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ABSTRACT 

This paper is devoted to some recent developments in uncertainty analysis methods of computer codes 
used for accident  management procedures in nuclear industry.  A quick overview on classical probabilistic 
methods for uncertainty methodology is first given. It turns out that despite its attractiveness relying on a simple 
implementation and convenient available tools to study the statistics of the code response, probability theory 
does not provide satisfactory results for uncertainty quantification when the uncertainty is not only of aleatory 
nature. Therefore, a new approach, called the RaFu method, is introduced to avoid choosing a probability 
distribution when it is not justified. It is coupled with an efficient numerical treatment that increases its 
efficiency for industrial studies. Finally, an application of the RaFu method to the evaluation of uncertainty 
margins for a nuclear reactor is given and a comparison with probability-based methods is provided as well.  

1 INTRODUCTION  

        Best estimate computer codes are increasingly used in nuclear industry for the accident 
management procedures and have been planned to be used for the licensing procedures. 
Unlike conservative codes, they attempt to calculate accidental transients in a more realistic 
way. Therefore, it becomes of prime importance, in particular for the French Institut de 
Radioprotection et de Sûreté Nucléaire (IRSN) in charge of safety assessment, to know the 
uncertainty on the results of such best estimate codes. 
 A large majority of uncertainty analysts uses uncertainty methodologies based on a 
probabilistic modelling and Monte-Carlo simulations to propagate the uncertainties through 
their computer codes. However, working within the probability theory framework implicitly 
assumes that all uncertainties are aleatory (i.e. due to the natural variability of an observed 
phenomenon). In practice, uncertainties can arise from imprecision (a variable has a fixed 
value which is badly known due to the lack of data, knowledge or experiment). 
 Therefore, in order to faithfully exploit the state of knowledge, recent works have proposed 
new methodologies leading to a more faithful quantification of uncertainty with respect to the 
available knowledge ([1], [2], [3], [4], [5]).  However, many existing methods are often 
computationally costly and are thus applicable to relatively simple models, which limits the 
efficiency of such approaches in fields (such as nuclear safety) where models can be very 
complex and where computational costs have to be taken into account.  
We propose in this work a new numerical treatment of such methods based on Monte-Carlo 
sampling techniques which reduces the computational cost and can be applied to complex 
models. Moreover, by using notions of order statistics, our method proposes a way to estimate 
the numerical accuracy of the results. The key point of our work mainly consists in setting 



     

 

some decision step before the uncertainty propagation, whereas usual methods postpone this 
step after the propagation. 

 
 Section 2 gives a quick overview on classical probabilistic methods for uncertainty analysis. 
Since it will become clear that this approach does not provide satisfactory results in many 
cases , we introduce, in Section 3, our new method, called the RaFu method. It allows  to 
work within an unified framework to take into account the nature of uncertainty sources and 
to properly represent the real state of knowledge on uncertainties. It leads also to a numerical 
implementation ensuring a minimal computational cost. Finally, an application of the RaFu 
method to uncertainty analysis for a nuclear reactor is given in Section 4  and a comparison 
with probability-based methods is provided as well.  

2 PROBABILISTIC UNCERTAINTY ANALYSIS  

We recall in what follows the four steps of the uncertainty analysis methodology within the 
probabilistic framework: 
 
