Derivative free optimization under constraints

Hoél Langouét and Delphine Sinoquet, IFP, hoel.langouetQifp.fr

Optimization takes place in many IFP applications: estimation of parameters of nu-
merical models from experimental data (earth sciences, combustion in engines), design
optimization (networks of oil pipelines), optimizing settings of experimental devices (en-
gine calibration, catalysis). These optimization problems consist of minimizing a functional
that is complex (nonlinearities, noise), expensive to estimate (solution of a numerical model
based on differential systems or experimental measurements), and for which derivatives are
often not available. Moreover, often nonlinear constraints are introduced and sometimes
several objectives are simultaneously optimized in order to find the best compromise.

We are interested in minimizing, under constraints, a function, which is expensive to
evaluate, and for which the derivatives are not available [2]:

min f(z),
b <z < by, b,by, €RY,
Az < b, AeR™" he R™,

ci(x) 20, i=1,..,1

In practice, these problems are often solved by non linear optimization methods (SQP [11]
for example) with derivatives approximated by finite differences. Although these meth-
ods are particularly efficient for the determination of active constraints, the number of
function evaluations is usually too high for industrial problems with expensive simulators.
Furthermore, the choice of the step of the finite differences, crucial for the convergence of
this method, is generally cumbersome, because it depends on the accuracy of f which is
difficult to estimate in practice.

Direct methods optimize a function without derivative calculation. Among them, Ge-
netic Algorithms [3] and Pattern Search methods [5] are insensitive to inaccuracies in the
calculation of f but require many evaluations. To overcome this difficulty, a cheap surro-
gate model of the objective function is typically used in the optimization process to limit
the number of evaluations of the expensive function. These surrogate models are usually
global models of f on the domain under study, constructed from a limited number of
evaluations of f chosen according to a relevant criterion related to the estimation of the
prediction error of these models and expected improvement on the minimization of the
function [4, 13]. These models can be kriging models [4, 10, 13], Radial Basis Functions
(RBF), splines ... But they are limited to problems of small size (10-20 param.).

Then, another class of methods based on local surrogate models was proposed by [1,
8, 9, 12]: these methods are inspired by SQP methods with trust region globalization
[1]. A quadratic model is constructed at each iteration in a neighborhood of the current
point, the size of this neighborhood is updated according to the comparison of the reduction
predicted by the model and the effective reduction calculated by evaluating f. In particular,
Powell [8, 9] proposed an efficient method, without constraints for problems of medium size
(hundreds of parameters).



Algorithm SQA (Sequential Quadratic Approximation)

(1) Initialization : Select m initial interpolation points. x,y is the initial point for which
f is minimal among the m points. Determine the first quadratic model Q) = f.

p= A= Pbeg
(2) Solve the problem for a precision p

(a) (i) Minimize the model : ming Q(zopt + d)
ldll < A,
bl < Zopt + d < bua blabu e R"
A-(Topt+d)=2b, AeR™" beR"
ci(z) >0, i=1,..,1
(ii) If ||d|| < 3p : — (2)(b) because it is necessary to ensure the validity of
the model before doing small steps.
(iii) Calculate f(zop + d) and update the trust region radius A from the pre-
dictivity of the quadratic model R = égzzg:g&ﬁ:&
Update interpolation points : oy = Topt + d if f(Tepr + d) < f(@p) and
update the model () in order to interpolate the model in z,,; + d.
(iv) If R> 0.1 — (2)(a)(i)
Otherwise continue.
(b) Test the validity of the model ). The model is considered valid if all the current
interpolation points z;, 7 = 1, ..., m are relatively close to the optimal point zp,,
i.e. if the Euclidean distance ||z; — zop|| < 2A for all z;, i =1, ..., m.

s.t.

(i) If the model is not valid :
Improve the quality of the model @ : maxjern |li(Zopt + d)|
ld]| < A,
b < ZTopt +d < by, b,b, €R?,
A- (g +d) =2b, AcR™"™ beR",
ci(z) >0, i=1,..,1L.
Calculate f(zop: + d), the worst point of the interpolation set is replaced
by a new point closer to the current minimum.
The accuracy of () after its update should be better — (2)(a)(i).
(ii) If the model is valid : If ||d|| > p — (2)(a)(i)

Otherwise continue

s.t.

