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Computer codes based on mathematical 

models of physical systems are important tools in 
many fields of scientific research. Complexity of 
these systems increases due to the higher 
knowledge of kinetic behaviour and accuracy 
wanted. In this context, most of the time, usual 
tools are not sufficient to be as specific as we 
want. For example, ecological problems and 
environmental constraints require developing new 
systems depollution, more and more efficient, 
involving more and more complexity. 

Our work consists in studying a catalytic 
depollution system, the post-treatment through 
NOx trap of smoke produced by diesel engines. 
As a surrogate of the real system, a kinetic model 
was developed to represent the physico-chemical 
phenomenon, depending on parameters (pre 
exponentional factors, activation energies, 
adsorption constants) that cannot be obtained 
from theoretical considerations. Therefore, 
experiments are required to calibrate the model. 

The final objective of this work is to suggest a 
criterion for experimental designs adapted to 
kinetic parameters identification, considering that; 
firstly, the kinetic model does not fit experimental 
data well, secondly the model is highly non linear 
and can be express by ),( βxfy = , where y is the 
response vector (for example the content of 
unburned hydrocarbons), x the experimental 
conditions and β the kinetic parameters of the 
model denoted by the function f. 

In this paper, it is suggested to consider that 
differences observed between kinetic model and 
experimental data can be represented by a 
Gaussian process realization. Gaussian Process 
often accounts for correlated errors due to lack of 
fitness.  

Thus, the following model is suggested, 
)(),( ², xzxfy θσβ += , 

where )(², xz θσ  is a centred Gaussian process 

with Gaussian covariance kernel specified by 
the variance ²σ  and scale parameters θ (see 
section 2 for an example of the covariance 
kernel). This approach is commonly used in 
the field of computer experiments and is 
known as kriging (see Fang et al, [1], Sacks et 
al, [5], Santner et al, [6]). However, in 
traditional use, the trend is linear and trend 
parameters estimation and its uncertainty are 
well known and obtained through an 
analytical formula.  

The first difficulty of our framework is to 
estimate parameters considering the non linear 
trend. Similarly to nonlinear regression, the 
traditional analytical formula for β is replaced 
by a minimisation procedure. This procedure 
gives good results but some problems persist, 
especially high oscillations can be observed 
where response is less variable. Thus, in this 
paper, it is suggested to take into account 
derivatives knowledge. Hence, derivatives are 
supposed to provide useful information for 
kriging evaluation in that particular kinetic 
application, where the process is constant, 
that’s to say at the beginning and at the end of 
the reaction. Besides, since differentiation is a 
linear operator, joint distribution between 
response and derivatives is still Gaussian. 
Thus, inference and prediction will be 
conducted in the same way. 

Following points will be addressed in 
further research to those presented in the 
article. 
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Firstly, approximation of kriging prediction 
variance will be considered. Generalization of 
classical formula for prediction variance is not 
relevant. Alternatively, Bayesian approach to 
account uncertainty in parameters inference could 
be a good issue. 

Secondly, experimental design adapted to our 
model and based on calculus of prediction 
variance is suggested. Our final goal is to combine 
this knowledge of uncertainty and input variables 
uncertainties in order to propose an optimal 
experimental design, which can be compared to 
classical ones: D-optimal Designs adapted to non 
linear problems or traditional space filling designs 
adapted to Gaussian Process. 

All these methods are developed and tested on 
the catalytic system, i.e. on diesel engines smoke 
post-treatment. 

This applied case, the NOx trap system is 
introduced in Section 1, in particular we present 
the inputs, outputs and parameters of the non 
linear model, and global functioning. The theory 
and mechanism of the kriging extended to a non-
linear trend are outlined in Section 2, and the 
results obtained in our studying case, in Section 3. 
Section 4 is devoted to kriging with derivatives. A 
test model is introduced in Section 5. This test 
model is a similar case of the NOx trap but 
simpler. The kriging extansion to non-linear trend 
with derivative information is applied on this test 
model, and results are exposed and discussed in 
Section 6. 

 
1. NOx trap system : Presentation 

 
The NOx trap is a catalytic system of smoke 

post-treatment for diesel engine, built into the 
exhaust line just at the engine output. The NOx 
trap has a dual function; firstly, the traditional 
function of oxidising hydrocarbons, denoted by 
HC, and carbon monoxide, denoted by CO, 
(produced by partial combustion due to a lack of 
oxygen); secondly, the treatment of  the nitrogen 
oxide, NOx. 