Step 1: Identification of uncertain parameters  
All important factors affecting the model results must be identified. These factors are 
generally referred to as the “uncertainty sources” or as the “uncertain parameters”. 
Step 2: Quantification of the knowledge about uncertain parameters 
The available information about uncertain parameters is formalized. The uncertainty of each 
uncertain parameter is quantified by a probability density function (pdf). If dependencies are 
known between uncertain parameters (or classes of uncertain parameters) and judged to be 
potentially important, they are also specified by correlation coefficients.  
Step 3: Propagation of uncertainties through the computer code  
The propagation requires, except for very simple computer codes, a coupling between the 
code and a statistical software. The numerical estimation is obtained thanks to Monte-Carlo 
simulations taking into account the pdf and dependencies chosen in the previous step. It leads 
to a sample of the same size for each output quantity.  
Step 4: Treatment and interpretation of the code responses  
The code responses are used to get quantitative insights regarding the output variable. More 
precisely, the output sample is used to get any typical statistics of the code response such as 
mean or variance and to determine the cumulative distribution function (CDF). The CDF 
allows to derive the percentiles of the distribution. Its estimation is crucial for safety 
assessment since the CDF provides an estimation of whether or not the code response is likely 
to exceed a critical value. A simple and robust way to get information on the CDF is to use 
order statistics ([6]). The principle of order statistics is to derive statistical results from the 
ranked values of a sample. If X=(X(1),…,X(L)) denotes the output sample, the key idea is that 
the cumulative distribution of X(k), FX(X(k)), follows the Beta law β(k,L-k+1) which does not 
depend on the distribution of X. Therefore, it is possible to derive confidence intervals for any 
percentiles directly from the sample values without having to determine the probability 
distribution of the random variable. This relevant result is very popular in the safety 
assessment community. It is often used in two ways: when the sample size is fixed, it provides 
the numerical accuracy (due to the finite sample size) associated to the estimation. It also 
gives for a fixed numerical accuracy the minimal sample size (and therefore the minimal 
number of computer runs) to perform in order to reach this accuracy.  
 
The probabilistic model is simple to implement thanks to the uncertainty propagation by 
Monte-Carlo simulations. Moreover, the use of order statistics provides both simple and 



     

 

robust estimators of percentiles for any output quantities. However, the probabilistic approach 
is tailored to handle “aleatory” uncertainty i.e. due to the natural variability or randomness of 
an observed phenomenon. It cannot be reduced by the arrival of new information. It turns out 
that in many applications, a second kind of uncertainty often arises. It results from a lack of 
knowledge or information and one speaks about “epistemic uncertainty”. It can come from 
systematical error (like a measurement which is not fully reliable), from a poor quantity of 
data or from subjective uncertainty (an expert providing imprecise valued quantities). In 
principle, this type of uncertainty can be reduced by increasing the state of knowledge (i.e. 
use of devices giving more precise measurements, expert providing a more informative 
opinion,…).  
 
Recent works ([1]) have shown that classical probabilities tend to confuse the two kinds of 
uncertainty and are not tailored to handle both of them. In practice, it may lead to an 
unjustified reduction of the final uncertainty of the model response and affect the decision-
making process in risk studies. Indeed, in the worst case, because of such an artificial 
reduction, the decision maker could underestimate the risk and accept a too high level of risk 
but a more relevant quantification of uncertainties would have shown that the code response is 
likely to exceed the critical value. For safety reason, it becomes of prime importance to 
provide a new methodology that gives the engineer a tool to measure the impact of a 
misleading modelization of uncertainty due to poor knowledge. 
 
Therefore, we propose in the rest of this paper a new method for uncertainty evaluation 
(called the RaFu method). It allows us to mix different kinds of knowledge representation in 
order to respect the available information about uncertain parameters and about the nature of 
their uncertainty. It also integrates an efficient numerical strategy to reduce the computational 
cost to its minimum.  

3 THE RAFU METHOD 

We describe in the sequel Steps 2, 3 and 4 within the RaFU modelling. 
 

3.1 Quantification of the knowledge about uncertain parameters 

The RaFu ([7]) method allows to handle two kinds of uncertainties: aleatory and epistemic 
uncertainties. As mentioned previously, the probabilistic framework is well appropriate to 
represent aleatory uncertainty. As for epistemic  one, possibility theory ([8]) provides an 
attractive framework to quantify this second type of uncertainty. In particular, possibility 
distributions (Figure 1) are well fitted to the situation where a given variable is described by 
nested confidence intervals  (a natural way to express uncertainty about variables). Moreover,  
a possibility distribution π induces the set of probabilities }{ )(sup)(,/ xAPAPP Ax ππ ∈≤∀= . 

