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Abstract

We want generate learning data appropriated to classification problems. First, we show that theo-
rical results about low discrepancy sequences in regression problems are not adequate for classifi-
cation problems. Then, we show with theorical and experimental arguments that minimising the
dispersion of the sample is a relevant strategy to optimize performance of classification learning.
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1. Introduction

We consider a problem of active learning classification: we suppose we can détermine, with an
oracle, the label of any point in a given compact set, and we want generate a sample of a given
size which will allow us to get the best approximation of the oracle function. We suppose that this
function is deterministic.

This problem may arise in various contexts, but our research is particulary motivated by the reso-
lution of viability problems (shows [7]), which are frequent in economy, ecology or robotics. The
goal is to compute policies of actions in order to keep a dynamical system within a given suibset
of the state space. Generally, it is supposed that the system badly deteriorates if it crosses the
boundary of this constraint set. An essential step to solve these problems is to determine a par-
ticular subset of this constraint set, which is called viability kernel. An algorithm [9], computes
viability kernels by recursive approximations using statistical learning algorithm (Support Vector
Machines (shows [3]) being a particularly relevant learning technique in this context). At each
step of the algorithm, one must solve an active classification learning problem: we can compute
if any point belongs to the set to approximate (i.e. we have an oracle which needs a lot of costly
computer experiments at each point), but to optimise the time of the process, we need to limit the
size of the sample as much as possible, and determine the distribution of the sample leading to
the best approximation.

A similar problem, which is to determine the best learning set for active learning of functions
(regression) is already solved. Indeed, using results about the approximation of integrals, Mary
(shows [6]) proves using low discrepancy samples provides the best results for a regression prob-
lem. Cervellera & Muselli [4] had already suggested an empirical and theorical demonstration of
these results in the specific case of the multi-layer perceptron.

We show that the theoretical approach to obtain generalisation error bounds in regression is not
adapted to classification. This result is somehow surprising, because classification can be seen as
a particular case of functions approximation.

An analyse in depth suggests that dispersion, i.e. the radius of the higher ball containing no
points, is probably an pertinent indicator of quality for samples to be used in active classification.
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Indeed, using a simple learning algorithm (as nearest neighbours), we establish a theorical link
beetwen generalisation error and dispersion. Moreover, we present experimental results using
SVMs that confirm this hypothesis.

In the second part of this document, we present theoretical results on active regression, and we
show that, surprisingly, these results cannot be transfered to classification (learning manifold
boundaries). In the third part, we show with theorical and experimental arguments, that min-
imising the dispersion of the sample is the relevant strategy to insure the best results in active
classification learning problems and to limit the sample size. In the last part, we discuss about
these results and conclude.

2. The results about active regression learning do not apply to active classification learning

We suppose we have {(x1, f(x1)), (x2, f(x2)), ..., (xn, f(xn))}, a set of labelled examples.The ob]ec-
tive is to approximate as precisely as possible the function f (supposed to be real), by a function f,
obtained with a learning algorithm (for example an empirical risk minimisation). For any function
f of a hypothesis space, we note L(f) the error of generalisation defined by :

)= 7.

This error will be experimentally estimated by:

] n
EZ (xi) — f(xi) ]

Error bounds in regression function of discrepancy of learning set:

Applying to statistical learning the ngsma—HIawka theorem, which limits integral approxima-
tion error, we obtain for any function f:

LA -L@ < Ve (IF-1)) D

where Vi (g) is a particular measure of the regularity of the function g: the variation in the sense
of Hardy Krause, and Dj, is the dispersion of a sample of size n.

In this inequality, it is clear that bound is determinist and directly proportional to the discrepancy
of the learning set, supposing the variation is finite.

Discrepancy of a sequence:

The discrepancy of a sequence can be viewed as a quantitative measure for good "uniformity" of
a sequence. Considering without loss of generality that our sample has to ge taken inside the unit
hypercube I*, of dimension s, it is the maximal difference on all the convex subsets of I° between
the proportion of the points in the convex subset and the volume of the convex subset.