The NOx trap is a honeycomb structure with 
porous support impregnated with chemicals 
(platinum, barium, rhodium) in which exhaust gas 
pass trough. It works in two phases; the capture 
phase and the release phase. During the capture 
phase, the NOx contained in the exhaust gas from 

a lean-mixture (oxygen excess) are captured 
and stored on the support. During release 
phase, a chemical process known as reductive 
elimination purges the NOx trap of the stored 
NOx, with the engine operating in rich-burn 
mode, i.e. when the air-fuel mixture has just 
enough air for complete combustion of diesel. 
Nitrogen oxides are converted into neutral 
gases, mainly nitrogen. In this way the NOx 
trap is regenerated and is ready to trap more 
NOx. HC and CO are treated in continuous. 

 

 
Figure 1 NOx trap in the exhaust line 

Our work is done only on the capture 
phase, to reduce the complexity of the 
problem. Due to oxygen excess, in this phase, 
oxidations of HC, CO and NOx are the 
dominant chemical reactions. 

Based on kinetic model retains, a 
computer model was construct, resulting from 
a differential equations system, denoted by f. 
The model can be express by, 

),( βxfy = , 
where y is the response vector, x the 
experimental conditions and β the kinetic 
parameters of the model. Inputs, denoted by x, 
are selected and controlled by the 
experimenter. First of all we have the mass 
flow of gas entering in the NOx trap, denoted 
by Q, then the mass composition of five 
species present in the exhaust gas, denoted by 
ci, i=1,...,5. Those six first inputs are constant 
during a experiment. The last input is the gas 
temperature entering, which is not constant 
during the experiment, but increase as a 
function of time. The temperature profile is 
denoted by T. Hence, 

( )TTcccccQx ,,,,,, 54321=  

As output, we focus on the mass 
composition of the three species mentioned, 
HC, CO and NOx. 
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Twenty experiments were made, 
corresponding to different initial composition and 
mass flow of the gas. From these experiments, 
kinetic parameters were calibrated by generalized 
least-squares. Figures 2 and 3 illustrate the results 
obtained on one case. On the figure 2, the 
evolution of the concentration of CO (blue), HC 
(red) and NOx (green) is representing according 
to the temperature. Solid lines correspond to 
experimental results and dot lines to model 
results. 
 

 
Figure 2 experimental and model CO, HC and NOx 

emission 

 
Figure 3 CO, HC and NOx residues’ between 

experimental and model 

In spite of calibration, differences between 
model and experimental results are important. For 
HC, the overall form of the model is near 
experiment results, but the light-off temperature, 
i.e. the temperature where half of the species is 
converted, is not well determined. In contrary, for 
CO, the light-off is well determined, but the 
model’s form does not represent the experiment 
results. Concerning NOx, the model is very bad. 
To emphasize this difference, Figure 3 presents 
residuals for each specie. Clearly, we also note 
that the problem is non-stationary. 

 
2. Kriging with non-linear trend 

 
Considering that differences observed 

between computer model and experimental 
results can be represented by a Gaussian 
process, the following model is suggested, 

²,( , ) ( )y f x z xσ θβ= + , 

where ( , )f x β is a trend vector, compute by 

computer model, kx ∈ℝ is the inputs and β  

kinetic parameters and where ², ( )z xσ θ is a 

centred Gaussian process, with covariance 
kernel defined by,  

( ( ), ( )) ² ( )Cov z x z x h R hθσ+ = , 

where ²σ is the process variance and θ  is the 
scale parameter. 

Note that Gaussian spatial correlation is 
used, defined by,  

2, ( ) exp .
k

k
i i

i

h R h hθ θ
=

 ∀ ∈ = − 
 
∑ℝ , 

This approach is commonly used in the 
field of computer experiments and is known as 
kriging. However, in traditional use the trend 
is linear. The difficulty is to estimate 
parameters considering the non-linear trend. 

Letm be the number of design points, 

( )1, ,
T

mY Y Y= … is the output observed at 

location ( )1, , ,
T

mS s s= …
k

is ∈ℝ . Similarly to 

non linear regression (see Seber and Wild [7]), 
the traditional analytical formula forβ  is 
replaced by a minimisation procedure. Using 
maximum likelihood estimation, expression of 
the kriging predictor, ˆ,y  and prediction 

variance,ϕ , at a new location 0x  are given by,  
1 1 1 1 1

0ˆ( ) ( ) ( )T T T Ty x rR Y F R r f F R F F R Y− − − − −= − −  

and 

( )1

1
0 ( )

( ) ² 1
T

T

rF R r f
x F R F Rϕ σ −

−

−
= + +  
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where parameters are obtained by solving 
recursively the following simultaneous equations: 

 

( ) ( )

( ) ( )

1

1 1

1
1

ˆ min

ˆ ²

ˆ ˆarg min ²

T

T

m

Y F R Y F

m Y F R Y F

R

β
β

σ

θ σ

−

− −

−

= − −

= − −

 
=  

 

 

Like universal kriging, kriging predictor and 
prediction variance expressions cannot be 
interpreted as conditional expectation and 
variance, for the same reasons outlined in Helbert 
et al, [2]. Besides, prediction variance expression 
depends on the estimation ofβ . 

