designed experiments.

This works seeks to explain how we can use some ideas in computer experiments to perform
effective measurements on networks. We also have sought to introduce the regenerative method as
one potential way of dealing with stochastic simulations for computer experiments.

For further work we intend to compare the total experimental effort from standard Monte Carlo
techniques with that expended in the regenerative method; a regenerative cycle may be very long
and it would be interesting to take the time to run this emulation into account.

References

[1] BBC. Broadband speeds under scrutiny. http://news.bbc.co.uk/1/hi/technology/
7003113.stm, 2007.

2]
[3]

D. Cox and W. Smith. Queues. Methuen, 1961.

A. A. Crane and J. Lemoine. An Introduction to the Regemerative Method for Simulation
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1977.

L. Kleinrock. Queueing Systems: Theory Vol 1. John Wiley & Sons Inc, 1975.

B. Parker, S. Gilmour, and J. Schormans. Measurement of packet loss probability by optimal
design of packet probing experiments. IET Communications, 3, 2009.

K. Pawlikowski. Steady-state simulation of queueing processes: survey of problems and solu-
tions. ACM Computing Surveys (CSUR), 22(2):123-170, 1990.

J. Sacks, W. Welch, T. Mitchell, and H. Wynn. Design and analysis of computer experiments.
Statistical Science, 4(4):409-435, 1989.

T. Santner, B. Williams, and W. Notz. The Design and analysis of Computer Ezperiments.
Springer, 2003.

W. van Beers and J. Kleijnen. Customized sequential designs for random simulation experi-
ments: Kriging metamodeling and bootstrapping. European Journal of Operational Research,
186(3):1099-1113, 2008.

