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Abstract — Existing computer simulations of aircraft InfraR8mjnature (IRS) do not account for
the dispersion induced by uncertainty on input gatzh as aircraft aspect angles and meteorological
conditions. As a result, they are of little useestimate the detection performance of optronic
systems: in that case, the scenario encompass#sod possible situations that must indeed be
addressed, but can not be singly simulated. Ingaper, a three-step methodological approach for
predicting simulated IRS dispersion of poorly knowamcraft is proposed. The first step is a
sensitivity analysis. The second step consists @uasi-Monte Carlo survey of the code output
dispersion. In the last step, a metamodel of B $imulation code is constructed. This method is
illustrated in a typical scenario, namely an ahgtound full-frontal attack by a generic combat
aircraft, and gives a satisfactory estimation efitifrared signature dispersion.

1. Introduction

Knowledge of aircraft InfraRed Signature is indisp&ble for assessing their detection probability,
and thus their survivability in an hostile enviroemb. By signature, we mean all the quantities for
predicting the signal that would be observed byoatronic sensor when the aircraft is in its
surroundings. For many reasons, the experimenpbaph is generally not feasible to evaluate the
IRS: aircrafts may not be available, and the IR8I$® needed in configurations which cannot be
reached easily due to safety reasons. Computergmsg which enable to evaluate the IRS of
aircraft and backgrounds, are therefore extremlyalde tools. Existing computer simulations of
aircraft IRS do not account for the dispersion icetliby uncertainty on input data, such as aircraft
aspect angles and meteorological conditions. Agsalt;, they are of little use to estimate the
detection performance of IR optronic systems: iat tbase, the scenario encompasses a lot of
possible situations that must indeed be addredsgidcan not be singly simulated. Hence, the
simulated result is no longer a single IRS valug, dn interval of possible IRS, which should
include the IRS measured at a given instant.

We focus in this paper on a scalar response: theosalifferential irradiance between target and
background. The performance criterion associatedrtooptronic sensor, in this case, simply
consists in the probability that the sensor irradeproduced by the aircraft is below some given
thresholda, which represents the background clutter. In otdesimplify the analysis, only the 3-5
um spectrally integrated target intensity is consde ONERA has developed for thirty years a
simulation of combat aircraft IRS, CRIRA, initiatdry Gauffre (1981). We aim at defining a
general methodology for predicting, using CRIRAnNgiated IRS dispersion of poorly known
military aircraft and non-detection probabilitiesr ftypical thresholds. This methodology will be
helpful to size surveillance IR sensors and touatal their performances.

A black box representation is associated to the ¢B®puter simulation code: Y=f(Xy,...,X)
where then X; denote the uncertain input factors of the code,argdthe output of the simulation.
The non-detection probabilify), associated to the threshealds given by:
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wherel stands for the indicator function a|ﬁlj<1 ,,,,, x, Is the joint probability density function of the

Xi. A well-known tool to estimate such probabilitiessthe Monte Carlo stochastic sampling. The
main drawback of this method is the slow convergerscaling asymptotically with the inverse
square root of the number of samples and startioig fwhat is often a large initial error. It is



therefore not uncommon to need more than one mikiamples to guarantee an accuracy better
than one percent. The computational cost can taysdhibitive. Alternative approaches have been
developed, in order to speed up the convergenceh si8 Quasi-Monte Carlo method. The
convergence rate depends on the problem’s dimensiamhich can be decreased by focusing
exclusively on input factors that are really sigraht, according to their impact on the code output
dispersion. We thus propose a three-step methoidalogpproach for predicting simulated IRS
dispersion of poorly known aircraft. The first stispa sensitivity analysis, which identifies inputs
that have negligible influence on the IRS and canskt at a constant value. The second step
consists in a Quasi-Monte Carlo survey of the codgput dispersion. In the last step, a neural
network metamodel of the IRS simulation code isstacted. This method is illustrated in a typical
scenario, namely a daylight air-to-ground full-frainattack by a generic combat aircraft flying at
low altitude.

The sensitivity analysis is described in Sectioth2,estimation of IRS dispersion in Section 3, and
the metamodel construction in Section 4. The resuk discussed in Section 5.

2. Sengitivity analysis with a fractional factorial design

Many inputs of CRIRA are uncertain: from twenty gpsixty. Some inputs are set at a constant
value by the scenario: they can not induce anynaiogy in IRS and are not taken into account in
this statistical study. For our scenario, 28 ingatia are uncertain:

- 9 describe IR optical properties of the variousraift surfaces, their symbol is E_...

