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Abstract 
In the field of Bulk Acoustic Wave conception, 

software simulators are used to simulate their 

electrical and mechanical behaviors. As these 

simulations are time consuming for Monte Carlo 

approaches used in yield studies, we need a 

metamodel instead of the true simulators. We 

tested three types of Design of Experiments 

(DOE) (10 factors, 1003 simulations) and three 

types of metamodels (Ordinary and Universal 

Kriging, Pseudo-cubic Thin-plate type 

interpolating Spline) on 4 independent 

responses. The different approaches are 

validated on two sets of test points. In our case, 

the Maximin Latin Hypercube Sampling (LHS) 

space filling DOE is often the best, and the 

splines usually lead to smaller Mean Square 

Error (MSE) on the test points, but suffer from 

the lack statistical information (no uncertainty 

around the best estimate value). 

 

1. What is a Bulk Acoustic Wave filter? 
Bulk Acoustic Wave (BAW) filters appeared at 

the beginning of the 1980’s as a result of trials 

for increasing the frequency of quartz resonators 

[1,2]. Their principle is to exploit the 

mechanical resonance of the thickness vibration 

of a piezoelectric layer. Through the capability 

of these materials to convert mechanical energy 

into electrical energy, or conversely, the 

mechanical vibration is excited by an applied 

radiofrequency signal and is translated into an 

electrical resonance suitable for the synthesis of 

low loss and high selectivity band pass filters. 

Because such devices are fully passive and 

compact, they find their application in wireless 

front-ends, for example in mobile 

communication systems such as GSM or 

UMTS, where they are used to select one 

standard in the signal received by the antenna, 

or transmitted to it.  In so-called “full duplex” 

architectures, as for the UMTS system, 

transmission and reception need to be 

simultaneous: therefore the reception filter 

needs to eliminate all of the unwanted part of 

the spectrum, including the transmitted signal, a 

part of which is often redirected towards the 

reception chain because both reception and 

transmission chains are connected to the same 

antenna. This puts a constraint of high 

selectivity to these filters, and makes them 

unable to be designed using most of the 

alternative technologies (lumped elements for 

example). 

 

Technologically, BAW resonators appear as thin 

(typically around 1 µm thick) piezoelectric films 

sandwiched between two electrodes. To avoid 

leakage of acoustic waves outside the resonator 

and inside the supporting substrate, two major 

technologies have been established: one which 

consists of having the piezoelectric film self 

standing over an air gap [3], in which acoustic 

waves cannot be transmitted, or another which 

makes use of an acoustic Bragg mirror made of 

layers of alternatively dense and light materials 

[4] (usually, respectively tungsten and silicon 

dioxide [5]). Because BAW devices exploit a 

thickness vibration, the overall thickness of the 

component is directly related to the final 

frequency obtained. Thus, to reach the 

frequency accuracy needed to match 

specifications, the thickness of the whole 

material stack needs to be controlled with an 

extreme precision (up to a few nm for a material 

stack of a few microns thick [6]). Post-

processing techniques have been developed and 

are now used in industry, but their correction 

capabilities are still limited and filter responses 

cannot be perfectly adjusted to compensate for 

process deviations[6].  This is why, before 

entering mass production, it is necessary to 

estimate a priori a fabrication yield given 
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known statistical process dispersions and an 

evaluation of their impact on the final product. 

 

RejectionRejection
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Bandwidth (at -3 dB)Bandwidth (at -3 dB)

  b 

Insertion lossesRipple Insertion lossesRipple

  c 

Figure 1 : Illustration of parameters used to evaluate a 

filter response. 

A typical filter response is shown in Fig. 1(b). 

As explained in the previous paragraph, a filter 

needs to isolate a part of the spectrum which 

depends on the exact standard for which it is 

designed. Therefore, it needs to be centred 

around this part of the spectrum and to be wide 

enough to contain it. When comparing two 

filters, it is often useful to determine their 

respective centre frequencies and bandwidths. 

These quantities are defined with respect to the 

frequency band for which the transmission of 

the filter is higher than a given threshold, 

usually –3 dB.  The centre frequency is the 

middle, whereas the bandwidth is the width of 

this frequency band, as indicated in Fig. 1(b).  

Within the frequency band which needs to be 

selected, one defines the insertion losses 

corresponding to the minimum transmission 

level inside the targeted frequency band and the 

ripple, which corresponds to the difference 

between the highest and the lowest transmission 

levels. These quantities are illustrated in Fig. 