One can show that this definition is closely related to the star discrepancy, in which, instead of con-
sidering any convex subset of I°, we only consider hyperrectangles containing the origin. More
formally, we note I°* the set of all subintervals of I® of the form TT{_, [0, u;), # the operator which,
for a sequence (x(n)) = x1,...,xn with n elements and a set P, gives the number of element of
X(n) in the set P. The Lebesgue measure will be noted A. We consider only the star discrepancy
D7 (x)of an n-sequence (x () defined by (shows FIG. 1)

D} (x) = sup
" pels* n

According to Niederreiter (shows [5]), the discrepancy of a low discrepancy sequence decreases

log®(

to zero as O ( ) Note that a regular grid has a discrepancy of order O ( \F) , which is not

low.
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Figure 1: Estimation of discrepancy

Error bounds in regression with a low discrepancy sequence:

Mary applies the theorem of Koksma-Hlawka, which bounds integral approximation, in the con-
text of statistical learning. .
He obtains that for any function f:

| L(f) — £(f)| < Vik (|f— f]) DL(x)

In this equation, Vyx is a particular measure of variation of a function: the variation of Hardy-
Krause. When this variation is bounded for the function ‘f — f|, it is possible to bound up deter-

ministic generalisation error, with a upper bound in O (%)

Comparison with Vapnik-Chervonenkis bounds (VC):

Within the context of satatistical learning (shows [12]), empirical estimation of a function de-

creases as O (m%(m) and with a fixed confidence level. It is a convergence in probability. Using

low discrepancy sequence, we obtain a determinist upper bound decreasing as O (lognﬂ) This

speed is significantly quicker when the dimension s is small. Furthermore the condition to be in
finite VC dimension is substituted by an hypothesis of finite variation of functions. Finally it is
not necessary to have a null empirical risk estimation of target function to obtain an upper bound

of the error decreasing as O (1 )instead of O (ﬁ)

Considering the empirical risk minimisation [12], where we consider a sequence of functions
which have a finite and increasing VC-dimension, we obtain a stochastic convergence with speed

about 0 ng(“) . Using low discrepancy sequence, we always obtain a deterministic conver-

log®(n)
gence about 0 (?)

The variation of Hardy-Krause of an indicator function is infinite:

Classification is the case where function f takes its values in the set {0, 1}. Previous results can-
not be transposed to this case. Indeed, the variation of indicator functions is generally infinite
(shows [11]). So the superior bound in the previous inequality is equal to infinity too.

Moreover, Morokoff and Caflish have demonstrated (shows [10]) that using low discrepancy se-
quences is not efficient when the integrand function is an indicator function. Numerical tests
proved (shows [1]) that, using these sequences, we cannot obtain better results than using a reg-
ular grid (which have a higher discrepancy). Therefore the discrepancy does not seem to be the
relevant criterion to get optimal samples for classification.

3. Low dispersion is a better criterion of sample quality for active classification learning

Previous results come from multidimensionnal integration. An other possible inspiration comes
from numerical optimisation. In this direction, we generaly use an iterative algorithm to approx-
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imate the extremum of a non derivable function in a compact set. Approximation error can also
be theoretically expressed by a function of dispersion (shows [5]).

Dispersion of a sequence:

We consider the unit cube I* with the euclidian distance d.
The dispersion of a sequence x = {x1,...,xn} is defined by:

d(x) = maxyersmini—1, . nd(y,xi)

Estimation of dispersion

Figure 2: Estimation of dispersion

The dispersion of the sequence is the radius of the biggest empty ball of I* (shows FIG. 2).

Remarks about discrepancy and dispersion:

Discrepancy and dispersion are not equivalent measures. Indeed, when we add a point in a
sequence, its dispersion doesn’t change or decrease. Its discrepancy can increase or decrease.
Moreover, for an appropriate number of point, the configuration which minimizes the dispersion
is a regular grid which doesn’t minimize discrepancy.

To illustrate these differences, we have represented in dimension 2 (FIG.3(a)) a low discrepancy
sequence of Halton with 190 points and which have a dispersion of 0,11. With an algorithm
describted in [2], we have deplaced the points in order to decrease the dispersion. The final result
is the figure (FIG.3(b)): dispersion is equal to 0,08. Note on this last figure a tendency of the points
form a regular grid, which does not have a low discrepancy.

(a) Low discrepancy (Halton) of dis- (b) Halton sequence modified of dis-
persion = 0,10. persion = 0,08.

Figure 3: Two sequences of 90 points.
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Generalisation error is function of dispersion for a simple classification learning;:

The purpose of this paragraph is to established a link beetween generalisation error and disper-
sion of learning set using a learning process simiular to the nearest neighbours.

Theorem:

Let f a function from I® to {—1, 4+1}. We want to approximate its with a learning set E of dispersion
5. Denoting B(x, R) the ball of center x and radius R.

