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ABSTRACT

This paper is devoted to some recent developmantméertainty analysis methods of computer codes
used for accident management procedures in nuaidastry. A quick overview on classical probatiili
methods for uncertainty methodology is first givrturns out that despite its attractiveness rejydn a simple
implementation and convenient available tools talgtthe statistics of the code response, probglihi€ory
does not provide satisfactory results for uncetyagiuantification when the uncertainty is not oolfiyaleatory
nature. Therefore, a new approach, called the RaEthod, is introduced to avoid choosing a probigbili
distribution when it is not justified. It is couplewith an efficient numerical treatment that in@es its
efficiency for industrial studies. Finally, an ajgaltion of the RaFu method to the evaluation ofentainty
margins for a nuclear reactor is given and a coispamwith probability-based methods is providedvad.

1 INTRODUCTION

Best estimate computer codes are increlgsusgd in nuclear industry for the accident
management procedures and have been planned teedoefor the licensing procedures.
Unlike conservative codes, they attempt to caleudadcidental transients in a more realistic
way. Therefore, it becomes of prime importance particular for the French Institut de
Radioprotection et de Slreté Nucléaire (IRSN) iargh of safety assessment, to know the
uncertainty on the results of such best estimatexo
A large majority of uncertainty analysts uses utaety methodologies based on a
probabilistic modelling and Monte-Carlo simulatiotespropagate the uncertainties through
their computer codes. However, working within threlability theory framework implicitly
assumes that all uncertainties are aleatory (ue.td the natural variability of an observed
phenomenon). In practice, uncertainties can ansen fimprecision (a variable has a fixed
value which is badly known due to the lack of d&teywledge or experiment).

Therefore, in order to faithfully exploit the stadf knowledge, recent works have proposed
new methodologies leading to a more faithful quanatiion of uncertainty with respect to the
available knowledge ([1], [2], [3], [4], [5]). Hoswver, many existing methods are often
computationally costly and are thus applicableedatively simple models, which limits the
efficiency of such approaches in fields (such aslear safety) where models can be very
complex and where computational costs have toksntanto account.

We propose in this work a new numerical treatmérguch methods based on Monte-Carlo
sampling techniques which reduces the computatioosi and can be applied to complex
models. Moreover, by using notions of order stastour method proposes a way to estimate
the numerical accuracy of the results. The key tpofrour work mainly consists in setting



some decision step before the uncertainty propagaivhereas usual methods postpone this
step after the propagation.

Section 2 gives a quick overview on classical phlstic methods for uncertainty analysis.
Since it will become clear that this approach doet provide satisfactory results in many
cases , we introduce, in Section 3, our new methalled the RaFu method. It allows to
work within an unified framework to take into acoduhe nature of uncertainty sources and
to properly represent the real state of knowledgemcertainties. It leads also to a numerical
implementation ensuring a minimal computationaltcégally, an application of the RaFu

method to uncertainty analysis for a nuclear regaist@iven in Section 4 and a comparison
with probability-based methods is provided as well.

2 PROBABILISTIC UNCERTAINTY ANALYSIS

We recall in what follows the four steps of the ertainty analysis methodology within the
probabilistic framework:

Step 1 Identification of uncertain parameters

All important factors affecting the model resultsush be identified. These factors are
generally referred to as the “uncertainty sour@gsis the “uncertain parameters”.

Step 2 Quantification of the knowledge about uncertaingraeters

The available information about uncertain paranseigeiformalized. The uncertainty of each
uncertain parameter is quantified by a probabdignsity function (pdf). If dependencies are
known between uncertain parameters (or classesadriain parameters) and judged to be
potentially important, they are also specified byrelation coefficients.

Step 3 Propagation of uncertainties through the computzde

The propagation requires, except for very simplmpater codes, a coupling between the
code and a statistical software. The numericahedton is obtained thanks to Monte-Carlo
simulations taking into account the pdf and depan@s chosen in the previous step. It leads
to a sample of the same size for each output gyanti

Step 4 Treatment and interpretation of the code responses

The code responses are used to get quantitatigghiagegarding the output variable. More
precisely, the output sample is used to get anigaystatistics of the code response such as
mean or variance and to determine the cumulatigé&rilbution function (CDF). The CDF
allows to derive the percentiles of the distribatidts estimation is crucial for safety
assessment since the CDF provides an estimatis@ther or not the code response is likely
to exceed a critical value. A simple and robust waget information on the CDF is to use
order statistics ([6]). The principle of order s#ts is to derive statistical results from the
ranked values of a sample. If X={X...,.X") denotes the output sample, the key idea is that
the cumulative distribution of &, Fx(X™®), follows the Beta lawB(k,L-k+1) which does not
depend on the distribution of X. Therefore, it aspible to derive confidence intervals for any
percentiles directly from the sample values withbawing to determine the probability
distribution of the random variable. This relevaesult is very popular in the safety
assessment community. It is often used in two waen the sample size is fixed, it provides
the numerical accuracy (due to the finite sampte)sassociated to the estimation. It also
gives for a fixed numerical accuracy the minimainpée size (and therefore the minimal
number of computer runs) to perform in order tahethis accuracy.