The algorithm determineŝθ , minimising the 

objective function 1 1ˆ ² | | mRσ − , through modified 
Hooke and Jeeves method, described in Kowalik 
and Osborne, [3]. For more detailed, see 
Lophaven et al, [4]. 
 

3. Application of kriging with a non linear 
trend to the case study 

 
Probabilistic model introduced in section 2 is 

estimated on the learning set composed of 
nineteen experiments. The last one is kept outside 
learning set to test results from estimation. 
Twelve points have been taken uniformly along 
the temperature, on each experiment. Hence, the 
design matrix has 228 points. HC and CO are 
treated independently. 

 

 
Figure 4 CO concentration evolution prediction by non 

linear trend kriging, with 12 points taken uniforml y 
along temperature on the first nineteen experiments 

 
Figure 4 presents predicted curve of CO 

concentration with temperature. Computer model 

result (function ( , )f x β ) is drawn in green dot 
line, experimental result in blue and prediction 
in red. Figure 5 present HC concentration 
evolution prediction. 
 

 
Figure 5 HC concentration evolution prediction by 

non linear trend kriging, with 12 points taken 
uniformly along temperature on the first nineteen 

experiments 

Even if computer model does not fit 
experimental results well, predictions obtained 
by non linear trend kriging, for each output, 
are relatively close to observed results, i.e. Z  
plays a complement role between kinetic 
model an response model of the system. 

However, oscillations appear on initial and 
final stages. Besides the fact that these 
oscillations do not correspond to the results, 
this leads to negative concentrations, which 
has no physical meaning. 

 

 
Figure 6 HC concentration evolution prediction by 

non linear trend kriging, with 15 points taken 
uniformly along temperature on the first nineteen 

experiments 

To limit this phenomenon, it is possible to 
add points in the learning set by more 
discretizing in temperature direction. To 
illustrate this, 15 points have been taken, 
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instead of 12, to predict HC concentration 
evolution. Figure 6 outlined results. 

Oscillations are less strong, but still present. 
Besides, these added points lead to numerical 
problems. Therefore, an envisaged solution to 
avoid these oscillations is to conditionalize 
process to derivatives as well as to responses. 
Theory is introduced in the next section. 
 

4. Conditioning by derivatives : a test 
improvement for kriging with non 
linear trend  

 
From the fact that both initial and final stages 

have a zero derivatives, conditioning kriging by 
derivatives could be a good issue to prevent 
oscillations. Santner and al, [6], introduced 
derivatives conditioning theory for universal 
kriging. 

Let 1m  the design point’s number where 

function value is known, 2m  the design point’s 
number where partial derivative according to the 
first direction is known and exponent (1) denoted 
derivative output. Hence,   

1 2

(1) (1)
1 1( , , , , , )Tm mY Y Y Y Y= … … , 

and

1 2

(1) (1)
1 1( ( , ), , ( , ), ( , ), , ( , ))Tm mF f s f s f v f vβ β β β= … …

The pairwise joint correlation function of ( )Y ⋅ and 
(1)( )Y ⋅  is given by, 

 
(1) 1 1

1

(1) (1) 2 1 1 2
1 1

( ( ), ( )) 2 ( ) ( )

( ( ), ( )) (2 4 ( ) ) ( )

i j i j i j

i j i j i j

Cov Y s Y v s v R s v

Cov Y v Y v v v R v v

θ

θ

θ

θ θ

= − − −

= − − −
 
Hence, 

00 01

01 11
T

R R
R

R R

 
=  
 

, 

where 00R  is the 1 1m m× matrix of correlations 

among the elements of ,iY 11 ,i m≤ ≤  01R  is the 

1 2m m× matrix of correlations between 

iY and (1),jY 21 ,j m≤ ≤  and 11R is the 2 2m m× matrix 

of correlations among the elements of (1)
jY . 

Finally, the correlation vector, ,r  between the 

new location, 0,x and the observed data is defined 

by 0 1( , ) ,Tr r r= where 
10 0 1( ( ))i i mr R x sθ ≤ ≤= −  

and
21 1 0 0 1( 2 ( ) ( ))j j j mr x v R x vθθ ≤ ≤= − − − .  