1(c). An alternate way of describing a filter is to 

study not only its transmission spectrum, but 

also the reflection of electrical waves at its 

input: the better the filter is electrically matched 

to its environment, the more electrical power 

can be transmitted through it instead of being 

reflected back to the signal source (antenna or 

power amplifier). So, it may be interesting to 

study what is called the adaptation, which 

corresponds to the reflection coefficient of 

electrical waves at the input of the filter, and can 

often be directly related to insertion losses. 

Usually, this quantity needs to be as small as 

possible and specifications provide the 

maximum level permitted. Outside the 

frequency band selected by the filter, one 

evaluates the rejection of the signal, which 

corresponds to the direct attenuation of a signal 

received outside the frequency band. In 

industrial specifications, this figure is split 

among different values for alternate frequency 

bands, but for the sake of simplicity, we will 

only consider a general value, as shown in Fig. 

1(a). 

 

Why do we need a metamodel? 

The final objective of this study is the 

estimation of a fabrication yield in an industrial 

context, using a Monte-Carlo approach. The 

computation time of our simulator forbids us to 

use it during industrial Monte-Carlo, and it is 

necessary to replace it by a fast-computing 

metamodel. As our simulator is perfectly 

deterministic, we need an interpolating 

metamodel. It is reasonable to compute around 

one thousand simulations for building it. We use 

dimensionless thicknesses of the ten layers as 

input factors, i.e. the difference between actual 

and nominal thickness divided by the standard 

deviation of this thickness as expected from the 

fabrication process capabilities (process 

dispersion). Our previous experience indicates 

that the five first layers are more influent that 

the five last (Bragg mirror). 

 

2. Three types of DOE 

To build the metamodel, we use three different 

DOE, each one with 1003 simulations. 
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The first DOE is an interweaving of different 

"classical" sub-DOE, composed of: 

1. the central point, 

2. a fractional factorial design 2^
(10-3)

 at 

scale 0.75 

3. a fractional factorial design 2^
(10-3)

 at 

scale 1.50, expanded from the new 

points of a foldover of the previous sub-

DOE 2 , 

4. a fractional factorial design 2^
(10-3)

 at 

scale 2.25, the Alias Generator being 

different from sub-DOE 2 , 

5. a fractional factorial design 2^
(10-3)

 at 

scale 3.00, expanded from the new 

points of a foldover of the previous sub-

DOE 4 , 

6. 10 series of stars points, i.e. point with 

all factors at 0 (nominal thickness) 

except the j
th

 factor that varies with step 

0.25, from -3.25 to +3.25 for the 1
st
 to 5

th
 

layer, from -3.00 to +3.00 for the 6
th

 to 

10
th

 layer ,  (these series were also 

performed to facilitate  visualizations of 

1D effects) 

7. A Box-Behnken DOE at scale 1.50, 

without central point. 

8. 5 series of fractional factorial design 

2^
(5-1)

 at scale 1.00 for the five first 

factors except the j
th

 factors at scale 2.5 

(j successively from 1 to 5), the five last 

being at 0.00. 

In fact, this DOE emphasizes more the most 

external regions than the two other DOE. 

 

The second DOE is a space filling design based 

on a MaxiMin Latin Hypercube Sampling 

(LHS). A latin hypercupe sampling [7] is a 

design where the points are all distinct after 

been projected on each axis. Thus, the chosen 

values for input parameters are all different. 

This kind of design is interesting in computer 

experiments where the result is determinist, i.e. 

there is no white noise usually present in 

physical experiments. Thus, there is no need to 

repeat two simulations at the same value. 

However among latin hypercubes sampling, the 

points are not necessarily well distributed into 

space. Therefore in order to construct a space 

filling, we add the “maximin” criterion to the 

construction. The design is searched so that the 

minimum distance between two sampling points 

is maximized. This design has been generated in 

[0,1]
10

 by the “lhsdesign” Matlab procedure of 

the statistics toolbox 

 

The third DOE is also a space filling design, but 

based on a Halton's low discrepancy sequence. 

The discrepancy is a mesure of the distance 

between empirical and uniform distributions. 

The d dimensional Halton sequence is the 

generalisation of the Van der Corput sequence 

which is the basic one dimensional low 

discrepancy sequence. The construction is based 

on the schema that each point is repelled from 

the others (see [8] for details). In our application 

the sequence has been obtained in [0,1]
10

 by the 

R software. 