- 7 are related to flight conditions: altitude, Maalmber, engine’s power setting, and to aspect
angles of the aircraft: cap, yaw, roll and pitclglas,

- 12 are related to atmospheric conditions: visii(itis), relative humidity (hr), ground air’s
temperature (ta), atmospheric model, model of atidsaze), clouds presence, thickness and
altitude of base (hbase) of the cloud layer, graaradbedo (salb), hour to compute solar
position, deviation from the mean day of the segsieay), deviation of ground temperature
from the mean temperature of the season (deltat).

Three factors: model, ihaze and clouds are quakiathe others are quantitative. The correlations
between two or more factors concern the eight fastors related to atmospheric conditions. A
single run of our simulation requires about thraautes, we thus keep the number of simulation
runs below 4000 for the sensitivity analysis step.

Several approaches enable to carry out the sdhsiéimalysis of a computer simulation, among
which stand out Sobol’ indices estimation, desctiveSaltelli et al. (2000), and use of Design Of
Experiments (DOE), reviewed in Myers and Montgomgr995). We assume that interactions
among two or three factors can be significant,tbat interactions involving more than three factors
are negligible. We want to properly estimate faetibects and interactions between two factors. The
evaluation of Sobol’ and total indices associatee@dch factor would require too much CPU time,
we thus make use of DOE, and favor fractional faat@esigns over screening designs, due to the
importance of interactions. Each factor is thercdbed by two levels, chosen thanks to knowledge
on operational conditions, meteorological databased in order to minimize factors correlations.
The factors are normalized, so as to vary betwéefiow point) and 1 (high point). A fractional
factorial design does not contain all th® possible combinations of factors levels. Hence, it
enables to estimate not all the interactions amopgt variables, but groups of interactions . The
size of the interactions forming a group, or aljakgpends on a design property: the resolution. We
make use of a resolution VI design, as it insuheg factor effects and interactions between two
factors are aliased with interactions involving least four factors, which are assumed to be
negligible. For 28 factors, this design decompaseg048 runs. We compute the aircraft IRS
associated to the design of experiments, and amdh@m through a second-degree polynomial
model, under the assumption that the residual&atessian and that the factors are independent:
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with Y the size 2048 vector of outpudé,the size 2048 vector of valuesibffactor, c, the outputs
mean,c; the i™ factor effect g; the interaction effect between tH2andj" factors, and: the size
2048 vector of residuals.
The outputs dispersion is very large, about fodless of magnitude, we thus perform the variance
analysis on the natural logarithm of the IRS. Thedel coefficients are then fitted using least
squares method, and a Student’s test ascertaiirssibaificance. The Pareto plot of Figure 1

depicts the percentages of the 2@| 28 , in descending order. The dotted line represtds
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Figure 1. Pareto plot of the 28 factor s effects

The analysis of variance shows that 80 % of the VB$ance is explained with only five factors.
We do not want to leave off potentially importaattors, so we keep the ten most significant
variables before going on to the next stage. Thrasables explain 95 % of the IRS variance: five
are atmosphere related factors: vis, ihaze, hyddpmodel, four are flight conditions variables:
mach, pitch, power setting, cap, and one is relabetR optical properties of aircraft surfaces:
E_e_ai. The other factors are set at a constanévat the next steps. We have also checked that al
the variables involved in significant interactidmstween two factors were retained. Only one factor
associated to aircraft characteristics is importanthis scenario, because most of the aircraft
properties have been supposed to be perfectly knawa thus do not appear in the sensitivity
analysis. Other conclusion could be raised, ifaineraft was considered less known.



The factors independence and the gaussian residssisnptions are not fully borne out. We thus
have proposed in Varet et al. (2009) to use twelkevractional factorial designs to get an
estimation of the Sobol’ indices. This approachbéemto estimate the variance part explained by
factor effects and interaction effects between factors assuming solely the independence of
eleven base factors. For the chosen scenariantisod leads to very same input selection.

3. Quasi-Monte Carlo estimation of the IRS dispersion

The Quasi-Monte Carlo method makes use of a sjightferent kind of sampling than the Monte
Carlo one, as described in Tuffin (2007): the psetahdom numbers are replaced with uniformly
distributed determinist sequences, the low diserepasequences, to improve the accuracy of
approximations for a fixed numb@t of simulation runs. The discrepanBy is a measure of the
uniformity of the points dispersion. A low discregg sequence is characterized by a

O(loQ(N) jdiscrepancy, whera is the problem’s dimension, that is to say the nembf

significant factors in this paper. Koksma-Hlawkadhem gives an upper bound of the convergence
rate, but it is quite difficult to estimate for ptecal purposes. However, several authors, as
Caflisch, Morokoff and Owen (1997) report a bettenvergence rate than Monte Carlo one’s even
for largen. Construction algorithms of low discrepancy seaesriead to correlations among points
coordinates. Hence in high dimension, most of lagcr@pancy sequences present distribution
irregularities on low order projections, in partmu for consecutive dimensions, as stated in
Morokoff and Caflisch (1994) and Schmid (2001).tlie interaction between the associated
variables is significant, these irregularities quete impeding. Moreover, the determinist nature of
these sequences is a major drawback for confidant&rvals estimation. Randomization
methodologies have thus been developed, like ttaditing ones, initiated by Owen (1995): they
preserve the low discrepancy, add randomness amdade projections irregularities.