Kriging equations are the same as the ones 
introduced in section 2. 

In order to improve this method, a test 
model has been constructed, which is 
presented in the next section. The results are 
presented and discussed in section 6. 
 

5. Presentation of test model 
 

In order to test our approach, a model, 
close to our studying case but simpler, is built. 
Model’s characteristics are shown to be 
similar to our case, it means initial and final 
constant stages, non linear problem and a 
computer model which does not fit well 
“experimental results”. Thus, we can make 
analogy between our studying case and this 
one. 

First, consider a simple kinetic system of 
the form, 

A B→  
 
where A  and B  correspond to chemical 
species that react in catalyst presence. This 
system is governed by the following 
equations, depending on Langmuir-
Hinshelwood formalization, 
 

0

0

0 0

exp [ ]
[ ]

1 exp [ ]

[ ]

E
k A

d A RT
Hdt

b A
RT

A A

  − 
  = − ∆  + −   


=

 

 
where [ ]A is the concentration of species A , 

0[ ]A  its initial value, T  the temperature, R  

the perfect gas constant and 

{ }0 0, , ,k E b Hζ = ∆  the kinetic parameter 

vector, chosen to conduct to very different 
concentration evolution of A  depending on 
temperature. 

Hence, inputs are temperature, time and 
initial concentration. Output is concentration 
evolution of A according to the temperature. 
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To make the analogy with studying case, 
results of this system, noted Y, are named 
“experimental results”. 

Secondly, another kinetic system is 
determined, which represent “computer model”, 

 

'
0

0 0

[ ] '
exp [ ]

[ ]

d A E
k A

dt RT

A A

  = − − 
 

 =

. 

 
Let ( , )f x β the model governed by this 

system, whereβ is kinetic parameter vector. 

Parameters on the Gaussian process ², ( )z xσ θ  have 

to be determined, such as, 
 

²,( , ) ( )y f x z xσ θβ= + . 

 
In order to display that this case is similar to 

studying case, figure 7 expose simulations 
obtained through both model. 
 

 
Figure 7 "Experimental results" in  solid line, and 
"Computer model" results in dot line according to 

temperature for 3 initial concentration and time=80sec 

 
Despite of kinetic parameter calibration, 

computer model does not fit experimental results 
well. Besides, the shapes of results correspond to 
studying case, i.e. initial and final constant stages, 
with decreases more or less important. 

Non linear trend kriging with and without 
derivatives information is applied on this test 
model in order to conclude about relevance of 
derivatives knowledge.  
 

6. Non linear trend kriging with 
derivatives information results 

 
For sake of convenience, function and 

derivative values are supposed to be available 
for each design point, i.e. 

1 2,1i is v i m m= ≤ ≤ = . 

Evolution prediction is done on 
experimental design construct as follow. 
Three initial concentrations are chosen, eight 
fixed time and ten temperatures on each 
simulation are determined uniformly. Hence, 
experimental design has 240 points.  

Kriging extended to non linear trend is 
first realized, and then derivative information 
is added, in order to conclude about derivative 
information contribution 

Figure 8 presents results obtained. Red 
lines correspond to prediction, dot one to 
kriging extended to non linear trend, solid one 
to kriging with derivative information. Blue 
solid line corresponds to real result, and black 
points are experimental points taken in this 
experimental condition.  
 

 
Figure 8 Test model prediction by kriging extended 

to non linear trend (red dot line), and kriging 
extended to non linear trend with derivative 

information (red solid line) compare to real results 
(blue line) 

 
Oscillations problem appears to be 

stronger. Due to derivative information, 
prediction is too constraint, involving this 
phenomenon. 

Taking derivative information on all 
design points is not relevant, but in our 
studying case, initial and final constant stages 
only have to be considering for derivative 
conditioning. 
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At the moment of redaction of this paper, 
results are not yet available, further investigations 
have to be done, and this approach should be test 
on our studying case. 
 

7. Conclusions 
 

Two points have been described in this paper. 
Firstly, kriging extended to non linear trend and 
then a test improvement of this method through 
derivative information. 

Kriging with non linear trend gives good 
results but some problems occur. First, numerical 
problems when number of design points increases, 
secondly, oscillations appear where response is 
less variable. 

Use of derivative information where the 
process is constant, that’s to say at the beginning 
and at the end of the reaction seems to be relevant 
to correct this problem, but results obtained, for 
the moment, on test model, tend to demonstrate 
that this is not the case. Anyway, further 
investigations have to be conduct to be sure of our 
conclusion, meanly conditioning by derivative 
information only on both stages. For the moment, 
results are not available. 
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