 

To get locally accurate metamodels in the center 

of the domain (which is the region of highest 

interest) for the two space filling designs we use 

a continuous transformation toward the [-4; 

+4]
10

 region of [0,1]
10

 that leads to a higher 

point density in this central region. Naturally, 

the inversed cumulative standard normal 

distribution (noted ICSND on Figure 2) should 

be applied to generate a normal Design from 

uniform LHS or a Halton sequence. However, 

another function has been used (ICSNDog) in 

order to little reduce the concentration of points 

in the central region (see Figure 2 for a 

comparison between ICSND and the chosen 

function). 

 

Figure 2 Transformations from [0,1] toward [-4,4]  

The quality of prediction was tested using two 

independent sets of 500 test points each. The 
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first set is normally distributed over —
10

 (mean 

0, unity covariance matrix), the second set is 

uniformly distributed into the [-3 ; +3]
10

 region 

of —
10

. Of course, these test simulations are 

never used to determine the metamodels. The 

purpose of these two different test sets is to be 

able to test independently the quality of 

metamodels focusing either on the most 

probable region (normally distributed) or on the 

full range of interest (uniformly distributed). 

When analyzing the 5 responses, it immediately 

appears that "insertion losses" and "ripple" are 

highly linearly correlated. It is not worthwhile to 

keep these two responses and we choose 

"ripple". 

"Ripple" and "adaptation" exhibit large and 

steep variations in a small range of parameters, 

in the most external region of [-3 ; +3]
10

, with 

very large ripple and very low adaptation. This 

is due to some quasi-discontinuities in the BAW 

behavior and will cause some difficulties. In 

some cases, we built a metamodel without these 

"special points" or used the uniformly 

distributed test set without these "special points" 
(there is no "special points" in the normally distributed 

test set). 
 

3.   Three types of Metamodels 
We use three types of metamodels: Ordinary 

Kriging (OK) and Universal Kriging (UK) with 

Gaussian type covariance function and Pseudo-

cubic Thin-plate type interpolating 

multidimensional Splines.  

 

3.3.1 Kriging  

This section describes OK and UK [9]. OK 

assume that the function y  is a realization of a 

Gaussian process ( )( )
x D

Y x
∈

 such as [ ( )]E Y x µ=  

and (1) (2) (1) (2)[ ( ), ( )] ( , )Cov Y x Y x k x x= , where µ  is 

the mean of the process and k the kernel that 

stands for the covariance structure. Let 

( )1X   ...  
T

nx x=  be the matrix of experiments 

and ( )obs 1Y   ...  
T

ny y=   the vector of the 

observations at the design points. Then, the 

kriging mean is the best linear unbiased 

predictor in the sense of the mean squares. 

 

For our study, we consider the Gaussian kernel 

2
(1) (2)

(1) (2) 2

1

( )
( , ) exp

k
i i

ii

x x
k x x σ

θ=

  − = −  
   
∑ . 

The parameter 2σ  is the process variance and θ  

is a vector called the range parameter that 

adjusts the smoothness of the response in each 

direction. Since the parameters µ ,σ  and θ  are 

unknown, they are determined using the 

maximum likelihood estimation. Let µ̂ ,σ̂  and 

θ̂  be their estimators. Then we have the 

following results: 

11111111
1111

1

1

−

−

=
K

YK
T

obs
T

µ̂  

( ) ( )
n

YRY obs
T

obs µµσ ˆˆ
ˆ

11111111 −−
=

−1
2  

 

( )( )1ˆ arg min( log det
2 2

n
Kθ = +  

where 1 2( ) ( ( , )   ( , )   ...   ( , ))T
Nk x k x x k x x k x x= , 

1 ,( ( , ))i j i j nK k x x ≤ ≤= , where R  is the correlation 

matrix  ( R = K /σ² )  and   1=(1 1 1 … 1)
T
. 

 

The matrix K  is symmetric, real and invertible 

but it is sometimes necessary to add a little 

value on the diagonal in order to prevent 

numerical instability. This transformation, quite 

common in kriging, is called adding a nugget 

effect. In our study, we had to use this method 

to make easier the inversion. Finally, the new 

covariance matrix is 35.10 .NK K Id−= + . 