The probabilistic model is simple to implement tkerto the uncertainty propagation by
Monte-Carlo simulations. Moreover, the use of ordatistics provides both simple and



robust estimators of percentiles for any outpuingjtias. However, the probabilistic approach
is tailored to handle “aleatory” uncertainty i.eledto the natural variability or randomness of
an observed phenomenon. It cannot be reduced bgrtival of new information. It turns out
that in many applications, a second kind of uneatyeoften arises. It results from a lack of
knowledge or information and one speaks about tepis uncertainty”. It can come from
systematical error (like a measurement which isfalby reliable), from a poor quantity of
data or from subjective uncertainty (an expert fhog imprecise valued gquantities). In
principle, this type of uncertainty can be redubgdncreasing the state of knowledge (i.e.
use of devices giving more precise measuremengereyproviding a more informative
opinion,...).

Recent works ([1]) have shown that classical prditas tend to confuse the two kinds of
uncertainty and are not tailored to handle bothth@fm. In practice, it may lead to an
unjustified reduction of the final uncertainty dfet model response and affect the decision-
making process in risk studies. Indeed, in the tvoese, because of such an artificial
reduction, the decision maker could underestimfaeisk and accept a too high level of risk
but a more relevant quantification of uncertaintiesild have shown that the code response is
likely to exceed thecritical value. For safety reason, it becomes amprimportance to
provide a new methodology that gives the enginedoch to measure the impact of a
misleading modelization of uncertainty due to pkowledge.

Therefore, we propose in the rest of this paperew method for uncertainty evaluation
(called the RaFu method). It allows us to mix diéf& kinds of knowledge representation in
order to respect the available information abowteutain parameters and about the nature of
their uncertainty. It also integrates an efficiaotmerical strategy to reduce the computational
cost to its minimum.

3 THE RAFU METHOD

We describe in the sequel Steps 2, 3 and 4 witl@rRaFU modelling.

3.1 Quantification of the knowledge about uncertain paameters

The RaFu ([7]) method allows to handle two kindsuatertainties: aleatory and epistemic
uncertainties. As mentioned previously, the prolstin framework is well appropriate to
represent aleatory uncertainty. As for epistemioe,goossibility theory ([8]) provides an
attractive framework to quantify this second tydeuacertainty. In particular, possibility
distributions (Figure 1) are well fitted to theusition where a given variable is described by
nested confidence intervals (a natural way to @sguncertainty about variables). Moreover,
a possibility distributionrtinduces the set of probabilitieB, ={P/ A, P(A) < sup,,, 71(X)} .

In this sense, a possibility distribution can bermsexs a model of partial probabilistic
information. For example, it can be proved that phebability set induced by a trapezoidal
possibility distribution (Figure 1, right) contaiadl the probabilities with the same core (i.e
the most likely values are located in the samervate[2;4] in our example) and the same
support ([1;7]). In other words, if the uncertairtiyached to a parameter P is summarized by
its range of variation ([1;7]) and an interval @lwes within this range that P is more likely to
take ([2;4]), then the trapezoidal possibility distition of Figure 1, right, can be chosen for
uncertainty quantification. Similarly, if the infoiation related to P is its range of variation
([2;4]) and its nominal value (3), a triangular pibdity distribution (Figure 1, left) is
appropriate.
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Figure 1: Example of possibility distributions. Lefiangular possibility, right, trapezoidal
possibility.

It turns out that the possibility theory is a coniat way to quantify epistemic uncertainty

but it can lead also to unrealistic uncertainty gives when, in the case of aleatory
uncertainty, a unique pdf is justified. Therefooesr method allows the analyst to select a
probability distribution or a possibility one witlespect to the nature of uncertainty. This is
achieved by working in an unified framework for patility and possibility called the theory

of evidence ([9]). In the same way that the proligitheory assigns weights to the different
values taken by each uncertain parameter (for eleaalpthe points within the core of the

trapezoidal distribution), the idea of the theofyegidence is to put weights on subset of
values (and not necessarily on single values) asahtervals.

3.2 Propagation of uncertainties through the computer ode and treatment of the
responses

The propagation is based on an extension of MoatdeGsimulations and therefore first

requires a sampling of random (aleatory uncertyinéylly-known (epistemic uncertainty)

variables. Note that sampling a random variablegia value (Figure 2, left) (as in classical
Monte-Carlo simulations). As for badly-known vatiedy the sampling (Figure 2, right) is
performed on the possibility distributions assaaulato each variable. We focus in this work
on convex possibility distributions which are theosh encountered in practical studies.
Therefore, sampling badly-known variables leada get of nested intervals callaecuts (a

set of nested intervald,, ,0< a <1} satisfyingOa J0A[, 1, 01, O 1,).
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Figure 2: Sampling probability (left) and possityil(right) distributions.



