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Abstract ― Existing computer simulations of aircraft InfraRed Signature (IRS) do not account for 
the dispersion induced by uncertainty on input data such as aircraft aspect angles and meteorological 
conditions. As a result, they are of little use to estimate the detection performance of optronic 
systems: in that case, the scenario encompasses a lot of possible situations that must indeed be 
addressed, but can not be singly simulated. In this paper, a three-step methodological approach for 
predicting simulated IRS dispersion of poorly known aircraft is proposed. The first step is a 
sensitivity analysis. The second step consists in a Quasi-Monte Carlo survey of the code output 
dispersion.  In the last step, a metamodel of the IRS simulation code is constructed. This method is 
illustrated in a typical scenario, namely an air-to-ground full-frontal attack by a generic combat 
aircraft, and gives a satisfactory estimation of the infrared signature dispersion. 

1. Introduction 
 
Knowledge of aircraft InfraRed Signature is indispensable for assessing their detection probability, 
and thus their survivability in an hostile environment. By signature, we mean all the quantities for 
predicting the signal that would be observed by an optronic sensor when the aircraft is in its 
surroundings. For many reasons, the experimental approach is generally not feasible to evaluate the 
IRS: aircrafts may not be available, and the IRS is also needed in configurations which cannot be 
reached easily due to safety reasons. Computer programs, which enable to evaluate the IRS of 
aircraft and backgrounds, are therefore extremly valuable tools. Existing computer simulations of 
aircraft IRS do not account for the dispersion induced by uncertainty on input data, such as aircraft 
aspect angles and meteorological conditions. As a result, they are of little use to estimate the 
detection performance of IR optronic systems: in that case, the scenario encompasses a lot of 
possible situations that must indeed be addressed, but can not be singly simulated. Hence, the 
simulated result is no longer a single IRS value, but an interval of possible IRS, which should 
include the IRS measured at a given instant. 
We focus in this paper on a scalar response: the sensor differential irradiance between target and 
background. The performance criterion associated to an optronic sensor, in this case, simply 
consists in the probability that the sensor irradiance produced by the aircraft is below some given 
threshold α, which represents the background clutter. In order to simplify the analysis, only the 3-5 
µm spectrally integrated target intensity is considered. ONERA has developed for thirty years a 
simulation of combat aircraft IRS, CRIRA, initiated by Gauffre (1981). We aim at defining a 
general methodology for predicting, using CRIRA, simulated IRS dispersion of poorly known 
military aircraft and non-detection probabilities for typical thresholds. This methodology will be 
helpful to size surveillance IR sensors and to evaluate their performances.  
A black box representation is associated to the IRS computer simulation code f : Y=f(X1,...,Xn) 
where the n Xi denote the uncertain input factors of the code, and Y is the output of the simulation. 
The non-detection probability Pα associated to the threshold α is given by: 
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 is the joint probability density function of the 

Xi. A well-known tool to estimate such probabilities is the Monte Carlo stochastic sampling. The 
main drawback of this method is the slow convergence, scaling asymptotically with the inverse 
square root of the number of samples and starting from what is often a large initial error. It is 



therefore not uncommon to need more than one million samples to guarantee an accuracy better 
than one percent. The computational cost can thus be prohibitive. Alternative approaches have been 
developed, in order to speed up the convergence, such as Quasi-Monte Carlo method. The 
convergence rate depends on the problem’s dimension n, which can be decreased by focusing 
exclusively on input factors that are really significant, according to their impact on the code output 
dispersion. We thus propose a three-step methodological approach for predicting simulated IRS 
dispersion of poorly known aircraft. The first step is a sensitivity analysis, which identifies inputs 
that have negligible influence on the IRS and can be set at a constant value. The second step 
consists in a Quasi-Monte Carlo survey of the code output dispersion.  In the last step, a neural 
network metamodel of the IRS simulation code is constructed. This method is illustrated in a typical 
scenario, namely a daylight air-to-ground full-frontal attack by a generic combat aircraft flying at 
low altitude.  
The sensitivity analysis is described in Section 2, the estimation of IRS dispersion in Section 3, and 
the metamodel construction in Section 4. The results are discussed in Section 5. 