This transformation implies that the kriging 

mean does not interpolate anymore since the 

variance at a training point is not equal to zero 

(but in our case, 3 2(5.10 )−  is an upper bound). 

 

The expressions of kriging mean and kriging 

variance are then the following: 
1

o obs
ˆ( ) ( ) YT

km x k x Kµ −= + , 
2 1( ) ( , ) ( ) ( )T
oks x k x x k x K k x−= − +  

(1-k
T
(x)K

-11)(1T
K

-11)
-1

(1-k
T
(x)K

-11)
T
    , 

 

where σ̂  and θ̂  are plugged into K  and 

( )1 2,k x x .  

 

OK is a useful tool, but it assumes that 

[ ( )]E Y x µ=  for all x D∈ , which may not be 

realistic in many cases. In order to free of this 
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constraint, one may consider that ( )( )
x D

Y x
∈

 is 

composed of the sum of a trend and a Gaussian 

process and thus consider UK. The assumptions 

of UK are: 

( )[ ( )]E Y x f x β=  

(1) (2) (1) (2)[ ( ), ( )] ( , )Cov Y x Y x k x x=  

where ( ) ( )( 0f x f x=  … ( ))pf x is a known trend 

vector, ( 0β β=  ... )T

pβ  is the vector of trend 

parameters. Under those assumptions β̂ ,σ̂  

andθ̂ become: 

( ) 1
1 1

obs
ˆ F F F YT TK Kβ

−− −=  

( ) ( )1
obs obs2

ˆ ˆY F Y F
ˆ

T

R

n

β β
σ

−− −
=  

( )( )1ˆ arg min( log det
2 2

n
Kθ = + , 

where ,F ( ( ))  avec 1  ,  1j i i jf x i n j p= ≤ ≤ ≤ ≤ . 

Finally, the kriging mean and the kriging 

variance are: 

( ) ( ) ( )1
obs

ˆ ˆ( ) Y FT
ukm x f x k x Kβ β−= + − , and 

( ) 1( , ) ( ) ( )T
uks x k x x k x K k x−= − +  

 (f(x) - k
T
(x)K

-1F)(FT
K

-1F)
-1

(f(x)-k
T
(x)K

-1F)
T
   

 

One can notice that OK is a particular case of 

UK considering ( ) 1f x = . 

 

The probabilistic interpretation of these results 

can be obtained by a Bayesian approach (see 

Helbert [10]) 

 

 

3.3.2 Pseudo-cubic Thin-plate type Spline  

The Pseudo-cubic Thin-plate type 

multidimensional Spline is a family of spline 

proposed by Duchon [11], and it may be 

smoothing or interpolating spline. In its 

interpolating version, it is the function f(t)  

defined over —
d
 which goes through all the 

design points exactly and which minimizes a 

curvature energy defined by: 

d

d

R

d

k

d

p pk
c dududuuu

tt
f

FourfE
d

....)(
²

)( 21

1

2

1 1

−

= =
∫∑∑



























∂∂
∂=  

where 














∂∂
∂

pk tt
f

Four
² is the Fourier transform of a 

second derivative of the function  f(t)  and  u  is 

the variable in the frequency space. In its 

smoothing version, it is the function which 

minimizes a total energy defined as : 

( )∑
=

−+=
n

i
iiictotal tfyfEE

1

2)(*)( ωρ  

where n is the number of points, yi  the value of 

the response for the i
th

 point,  ωi is the weight 

associated with this i
th

 point (in our case, ωi =1 

for any points), ti  is the vector of the values of 

the d factors at this i
th

 point. 

The last term is a residual variance multiplied 

by the positive parameter ρ, inverse of the 

smoothing parameter. In our interpolating case,  

ρ = ¶ and the residual variance vanishes.  In 

this energy analogy, this residual variance could 

be seen as the energy of n springs connecting 

the points to the surface (the plate). The 

smoothing parameter characterizes the relative 

stiffness of the plate and the springs. 

 

The expression of the spline is very simple: 

o

d

k

k
k

n

i
ii tttHtf ααλ ++= ∑∑

== 11

)(),()(  

with  

2
3

2

1

2



























 −
= ∑

=

d

k k

k
i

k

ki

tt
dilttH

σ

)()(

),(    is 

a radial basis function, t
(k)

 is the k-th component of t, 

σk is the standard deviation of the k-th variable, 

and dilk  is the scale dilatation of the k-th 

variable (the product of all the scale dilatations 

is imposed to 1.0), which plays a similar role to 

scale parameter in kriging, n is the number of 

points in the learning base, and d the dimension 

of space (d=10 in this study). There is no 

constraint on the position of the design point in 

the parameter range, and the spline is defined 

over the full —
d
. Any extrapolation becomes 

rapidly very close to a local hyperplane.   