It is therefore similar to performing Monte-Carlonsilations on intervals (i.e. calculations are
performed with values at the extreme of each samnipierval). Since both probability and
possibility are used to model parameters, the autfhuthe computer code is no more a
random variable but a random fuzzy variable. Ths® amplies that the uncertainty derived
by this methodology cannot be summarized by a fwfa CDF) but by a pair of lower and

upper CDFs,[F,F], called probability boxes ([10]). The differencetiveen these CDFs
comes from the lack of knowledge modeled by pobsildistributions.

There exist many recent works that handle, likeRa&u method, both aleatory and epistemic
uncertainties and derive a pair of CDFs. Among thene can mention the work of Ferson
and Ginzburg ([1]) and Baudrt al ([2]) that propose a post-processing techniquexteact
the relevant information from the resulting randtumzy variable. Up to now, they concern
very simple models or are computationally costlipjcli limits their efficiency in fields such
as nuclear safety where computational cost has taken into account.

On the contrary, the RaFu methodology integratesraputational cost reduction strategy.
The underlying idea is that in many studies, thalyst is interested in some particular
statistical summary (such aspercentiles, probability of exceeding a given siwad) which
can be evaluated without building the whole randbmzy variable. Since the RaFu
propagation can be seen as an extension of Momte-8ianulation to the theory of evidence
framework, each statistical quantity of interestdieectly estimated using standard results
coming from the probabilistic modelling. Moreovene can exploit convergence theorems to
derive the numerical accuracy associated to thiddhrsample size. The computational cost
reduction strategy of the RaFu is then to set astterstep before propagating uncertainties
and leading to an optimal (in term of number of &adns) sampling. More precisely, the
RaFu method is pre-defined by a triplet of paransefie,ye ,ya) specified by the analyst:

» Parametersis related to the aleatory uncertainty. It providies statistical quantity
the analyst is interested in (usualiypercentiles in safety studies).

» Parameterye is related to the epistemic uncertainty. It detewsi howa-cuts are
drawn from possibility distributions according teetbehaviour the analyst wants to
adopt: for example she/he can adopt a pessimigtioistic behaviour and set
o=0/a=1 or a balanced attitude (i.e. randoiin ambiguous situations

* Finally, parametey, measures the desired numerical accuracy on thé riésult. In
the case ofi-percentile estimationa comedrom the use of order statistics.

According to the analyst, the RaFu method thenrdetes the minimal sample size and the
nature of the required sampling to build the wishesponse. Number of calculations is thus
reduced to its minimal number, in accordance witke tanalyst's choice. Moreover,
computational cost can be easily evaluated, allguive analyst to eventually revise her/his
choices before uncertainty propagation. It is g@igssible for her/him to provide the maximal
number of code runs that can be made and the Ra#thoch will derive the numerical
accuracy that can be reached. For example assuahéhth analyst wants to have an upper
limit of the response 95%-percentile, to be hypmartious about epistemic uncertainty i.e
concentrate oa=0-cut and to have a numerical certainty of 99%awer the true value, he or
she chooses the triplets(,ye, v4)=(0.95,0,0.99). The RaFu method derives the mihima
sampling size, according to a classical resultrdépstatistics, to satisfy the analyst’s choice,
here 90 and the nature of the sampling. If 90 éscimstly, the analyst can choose to lower the
numerical accuracy to 95% thus reducing the nuraberquired computations to 59.

Figure 3 displays a flowchart of the RaFu method.
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Figure 3: Flowchart of the RaFu method.

Note that even if the RaFu method deals with algadod epistemic uncertainty and is in this
sense close to Ferson’s and Baudtiaafs approaches ([1] and [2]), the required number of
samples leading to the same results can be vderdalit. For example, let us consider tNat
uncertain parameters have been identified with khfest ones of aleatory type and-k
remaining ones of epistemic type. Assume that HdOpsings are done on tlkdirst aleatory
parameters and that for each of them one needs@itts (=(0,0.05,...,1)) to approximate
the whole random fuzzy variable. Then, 2100 intepzdculations are required to build the
final result when using Ferson’s and Baudkit als approaches. With the RaFu method
(because the post-processing step has been refigaegre-processing one), the number of
interval calculations is reduced to 200 (resp. 1@0)yet Ferson’s (resp. Baudet als)
results.