In this sense, a possibility distribution can be seen as a model of partial probabilistic 
information. For example, it can be proved that the probability set induced by a trapezoidal 
possibility distribution (Figure 1, right) contains all the probabilities with the same core (i.e 
the most likely values are located in the same interval, [2;4] in our example) and the same 
support ([1;7]). In other words, if the uncertainty attached to a parameter P is summarized by 
its range of variation ([1;7]) and an interval of values within this range that P is more likely to 
take ([2;4]), then the trapezoidal possibility distribution of Figure 1, right, can be chosen for 
uncertainty quantification. Similarly, if the information related to P is its range of variation 
([2;4]) and its nominal value (3), a triangular possibility distribution (Figure 1, left) is 
appropriate. 
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Figure 1: Example of possibility distributions. Left, triangular possibility, right, trapezoidal 

possibility. 
 
It turns out that the possibility theory is a convenient way to quantify epistemic uncertainty 
but it can lead also to unrealistic uncertainty margins when, in the case of aleatory 
uncertainty, a unique pdf is justified. Therefore, our method allows the analyst to select a 
probability distribution or a possibility one with respect to the nature of uncertainty. This is 
achieved by working in an unified framework for probability and possibility called the theory 
of evidence ([9]). In the same way that the probability theory assigns weights to the different 
values taken by each uncertain parameter (for example all the points within the core of the 
trapezoidal distribution), the idea of the theory of evidence is to put weights on subset of 
values (and not necessarily on single values) such as intervals. 
 
3.2 Propagation of uncertainties through the computer code and treatment of the 

responses  

The propagation is based on an extension of Monte-Carlo simulations and therefore first 
requires a sampling of random (aleatory uncertainty)/badly-known (epistemic uncertainty) 
variables. Note that sampling a random variable gives a value (Figure 2, left) (as in classical 
Monte-Carlo simulations). As for badly-known variables, the sampling (Figure 2, right) is 
performed on the possibility distributions associated to each variable.  We focus in this work 
on convex possibility distributions which are the most encountered in practical studies. 
Therefore, sampling badly-known variables leads to a set of nested intervals called α-cuts (a 
set of nested intervals { }10, ≤≤ ααI  satisfying [1;0]∈∀α , 01 III ⊂⊂ α ) .  

 

Figure 2: Sampling probability (left) and possibility (right) distributions. 
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It is therefore similar to performing Monte-Carlo simulations on intervals (i.e. calculations are 
performed with values at the extreme of each sampled interval). Since both probability and 
possibility are used to model parameters, the output of the computer code is no more a 
random variable but a random fuzzy variable. This also implies that the uncertainty derived 
by this methodology cannot be summarized by a pdf  (or a CDF) but by a pair of lower and 

upper CDFs, ],[ FF , called probability boxes ([10]). The difference between these CDFs 
comes from the lack of knowledge modeled by possibility distributions. 
 

There exist many recent works that handle, like the RaFu method, both aleatory and epistemic 
uncertainties and derive a pair of CDFs. Among them, one can mention the work of Ferson 
and Ginzburg ([1]) and Baudrit et al ([2]) that propose a post-processing technique to extract 
the relevant information from the resulting random fuzzy variable. Up to now, they concern 
very simple models or are computationally costly, which limits their efficiency in fields such 
as nuclear safety where computational cost has to be taken into account.  
On the contrary, the RaFu methodology integrates a computational cost reduction strategy. 
The underlying idea is that in many  studies, the analyst is interested in some particular 
statistical summary (such as α-percentiles, probability of exceeding a given threshold) which 
can be evaluated without building the whole random fuzzy variable. Since the RaFu 
propagation can be seen as an extension of Monte-Carlo simulation to the theory of evidence 
framework, each statistical quantity of interest is directly estimated using standard results 
coming from the probabilistic modelling. Moreover, one can exploit convergence theorems to 
derive the numerical accuracy associated to the limited sample size. The computational cost 
reduction strategy of the RaFu is then to set a decision step before propagating uncertainties 
and leading to an optimal (in term of number of code runs) sampling. More precisely, the 
RaFu method is pre-defined by a triplet of parameters (γS,γE ,γA)  specified  by the analyst: 

• Parameter γS is related to the aleatory uncertainty. It provides the statistical quantity  
the analyst is interested in (usually α-percentiles in safety studies). 

• Parameter γE  is related to the epistemic uncertainty. It determines how α-cuts are 
drawn from possibility distributions according to the behaviour the analyst wants to 
adopt: for example she/he can adopt a pessimistic/optimistic behaviour and set 
α=0/α=1 or a balanced attitude (i.e. random α) in ambiguous situations.  