In this study, we use a scrambled Faure’s sequenttea Faure-Tezuka scrambling (2008)data

set (Xi1,Xi2,...,%n), 1 in {1,..10}, are generated foXy,...,Xo the ten significant factors, and tine
outputs(ys,ys,...,\w) computed enable to estimate:

the empirical cumulative distribution function t#&tIRS for our scenario by:

1y, <

i=1

Fu(x) =

the non-detection probabiliy, by:

Z||—\

iZN: Q|RS(X1, o X 1o )‘ < O’)

N <
Given the computation time, we linfitto 10000. The non significant input variables axed at a
constant value. Among the ten most significantalaes, only five (vis-ihaze-hr-nuages-model) can
not be described by a uniform law. These factoesratated to atmospheric conditions, and are
dependent. We can find their values in meteoroligiatabases, but we have not found enough
data yet to estimate a joint probability densitpdiion. We thus perform random sampling with
replacement from the database to obtain a combmati real values, instead of using scrambled
Faure’s sequences for these factors. Figure 2 wegbie empirical cumulative distribution function
of the IRS. For confidentiality reasons, all th&SIRalues are scaled by an arbitrary constant.
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Figure 2. Empirical cumulative distribution function of the IRS

We have checked that, if we perform 50 bootstravdrof two-thirds of the 10000 IRS values, the
corresponding gap among empirical cumulative digtron functions is negligible, about 0.5 %.
Realistic thresholds for non-detection probab#ittepend a lot on the optronic sensor we want to
size. We therefore test our methodology by estimgatinree quantileg: 1 %, 5 % and 25 %, which
correspond to typical non-detection probabilitié¥e make use of the empirical estimator:
inf{y, Fy (y) > B} = y; 7 after reordering. Table 1 gives 95% confidetesel bootstrap estimation

based on 5000 draws among the 10000 IRS valuedifferent sample sizes. A good evaluation of

5 % and 25 % quantiles is obtained with 2000 values

1% 5 % 25 %
250 [1.63, 1.71] [11.36, 11.56] [54.8, 55.2]
500 [1.57, 1.62] [11.44, 11.6] 55
1000 [1.34, 1.38] [11.12, 11.24] 55
2000 [1.23, 1.26] [11, 11.08] 55
5000 [1.18, 1.2] [10.94, 10.98] 55
10000 [1.16, 1.17] 10.92 55

Table 1. Bootstrap estimations of three quantiles: 1% -5% - 25 %




4. A neural network metamodel

In order to check whether some optronic sensor snejuired specifications, we do not need
accurate estimations of extreme IRS values. VergllsiRS values are indeed neither detected,
whereas large IRS are consistently detected.tlitegefore of great interest to build a metamodel of
the IRS simulation code, suited to a chosen soenand to save the use of the much more
expensive simulation for IRS close to typical detecthresholds. It would allow carrying through
computationally demanding tasks, such as optinanati optronic sensor properties. Our computer
simulation of aircraft IRS is complex, and lineagression models give poor predictions, we thus
preferred nonlinear modeling, more precisely nenetlvork metamodels described in Hastie et al.
(2001).

A neural network can be described as an orientedhgbuilt up from a set of neurons, which are
nonlinear parametric functions organized in sudeeskyers. All the neurons of a layer work in
parallel. The most used network is the multi hidterer back-propagation network, or multi-layer
perceptron (MLP): the unknown parameters, or wisighre associated to the neurons input. Hornik
(1989) and Barron (1993) theorems state that deshigden layer MLP set up of a finite number of
neurons, with the same nonlinear activation fumgtike the hyperbolic tangent, and a linear output
neuron, is a parsimonious universal approximatbe Weights are estimated by supervised training.

The input data are the ten most significant factdr§ 2, they are reduced and centered. The output
is In|IRS|. We have compared the predictions oéa\single-layer perceptrons, with 2000, 4000 or
6000 training samples chosen by random samplinghgrtite 10000 of § 3, and 5, 7 or 10 hidden
neurons. The best results were obtained with desiager perceptron with 7 hidden neurons and
4000 training samples. The coefficient of regrassid, computed on the 6000 remaining test
samples, is 0.85. Figure 3 compares the empiricaluative distribution functions of the IRS,
obtained with the computer simulation CRIRA or withe neural network metamodel. The
metamodel gives very satisfying IRS predictions amhbles to estimate small non-detection
probabilities with errors in the order of 1 %. \Wave also estimated the three quantiles: 1 % - 5 %
- 25 % of 2000 neural networks with identical atebiure but different training samples, drawned
by bootstrap among the 10000 of § 3. Table 2 gB&% confidence level estimation of these
quantiles.