 

It should be noticed that while spline is based on 

energetic considerations and kriging is more 

based on statistic considerations, the two overall 

mathematical objects are not very different: both 

are based on radial basis function. 

 

The coefficients  λi  and  αj  are the solutions of 

the n+d+1 symmetric linear system: 
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d

k

k
i

k

k
k

i

i
n

j
jij yt

dil
ttH =+++ ∑∑

==

α
σ

α
ωρ

λλ
11

)(),(

  for  i=1, …, n 

0
1

=∑
=

n

j

k
j

k

k
j t
dil )(

σ
λ   for  k=1, … , d 

0
1

=∑
=

n

j
jλ  

 

With this type of spline, there is no constraint on 

the repartition of the learning points in —
d
, and 

the linear system to solve is usually very stable 

and well conditioned. We never have to use the 

equivalent of kriging's nuggets (for other 

studies, splines for up to 3000 design points in a 

17 dimension space have no problems). 

The choice of the d scale dilatations is inspired 

by BootStrap: a partition of the n learning points 

is randomly made into Q subsets (typically Q 

from 10 to 20), and for each subset, the spline is 

computed without the points of this subset and 

used only on this subset to calculate the mean 

square difference between predicted and actual 

values. The scale dilatations are iteratively 

determined to minimize the sum of all mean 

square differences for all the Q subsets. To 

enhance the convergence of these iterations, it is 

convenient to follow the path determined by the 

same mean square second derivatives with 

respect to dimensionless factors t
+(k)

 defined by : 

)()( k

k

kk t
dil

t
σ

=+   The scale dilatations are chosen 

such that the sum of the squares of second 

dimensionless derivatives on the whole set of 

learning points,  ( )∑
=

+ 








∂
∂n

i
ik

t
t

f

1

2

²
²

)(
,  tends to 

have the same value whatever the factor k. 

 

 

4. Results of the comparison 
4.1 MSE as one of the criteria of comparison 

For each DOE (with or without "special" 

points), for each response, for each type of 

metamodel, and for the two test sets, we 

compute the MSE, Mean Square Error, as: 

 
( )

m

tfy
MSE

m

i
ii∑

=

−
= 1

2)(
 , where the summation 

is done over the m=500 test points. This MSE, 

divided by the standard deviation (SD) of the 

response on this test set is used as one of the 

criteria to compare the DOE and metamodels. 

 

4.2 Comparison of the DOE 
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b. Comparison of "interweaved classical" vs 
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a. Comparison of "interweaved classical" vs 

Halton 
Figure 2: Comparison of different DOE 

 

Figure 2 compares the different DOE. Each 

point represents a combination of a response, a 

metamodel, a test set. 

Fig. 2.a shows that  MSE with LHS is generally 

lower than with Halton. 

Fig. 2.b shows that  MSE with LHS is generally 

lower than with "interweaved classical" DOE. 
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Fig. 2.c shows that MSE with Halton is 

generally lower than with "interweaved 

classical" DOE. 

So, we can conclude that, in our case, Maximin 

LHS is better than Halton, and Halton is better 

than "interweaved classical" DOE. 

 

4.3 Comparison of the metamodels 

The comparison of ordinary and universal 

kriging is done only on the normally distributed 

test points and without the "special" points in 

the learning data sets. In our case (see figure 3), 

UK is always better than or equivalent to OK. 

Comparison of ordinary 
and Universal kriging
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Figure 3: Comparison of OK and UK. Each point 

represents a combination of a response and a DOE. 

 

The comparison of universal kriging and spline 

(see figure 4) is done on all the responses, DOE 

and test sets. 

Comparison of Universal Kriging and splines
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Figure 4: Comparison of Universal kriging and spline. 
Each point represents a combination of a response, a test 

set and a DOE. 

On this figure 4, we separate the test sets. With 

normally distributed test points, UK and splines 

are more comparable, splines being often 

slightly better than UK. With uniformly 

distributed test points, splines are always better 

than UK and often comparable. This means that 

splines are more capable than UK to simulate 

the most external part of the [-3; +3]
10

 region of 

—
10

, where normally distributed points are very 

rare.  