Let x¢+ = {x € I¥lf(x) = +1} and xs- = {x € I¥|f(x) = —1}. We suppose f has this propriety of
regularity: 3R such

e Vx € x¢+,Ixp € X¢+|x € B(xo,R) and B(xg,R) C x¢+

e Vx € xr—,Ixp € X5-|x € B(x0,R) and B(xg,R) C Xy

~

Let the learning algorithm A approximating the function f by A(E) =fas:

+1 sivVx; € ENxe,d(x;,x) > 26.
flx) = -1 sivx; € Enye, d(x),x) > 26.
random otherwise

There is A > 0 such as, for any learning set E of dispersion 6 < R, the algorithm A gives an
approximation of f with a generalisation error L(A(E)) such as: L(A(E)) < Ab.

Proof:
Let: Ff ={x € I¥|¥x{ € ENnxs,d(x;,x) >28}and F~ ={x € I5|vx{ € Enxsr,d(x{,x) > 25}

1. Prove that F* C x¢+. Let x € Ff. Supposing x € x¢ . Regularity hypothesis of f im-
plies: Ix’ € x¢|x € B(x',R) et B(x’,R) C x¢-. All the more Ix” € x¢|x € B(x",d)
and B(x”,8) C x¢—, because R > §. By definition of the dispersion, 3xo € E, such as
xo € B(x"”,8). Therefore d(x,xo) < 29, it is in contradiction to the hypothesis (x € F"). So
x € X¢+. The learning algorithm does not make mistakes on F*. Hence we have F~ C x¢-.

2. Estimation of learning error: L(A(E)) = IIS f —ﬂ (x)dx. On F* and F~, f et fare equal,
therefore errors are in the set I — F* — F~, which distings F* from F~. So L(A(E)) =
IILF+7F, ‘f —ﬂ (x)dx. So L(A(E)) < V(IS — Ft — F), where V is the volum of this set.
Let of the boundary beetwen x¢- and x+, et M = {x € I°|d(x, 9f) < 25}.

It’s evident that I* — F© —F~ C M. Indeed, x ¢ F' implicates d(x,E N x¢ ) < 295, that
implicates d(x, x-) < 26. Hence, we demonstrate that d(x, x+) < 2.

Therefore L(A(E)) < V(M). But V(M) < 45S(0f) (R%"S)s*] < 48S(9f)35 !, where S(df) is
the integral on the surface 9f. Regularity condition on f insures that this integral is finite.
This factor defined with R allows to bound the volum, supposing the radius of curvature of
of is at its minimal value R.

Conclusion:

With this particular algorithm, generalisation error is directly linked to the dispersion of the learn-
ing set. We can think, with this result, that dispersion is a pertinent indicator to measure the
quality of a learning set in classification.

4. Numerical experiments

We have made numerical experiments on 1.020 classification learning problems in dimension
3. We have generated a learning set with 700 points, made the learning process with the SVMs
(shows [3]), and estimated the generalisation error. We have iterated this process when decreasing
the dispersion of the sample with an algorithm described in [2].

We can see (FIG.4) a decrease of error rate functions of dispersion decreasing rate. It seems that
minimising dispersion is a relevant straegy to insure the best results in classification learning
problems.
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Evolution of generalisation error rate functions of dispersion decreasing
ratein dimension 3
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Figure 4: Average evolution of generalisation error rate functions of dispersion decreasing rate
(dimension 3, 700 learning points, 1.020 classification problems).

5. Conclusion and discussion

Using works from Mary (shows [6]), we prove that the results about discrepancy established for
regression cannot be transfered to classification.

We propose the dispersion as pertinent criterion for optimising the samples for classification. We
established a linear link between dispersion and generalisation error in classification within the
context of a simple learning algorithm. Moreover, our experimental tests on SVMs also show a
link between dispersion on and generalisation error.

Iwata & Ishii (shows [8]) observed experimently a gain of quality in classification with the multi-
layer perceptron using low discrepancy samples instead of random samples. It does not contra-
dict our results. Indeed the dispersion of a random sample is generally higher than dispersion of
low discrepancy sample.

If theses results are confirmed, it will be probably interresting to generate iteratively low dis-
persion data, with a higher density near the boundary of classification function detected at the
previous step. This could enhance significantly the learning performance obtained with a sample
of size n, and could so limit costly computer experiments in our application.
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