2. Sensitivity analysis with a fractional factorial design 
 
Many inputs of CRIRA are uncertain: from twenty up to sixty. Some inputs are set at a constant 
value by the scenario: they can not induce any uncertainty in IRS and are not taken into account in 
this statistical study. For our scenario, 28 input data are uncertain: 

- 9 describe IR optical properties of the various aircraft surfaces, their symbol is E_... 
- 7 are related to flight conditions: altitude, Mach number, engine’s power setting, and to aspect 

angles of the aircraft: cap, yaw, roll and pitch angles, 
- 12 are related to atmospheric conditions: visibility (vis), relative humidity (hr), ground air’s 

temperature (ta), atmospheric model, model of aerosol (ihaze), clouds presence, thickness and 
altitude of base (hbase) of the cloud layer, ground’s albedo (salb), hour to compute solar 
position, deviation from the mean day of the season (iday), deviation of ground temperature 
from the mean temperature of the season (deltat).  

Three factors: model, ihaze and clouds are qualitative, the others are quantitative. The correlations 
between two or more factors concern the eight first factors related to atmospheric conditions. A 
single run of our simulation requires about three minutes, we thus keep the number of simulation 
runs below 4000 for the sensitivity analysis step. 
Several approaches enable to carry out the sensitivity analysis of a computer simulation, among 
which stand out Sobol’ indices estimation, described in Saltelli et al. (2000), and use of Design Of 
Experiments (DOE), reviewed in Myers and Montgomery (1995). We assume that interactions 
among two or three factors can be significant, but that interactions involving more than three factors 
are negligible. We want to properly estimate factor effects and interactions between two factors. The 
evaluation of Sobol’ and total indices associated to each factor would require too much CPU time, 
we thus make use of DOE, and favor fractional factorial designs over screening designs, due to the 
importance of interactions. Each factor is then described by two levels, chosen thanks to knowledge 
on operational conditions, meteorological databases, and in order to minimize factors correlations. 
The factors are normalized, so as to vary between -1 (low point) and 1 (high point). A fractional 
factorial design does not contain all the 228 possible combinations of factors levels. Hence, it 
enables to estimate not all the interactions among input variables, but groups of interactions . The 
size of the interactions forming a group, or aliase, depends on a design property: the resolution. We 
make use of a resolution VI design, as it insures that factor effects and interactions between two 
factors are aliased with interactions involving at least four factors, which are assumed to be 
negligible. For 28 factors, this design decomposes in 2048 runs. We compute the aircraft IRS 
associated to the design of experiments, and analyze them through a second-degree polynomial 
model, under the assumption that the residuals are Gaussian and that the factors are independent: 
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with Y the size 2048 vector of outputs, Xi the size 2048 vector of values of i th factor, c0 the outputs 
mean, ci the i th factor effect, cij the interaction effect between the i th and j th factors, and εr the size 
2048 vector of residuals.  
The outputs dispersion is very large, about four orders of magnitude, we thus perform the variance 
analysis on the natural logarithm of the IRS. The model coefficients are then fitted using least 
squares method, and a Student’s test ascertains their significance. The Pareto plot of Figure 1 
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cumulative part of IRS variance explained by the i most influential factors.  

 

 

Figure 1. Pareto plot of the 28 factors effects 

The analysis of variance shows that 80 % of the IRS variance is explained with only five factors. 
We do not want to leave off potentially important factors, so we keep the ten most significant 
variables before going on to the next stage. These variables explain 95 % of the IRS variance: five 
are atmosphere related factors: vis, ihaze, hr, clouds, model, four are flight conditions variables: 
mach, pitch, power setting, cap, and one is related to IR optical properties of aircraft surfaces: 
E_e_ai. The other factors are set at a constant value for the next steps. We have also checked that all 
the variables involved in significant interactions between two factors were retained. Only one factor 
associated to aircraft characteristics is important in this scenario, because most of the aircraft 
properties have been supposed to be perfectly known, and thus do not appear in the sensitivity 
analysis. Other conclusion could be raised, if the aircraft was considered less known.  



The factors independence and the gaussian residuals assumptions are not fully borne out. We thus 
have proposed in Varet et al. (2009) to use two-levels fractional factorial designs to get an 
estimation of the Sobol’ indices. This approach enables to estimate the variance part explained by 
factor effects and interaction effects between two factors assuming solely the independence of 
eleven base factors. For the chosen scenario, this method leads to very same input selection.                                   