1% 5 % 25 %
[1.42, 1.44] [13.5, 13.6] [53.9, 54]

Table 2. Bootstrap estimations of three quantiles of the metamodel: 1% -5% - 25 %

The metamodel leads to a good approximation of ttivee quantiles, even if it slightly
underestimates the 25 % quantile and overestintheed % and 5 % ones. The neural network
model is therefore a very useful tool to focus pacsal ranges of IRS.
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Figure 3. A comparison of empirical cumulative distribution functions of the IRS

5. Conclusion

We have developed a three steps statistical melihgygto estimate infrared signature dispersion of
a combat aircraft from our existing signature cddethe typical scenario chosen to illustrate this
methodology: a daylight air-to-ground full-frontattack, by a generic but partially known combat
aircraft flying at low altitude, the atmosphereated factors are predominant and explain 75 % of
the IRS dispersion. The three most significant aldes are the aerosol’'s model, the relative
humidity, and the visibility. We have checked thtiz IRS dispersion was properly estimated with
ten thousand samples. The single-layer perceptretamodel enables to obtain very satisfying
estimation of IRS empirical cumulative distributitumction and good approximation of quantiles
of interest: 1 % -5 % - 25 %.

Other approaches could have been applied inste&uasi-Monte Carlo, but variance reduction
methods such as importance sampling or controliedifscation were either unsuitable due to the
lack of joint probability density function for thmeteorological factors, or unprofitable due to the
number of training samples (about 2000) needechsare a good correlation between indicator
functions of the code and of its metamodel. AltHotlge methodology presented is general and can
be used in different contexts, the results, inipaldr the significant input data, would most likel
be different. We are currently listing all interiegt battle scenarios and applying our methodology
to study IRS dispersion for each. The case of &alyaresolved aircraft is particularly intereggin

as it imply dealing with complete pictures (10x18gbs) instead of a scalar signature as it was
presented in this paper.

The present work constitutes a first attempt toistieally estimate signatures of a poorly known
aircraft in statistically defined environmental ditions. As it is quite conclusive, it would be
interesting to extend it to other military objects



Acknowledgments

This work has been partially supported by the Andbefence Procurement Agency (DGA) grants.
Discussions with S. Cohen, M. Sergent and R. PleamtLiu were very helpful.

Bibliography

Gauffre, G. (1981) Aircraft infrared radiation mdidg. Recherche Aerospatialéd, 245—-265.

Saltelli, A., Chan, K. and Scott M. (Eds.) (20@®nsitivity AnalysisViley Series in Probability

and Statistics. New York: John Wiley and Sons.

Myers, R. H., Montgomery, D. C. (199%esponse surface methodology: process and product
optimization using designed experimei¥, John Wiley & Sons.

Varet, S., Lefebvre, S., Durand, G., Roblin, A. @adhen, S. (2009) Effective Discrepancy and
Numerical Experiments, submitted to MCQMC2008 pealirgs.

Tuffin, B. (1997)Simulation accélérée par les méthodes de MonteoGatriQuasi-Monte Carlo :
théorie et applicationPhD in Applied Mathematics, University of Rennes 1.

Caflisch, R. E., Morokoff, W., and Owen, A. B. (199 Valuation of mortgage backed securities
using brownian bridges to reduce effective dimamslournal of Computational Financé,

27—A46.

Morokoff, W., and Caflisch, R. E. (1994), Quasidam sequences and their discrepancaM
Journal on Scientific Computind5, 1251—1279.

Schmid, W. C. (2001), Projections of digital net&l sequencedviathematics and Computers in
Simulation 55, 239—247.

Owen, A. B. (1995), Randomly permuted (t,m,s)-netsl (t,s) sequencaa Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computifly, Niederreiter and P.J.-.S. Shiue, editors,
Springer Verlag, 299—317.

Tezuka, S. and Faure, H. (2003) I-binomial scrangplof digital nets and sequencek. of
Complexity 19,744-757.

Hastie, T., Tibshirani, R., and Friedman, J. (200hge Elements of Statistical Learninyy,
Springer.

Hornik, K., Stinchcombe, M., and White, H. (1989)uRkilayer feedforward networks are universal
approximatorsNeural Networks2, 359—-366.

Barron, A. (1993) Universal approximation boundsdoperposition of a sigmoidal functidizEE
Trans. on Information Theor$9, 930-945.