 

4.4 Confidence intervals 

The real advantage of kriging over splines is its 

capability of providing a confidence interval 

around the best estimate value. We tested this 

confidence interval with the UK based on 

maximin LHS for the adaptation response. For 

each point of the two test sets, but without the 

"special points", we compute the quantity: 

i

ii
i e

yxf
t

−
=

)(
, where ei is the estimated 

uncertainty at the point xi  and yi  is the true 

value of the simulated response. 
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Figure 5: Comparison of observed t with a normal 

distribution. 
 

Figure 5 shows that the distribution of observed 

t is in reasonable agreement with a normal 

distribution.  

This estimated uncertainty can be used for 

Monte-Carlo yield estimations. In fact, the 

acceptance criterion for a BAW filter may be 

summed up as simultaneous conditions of type 

Rk < Tk  and/or  Rk > T'k  where Rk is one of the 

p responses (adaptation, ripple, centre 

frequency, bandwidth, insertion losses, …) and 

Tk and T'k are fixed thresholds. At a given 

Monte-Carlo run x, the quantity 
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kk
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−
=  is transformed into a 

probability  pk  of acceptation for this response 

and criterion via the cumulative distribution 

function of a normal distribution. The overall 

probability of acceptance of this Monte-Carlo 

point is the product of these probabilities  pk  

and the yield is estimated by: 
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where the summation is done over the  N  runs 

xi of Monte-Carlo with the appropriate random 

repartition. 

 

5. Conclusion 
In our case, space filling design, especially 

Maximin LHS, are better than "interweaved 

classical" designs and pseudo-cubic thin plate 

type interpolating splines are more precise 

(when tested with independent test points) and 

seem more stable than ordinary or universal 

kriging. Nevertheless, the confidence interval 

around the best estimate value of kriging may be 

an important advantage for many studies, as 

yield estimation. 

 

 

Bibliography 
[1] T.W. Grudkowski, J.F. Black and T.M. 

Reeder, Fundamental mode VHF/UHF bulk 

acoustic wave resonators and filters on silicon, 

in 1980 IEEE Ultrasonics Symposium 

Proceedings, pp. 829-833. 

[2] K.M. Lakin and J.S. Wang, UHF composite 

bulk wave resonators, in 1980 IEEE Ultrasonics 

Symposium Proceedings, pp. 834-837 

[3] H. Satoh, Y. Ebata, H. Suzuki and C. 

Narahara, An air-gap type piezoelectric 

composite thin film resonator, in Proceedings of 

the 39
th

 Annual Frequency Control Symposium, 

pp. 361-366 (1985). 

[4] K.M. Lakin, K.T. McCarron and R.E. Rose, 

Solidly mounted resonators and filters, in 1995 

IEEE Ultrasonics Symposium Proceedings, pp. 

905-908. 

[5] D. Petit, N. Abelé, A. Volatier, A. Lefevre, 

P. Ancey, J-F Carpentier, Temperature 

compensated bulk acoustic wave resonator and 

its predictive 1D acoustic tool for RF filtering, 

in 2007 IEEE Ultrasonics Symposium 

Proceedings, pp. 1243-1246.  

 [6] A. Reinhardt, S. Joblot, N. Buffet, A. 

Shirakawa, J.B. David, G. Parat, M. Aïd and P. 

Ancey, Simulation of BAW resonators frequency 

adjustment, in 2007 IEEE Ultrasonics 

Symposium Proceedings. 

[7] M. Stein, Large Sample Properties of 

Simulations Using Latin Hypercube Sampling, 

Technometrics. 29, 143–151 (1987). 

[8] H. Niederreinter, Random Number 

generation and Quasi-Monte Carlo Methods 

Siam, (1992). 

[9] T. J. Santner, B. J. Williams, W. I. Notz, The 

Design and Analysis of Computer Experiments, 

Springer, 2003 

[10] C. Helbert, D. Dupuy and L. Carraro, 

"Assessment of uncertainty in computer 

experiments: from universal kriging to bayesian 

kriging", Applied Stochastic Models in Business 

and Industry, 25, 2009,  99-113. 

[11] J. Duchon, "Splines minimizing rotation-

invariant semi-norms in Sobolev space",  

Lecture Notes in Mathematics, vol 571, pp85-

100, 1977 