3. Quasi-Monte Carlo estimation of the IRS dispersion 
 
The Quasi-Monte Carlo method makes use of a slightly different kind of sampling than the Monte 
Carlo one, as described in Tuffin (2007): the pseudo-random numbers are replaced with uniformly 
distributed determinist sequences, the low discrepancy sequences, to improve the accuracy of 
approximations for a fixed number N of simulation runs. The discrepancy DN

* is a measure of the 
uniformity of the points dispersion. A low discrepancy sequence is characterized by a 
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discrepancy, where n is the problem’s dimension, that is to say the number of 

significant factors in this paper. Koksma-Hlawka theorem gives an upper bound of the convergence 
rate, but it is quite difficult to estimate for practical purposes. However, several authors, as  
Caflisch, Morokoff and Owen (1997) report a better convergence rate than Monte Carlo one’s even 
for large n. Construction algorithms of low discrepancy sequences lead to correlations among points 
coordinates. Hence in high dimension, most of low discrepancy sequences present distribution 
irregularities on low order projections, in particular for consecutive dimensions, as stated in 
Morokoff and Caflisch (1994) and Schmid (2001). If the interaction between the associated 
variables is significant, these irregularities are quite impeding. Moreover, the determinist nature of 
these sequences is a major drawback for confidence intervals estimation. Randomization 
methodologies have thus been developed, like the scrambling ones, initiated by Owen (1995): they 
preserve the low discrepancy, add randomness and decrease projections irregularities. 
In this study, we use a scrambled Faure’s sequence, with a Faure-Tezuka scrambling (2003). N data 
set (Xi1,Xi2,...,XiN), i in {1,..10}, are generated for X1,...,X10  the ten significant factors, and the N 
outputs (y1,y2,...,yN) computed enable to estimate: 
 

- the empirical cumulative distribution function of the IRS for our scenario by: 
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- the non-detection probability Pα  by:  
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Given the computation time, we limit N to 10000. The non significant input variables are fixed at a 
constant value. Among the ten most significant variables, only five (vis-ihaze-hr-nuages-model) can 
not be described by a uniform law. These factors are related to atmospheric conditions, and are 
dependent. We can find their values in meteorological databases, but we have not found enough 
data yet to estimate a joint probability density function. We thus perform random sampling with 
replacement from the database to obtain a combination of real values, instead of using scrambled 
Faure’s sequences for these factors. Figure 2 depicts the empirical cumulative distribution function 
of the IRS. For confidentiality reasons, all the IRS values are scaled by an arbitrary constant. 
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Figure 2. Empirical cumulative distribution function of the IRS 

We have checked that, if we perform 50 bootstrap draws of two-thirds of the 10000 IRS values, the 
corresponding gap among empirical cumulative distribution functions is negligible, about 0.5 %. 
Realistic thresholds for non-detection probabilities depend a lot on the optronic sensor we want to 
size. We therefore test our methodology by estimating three quantiles β: 1 %, 5 % and 25 %, which 
correspond to typical non-detection probabilities. We make use of the empirical estimator: 

( ){ }
 NN yyFy ββ =>,inf  after reordering. Table 1 gives 95% confidence level bootstrap estimation 

based on 5000 draws among the 10000 IRS values, for different sample sizes. A good evaluation of 
5 % and 25 % quantiles is obtained with 2000 values. 
 

 1 % 5 % 25 % 
250 [1.63, 1.71] [11.36, 11.56] [54.8, 55.2] 
500 [1.57, 1.62] [11.44, 11.6] 55 
1000 [1.34, 1.38] [11.12, 11.24] 55 
2000 [1.23, 1.26] [11, 11.08] 55 
5000 [1.18, 1.2] [10.94, 10.98] 55 
10000 [1.16, 1.17] 10.92 55 

Table 1. Bootstrap estimations of three quantiles: 1 % - 5 % - 25 % 

 

 