• Finally, parameter γA measures the desired numerical accuracy on the final result. In 
the case of α-percentile estimation, γA comes from the use of order statistics. 

 
According to the analyst, the RaFu method then determines the minimal sample size and the 
nature of the required sampling to build the wished response. Number of calculations is thus 
reduced to its minimal number, in accordance with the analyst’s choice. Moreover, 
computational cost can be easily evaluated, allowing the analyst to eventually revise her/his 
choices before uncertainty propagation.  It is also possible for her/him to provide the maximal 
number of code runs that can be made and the RaFu method will derive the numerical 
accuracy that can be reached. For example assume that the analyst wants to have an upper 
limit of the response 95%-percentile, to be hyper-cautious about epistemic uncertainty i.e 
concentrate on α=0-cut and to have a numerical certainty of 99% to cover the true value, he or 
she chooses the triplet (γS ,γE, γA)=(0.95,0,0.99). The RaFu method derives the minimal 
sampling size, according to a classical result of order statistics, to satisfy the analyst’s choice, 
here 90 and the nature of the sampling. If 90 is too costly, the analyst can choose to lower the 
numerical accuracy to 95% thus reducing the number of required computations to 59. 
 
Figure 3 displays a flowchart of the RaFu method. 



     

 

 

 

Figure 3: Flowchart of the RaFu method. 

Note that even if the RaFu method deals with aleatory and epistemic uncertainty and is in this 
sense close to Ferson’s and Baudrit et al’s approaches ([1] and [2]), the required number of 
samples leading to the same results can be very different. For example, let us consider that N 
uncertain parameters have been identified with the k first ones of aleatory type and N-k 
remaining ones of epistemic type. Assume that 100 samplings are done on the k first aleatory 
parameters and that for each of them one needs 21 α-cuts (α=(0,0.05,…,1)) to approximate 
the whole random fuzzy variable. Then, 2100 interval calculations are required to build the 
final result when using Ferson’s and Baudrit et al’s approaches. With the RaFu method 
(because the post-processing step has been replaced by a pre-processing one), the number of 
interval calculations is reduced to 200 (resp. 100) to get Ferson’s (resp. Baudrit et al’s) 
results.    

4 APPLICATION OF THE RAFU METHOD TO THE EVALUATION OF  
UNCERTAINTY MARGINS FOR ZION REACTOR 

The numerical test deals with the evaluation of uncertainty margins for a Westinghouse 
nuclear reactor (called Zion reactor) in the frame of the international BEMUSE program 
([11]). This reactor was shut down in 1998 following 25 years in service. The goal here is to 
simulate a hypothetical loss-of-coolant accident in order to study the impact on the peak 
cladding temperature (PCT) of a hot rod in a hot channel which is one of the most important 
quantity involved in safety analyses. The simulation is performed with the computer code 
CATHARE V2.5 mod 6.1 ([12]). It turns out that many input parameters such as correlation 
factor of empirical models, initial and boundary conditions, material properties, etc, are 
uncertain. Therefore, it is crucial for safety issues to analyse the influence of uncertainty 
sources on the uncertainty related to PCT.   
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4.1 Uncertain parameters 

After sensitivity analysis, a list of 10 uncertain parameters (Table 1) has been proposed by 
IRSN. Table 1 provides also the available information related to the range of variation and the 
nominal value associated to each parameter.  
 

Table 1: the 10 most influential uncertain parameters identified by IRSN. 

 
Among these 10 uncertain parameters, IRSN has identified 2 parameters whose uncertainty is  
aleatory (Parameters N°4 and 9). The 8 remaining ones are assumed to be of epistemic nature. 
 
4.2 Numerical tests 

In order to show the capability of our approach, the uncertainty attached to PCT is estimated 
using both probabilistic (i.e. the 10 uncertain parameters are assumed to be of aleatory type) 
and RaFu modellings (i.e. exploiting the knowledge related to the nature of uncertainty).  We 
assume that for computational cost reason, the analyst intends to build a sample of fixed size 
(200) and we compare both probabilistic and RaFu methods. In every test, the statistical 
treatment is performed with the software SUNSET ([13]) developed by IRSN. 