(€) If p > pena : reduction of p and A — (2)(a)
Otherwise End of the algorithm.

Taking into account constraints in these methods remains a difficulty, penalty meth-
ods are often inefficient in practice. In this paper, an extension of Powell’s method for
constraints is proposed. We assume here that derivatives of constraints are available.



This extension consists of :

1. choosing the interpolation points in the domain defined by the constraints,

2. minimizing the quadratic model under constraints in the trust region thanks to a
SQP method.

Numerical results for smooth test functions constructed from the benchmark CUTEr
[6] are presented. Bound constraints on parameters are introduced. The results obtained
with the SQA method are compared to four different optimizations methods :

1. SQPAL, Sequential Quadratic method with an estimation of the gradient of the
Lagrangian function by finite differences (step of 107%) and a BFGS approximation
of the Hessian matrix [11],

2. EGO, which relies on a sequential method that constructs a global kriging model :

the points to be evaluated are chosen according the expected improvement criterion
[10],

3. NMSMAX, a Nelder-Mead simplex method [5],

4. CMAES, a genetic algorithm : Covariance Matrix Adaptation Evolutionary Strategy

13].

Data profiles and performance profiles [6] are used to compare the optimization meth-
ods. They are presented for two accuracies defined by : 7 = fcgog:ﬁ f(z*) is f evaluated
on the current optimum obtained by the method, f(zo) is the initial value and f;, is either
the optimum if known or the best solution found by the optimization methods. It measures
the improvement towards this value f;, relatively to the initial point.

Data profiles in Figure 1 show that SQA solved the largest percentage of problems for

all function evaluation budgets and for all required accuracy 7.




Data profiles for SI1V!OOTH pb. 7 =0.00001
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Figure 1: Data profiles for smooth problems of the benchmark proposed by [6] : the horizon-
tal axis represents the number of evaluations divided by the number of parameters +1 which
correspond to the "price” of computation of the gradient by finite differences ; the vertical axis
represents the part of problems solved by the optimization method with the accuracy 7.
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Figure 2: Performance profiles for smooth problems of the benchmark proposed by [6] : the
horizontal axis represents the number of evaluations necessary to solve one problem divided by
the minimal number of evaluations necessary to solve this problem among all the solvers.



Performance profiles of Figure 2 show that SQA is the fastest solver for a large per-
centage of problems, while EGO, SQPAL, NMSMAX and CMAES are the fastest for very
small percentages of problems (o = 1). In addition, the SQA method is the most robust
method because it solves the largest percentage of problems for all levels of accuracy 7
(o = 00).

Numerical results for noisy test functions (relative noise level of 10~2) constructed from
the benchmark CUTEr [6] are presented. The results obtained with the SQA method are
compared with the same four methods. Data profiles and performance profiles [6] are also
used to compare these five methods and presented for two accuracies.

Data profiles in Figure 3 show that the method SQA and the method EGO solve the
largest percentage of problems for all function evaluation budgets.
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Figure 3: Data profiles for noisy problems of the benchmark proposed by [6]

Performance profiles of Figure 4 show that the method SQA is the fastest solver in at
least 60% of the problems, while other methods EGO, SQPAL, NMSMAX and CMAES
are the faster for less than 20% of the problems (o = 1). In addition, the SQA method like
EGO is the most robust because it solves the largest percentage of problems for accuracy
T=1073
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Figure 4: Performance profiles for noisy problems of the benchmark proposed by [6]

In conclusion, SQA is the fastest and more robust method for smooth problems of the
presented benchmark and is equivalent to EGO for noisy problems. Improvements can be
made by taking into account noise as proposed by [12]. Moreover SQA can also handle
large size problems (hundreds of parameters) ; which is not the case of kriging methods
(like EGO). Introduction of non linear constraints is being studied, a difficulty arises when
derivatives of constraints are not available.

An application for production and seismic data matching in the field of oil reservoir
characterization will also be presented.
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