4. A neural network metamodel 
 
In order to check whether some optronic sensor meets required specifications, we do not need 
accurate estimations of extreme IRS values. Very small IRS values are indeed neither detected, 
whereas large IRS are consistently detected. It is therefore of great interest to build a metamodel of 
the IRS simulation code, suited to a chosen scenario, and to save the use of the much more 
expensive simulation for IRS close to typical detection thresholds. It would allow carrying through 
computationally demanding tasks, such as optimization of optronic sensor properties. Our computer 
simulation of aircraft IRS is complex, and linear regression models give poor predictions, we thus 
preferred nonlinear modeling, more precisely neural network metamodels described in Hastie et al. 
(2001).  
A neural network can be described as an oriented graph built up from a set of neurons, which are 
nonlinear parametric functions organized in successive layers. All the neurons of a layer work in 
parallel. The most used network is the multi hidden layer back-propagation network, or multi-layer 
perceptron (MLP):  the unknown parameters, or weights, are associated to the neurons input. Hornik 
(1989) and Barron (1993) theorems state that a single hidden layer MLP set up of a finite number of 
neurons, with the same nonlinear activation function, like the hyperbolic tangent, and a linear output 
neuron, is a parsimonious universal approximator. The weights are estimated by supervised training. 
  
The input data are the ten most significant factors of § 2, they are reduced and centered. The output 
is ln|IRS|. We have compared the predictions of several single-layer perceptrons, with 2000, 4000 or 
6000 training samples chosen by random sampling among the 10000 of § 3, and 5, 7 or 10 hidden 
neurons. The best results were obtained with a single-layer perceptron with 7 hidden neurons and 
4000 training samples. The coefficient of regression R2, computed on the 6000 remaining test 
samples, is 0.85. Figure 3 compares the empirical cumulative distribution functions of the IRS, 
obtained with the computer simulation CRIRA or with the neural network metamodel. The 
metamodel gives very satisfying IRS predictions and enables to estimate small non-detection 
probabilities with errors in the order of  1 %. We have also estimated the three quantiles: 1 % - 5 % 
- 25 % of 2000 neural networks with identical architecture but different training samples, drawned 
by bootstrap among the 10000 of § 3. Table 2 gives 95% confidence level estimation of these 
quantiles. 
 

1 % 5 % 25 % 
[1.42, 1.44] [13.5, 13.6] [53.9, 54] 

Table 2. Bootstrap estimations of three quantiles of the metamodel: 1 % - 5 % - 25 % 

The metamodel leads to a good approximation of the three quantiles, even if it slightly 
underestimates the 25 % quantile and overestimates the 1 % and 5 % ones. The neural network 
model is therefore a very useful tool to focus on special ranges of IRS. 
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           Figure 3. A comparison of empirical cumulative distribution functions of the IRS 

5. Conclusion 
 
We have developed a three steps statistical methodology to estimate infrared signature dispersion of 
a combat aircraft from our existing signature code. In the typical scenario chosen to illustrate this 
methodology: a daylight air–to-ground full-frontal attack, by a generic but partially known combat 
aircraft flying at low altitude, the atmosphere related factors are predominant and explain 75 % of 
the IRS dispersion. The three most significant variables are the aerosol’s model, the relative 
humidity, and the visibility. We have checked that the IRS dispersion was properly estimated with 
ten thousand samples. The single-layer perceptron metamodel enables to obtain very satisfying 
estimation of IRS empirical cumulative distribution function and good approximation of quantiles 
of interest : 1 % - 5 % - 25 %.  
Other approaches could have been applied instead of Quasi-Monte Carlo, but variance reduction 
methods such as importance sampling or controlled stratification were either unsuitable due to the 
lack of joint probability density function for the meteorological factors, or unprofitable due to the 
number of training samples (about 2000) needed to insure a good correlation between indicator 
functions of the code and of its metamodel. Although the methodology presented is general and can 
be used in different contexts, the results, in particular the significant input data, would most likely 
be different. We are currently listing all interesting battle scenarios and applying our methodology 
to study IRS dispersion for each. The case of a spatially resolved aircraft is particularly interesting, 
as it imply dealing with complete pictures (10x10 pixels) instead of a scalar signature as it was 
presented in this paper. 
The present work constitutes a first attempt to statistically estimate signatures of a poorly known 
aircraft in statistically defined environmental conditions. As it is quite conclusive, it would be 
interesting to extend it to other military objects  
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