 
Uncertainty quantification 
According to Table 1, the support and the mode (i.e. the most likely value or the nominal 
value in our study) are known. Therefore, we choose a triangular probability (or possibility) 
distribution to represent the available information within each framework. 
 
Uncertainty propagation and statistical treatment 
The propagation is performed by Monte-Carlo simulations from probability distributions 
(probabilistic modeling) and also from probability/possibility ones (RaFu). The statistical 
quantity of interest is the 95%-percentile which is the most relevant quantity to estimate in 
safety studies.  Table 2 summarizes the 3 parameters required for the RaFu propagation.  For 
γE, we assume that the analyst adopts a balanced attitude (compromise between pessimistic 
and optimistic strategies). Since the sample size has been fixed to 200, the RaFu allows us to 
derive the numerical accuracy (i.e. sample size effect) associated to the estimation of the 
percentile. γA is therefore defined by the sample size and the degree of numerical accuracy we 
are interested in (95% here). 
 

Table 2: The three parameters of the decision step within the RaFu modeling. 
γS 0.95 
γE random α-cut  

γA 95%-accuracy, #samples=200 

N° Phenomenon Nom. 
value 

Range 

1 Liquid-wall friction  1 [0.8;1.9] 
2 Fuel conductivity(Tfuel<2000K)  1 [0.9;1.1] 
3 Vapour-wall heat transfer (forced convection regime)  1 [0.5;2] 
4 Peaking factor hot rod 1 [0.95;1.05] 
5 Heat transfer “flashing”  1 [0.05;1] 
6 Initial Upper header mean temperature +10°K  1 [1;4] 
7 Initial loop mass flow rate +/-4% (head pump) 1010 [810;1210] 
8 Friction form loss in the Pressurizer line  1 [0.5;2] 
9 Hot gap size hot rod  1 [0.8;1.2] 
10 Initial Power +/-2% (power before scram)  1 [0.98;1.02] 



     

 

 
The numerical result is then an estimation of the 95% percentile within the probabilistic 
modelling and a couple of type [PCT95,%min,PCT95,%max] when choosing the RaFu approach 
(Figure 4).   

 

 
Figure 4: Estimation of the 95%-percentile with the probabilistic and the RaFu modellings. 

 
Note that the 95% percentile obtained with the probabilistic method is lying between the 
lower and upper percentiles derived from our approach. This is in full agreement with the 
theoretical framework of the RaFu method since each triangular possibility distribution 
associated to epistemic uncertainty induces a partial probabilistic modeling encompassing the 
triangular probability distribution considered in the probabilistic approach.  
 
This figure illustrates two main effects that need to be taken into account if a decision-making 
process follows the uncertainty analysis: 

• Effect of the uncertainty representation with respect to their nature : a difference of 
257°C on the 95%-percentile is noticeable when introducing epistemic uncertainty. 

• Effect of numerical uncertainty: integrating the sample size effect leads to a 
difference of ~20°C in the estimation of the 95%percentile. The numerical 
uncertainty margin is expected to be even larger for smaller sample sizes which is 
often the case when using complex computer codes (~100 simulations usually 
performed).  

5 CONCLUSION 

A new approach, called the RaFu method, has been constructed and applied in this paper to 
uncertainty analysis. Its construction is based on the theory of evidence framework that allows 
to handle both aleatory and epistemic uncertainties in order to respect the real state of 
knowledge. It is coupled with an optimal numerical treatment (based on an extension of 
Monte-Carlo simulations to the theory of evidence framework and on the introdution of a 
decision step before the propagation) that minimizes the required computation and allows the 
analyst to possibly revise her/his desires. Morever, this method offers a way to control the 
numerical accuracy of the result. The RaFu method has successfully been applied to derive 
uncertainty margins for a real nuclear power plant. The results are less precise (i.e an interval 
instead of a value) but are more reliable for safety studies since the nature of uncertainty is 
taken into account and more faithfully represented than in classical probabilistic modeling. 
Moreover, thanks to a numerical strategy, this method is well fitted to uncertainty analysis of 
complex computer codes used in many industrial applications.  
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