4  APPLICATION OF THE RAFU METHOD TO THE EVALUATION OF
UNCERTAINTY MARGINS FOR ZION REACTOR

The numerical test deals with the evaluation ofeutainty margins for a Westinghouse
nuclear reactor (called Zion reactor) in the fraofethe international BEMUSE program

([11]). This reactor was shut down in 1998 follog/ig5 years in service. The goal here is to
simulate a hypothetical loss-of-coolant accidentorder to study the impact on the peak
cladding temperature (PCT) of a hot rod in a hanetel which is one of the most important
quantity involved in safety analyses. The simulatis performed with the computer code
CATHARE V2.5 mod 6.1 ([12]). It turns out that mamput parameters such as correlation
factor of empirical models, initial and boundarynddions, material properties, etc, are
uncertain. Therefore, it is crucial for safety issuo analyse the influence of uncertainty
sources on the uncertainty related to PCT.




4.1 Uncertain parameters

After sensitivity analysis, a list of 10 uncertggarameters (Table 1) has been proposed by
IRSN. Table 1 provides also the available inforortielated to the range of variation and the

nominal value associated to each parameter.

Table 1: the 10 most influential uncertain paramsetgentified by IRSN.

N° Phenomenon Nom. Range
value

1 Liquid-wall friction 1 [0.8;1.9]

2 Fuel conductivity(Tfuel<2000K) 1 [0.9;1.1]

3 Vapour-wall heat transfer (forced convection negji 1 [0.5;2]

4 Peaking factor hot rod 1 [0.95;1.05]

5 Heat transfer “flashing” 1 [0.05;1]

6 Initial Upper header mean temperature +10°K 1 [1;4]

7 Initial loop mass flow rate +/-4%head pump) 1010 [810;1210]

8 Friction form loss in the Pressurizer line 1 [0.5;2]

9 Hot gap size hot rod 1 [0.8;1.2]

10 Initial Power +/-2% (power before scram) 1 [0.98;1.02]

Among these 10 uncertain parameters, IRSN hasifigeh? parameters whose uncertainty is
aleatory (Parameters N°4 and 9). The 8 remainimg ane assumed to be of epistemic nature.

4.2 Numerical tests

In order to show the capability of our approacle timcertainty attached to PCT is estimated
using both probabilistic (i.e. the 10 uncertaingmaeters are assumed to be of aleatory type)
and RaFu modellings (i.e. exploiting the knowledglated to the nature of uncertainty). We
assume that for computational cost reason, theystnatends to build a sample of fixed size
(200) and we compare both probabilistic and RaFthaus. In every test, the statistical
treatment is performed with the software SUNSEBJjtleveloped by IRSN.

Uncertainty quantification

According to Table 1, the support and the mode the most likely value or the nominal
value in our study) are known. Therefore, we chams$eangular probability (or possibility)

distribution to represent the available informatwithin each framework.

Uncertainty propagation and statistical treatment

The propagation is performed by Monte-Carlo simaiet from probability distributions
(probabilistic modeling) and also from probabilggésibility ones (RaFu). The statistical
quantity of interest is the 95%-percentile whiclthe most relevant quantity to estimate in
safety studies. Table 2 summarizes the 3 parametquired for the RaFu propagation. For
Ve, we assume that the analyst adopts a balancéddatticompromise between pessimistic
and optimistic strategies). Since the sample sa=eleen fixed to 200, the RaFu allows us to
derive the numerical accuracy (i.e. sample sizecéffassociated to the estimation of the
percentileya is therefore defined by the sample size and theegegf numerical accuracy we

are interested in (95% here).

Table 2: The three parameters of the decisionwitn the RaFu modeling.

Ys 0.95

Ve randoma-cut

Ya 95%-accuracy, #samples=20

N4




The numerical result is then an estimation of tB&oc9percentile within the probabilistic
modelling and a couple of type [P& FminPCTos wmaj When choosing the RaFu approach
(Figure 4).

Methods A [P CTas06,minP CTos96,mad

RaFU metho Numerical uncertain

Probabilistic
methoc

v

934 1072 1210
PCT (°C)

Figure 4: Estimation of the 95%-percentile with pgrebabilistic and the RaFu modellings.

Note that the 95% percentile obtained with the pbilistic method is lying between the
lower and upper percentiles derived from our apgmodhis is in full agreement with the
theoretical framework of the RaFu method since e@@ngular possibility distribution
associated to epistemic uncertainty induces agbgmobabilistic modeling encompassing the
triangular probability distribution considered hretprobabilistic approach.

This figure illustrates two main effects that neede taken into account if a decision-making
process follows the uncertainty analysis:

» Effect of the uncertainty representation with resge their nature : a difference of
257°C on the 95%-percentile is noticeable wheroducing epistemic uncertainty.

« Effect of numerical uncertainty: integrating thengde size effect leads to a
difference of ~20°C in the estimation of the 95%petile. The numerical
uncertainty margin is expected to be even largesifoaller sample sizes which is
often the case when using complex computer cod&f0(-simulations usually
performed).

5 CONCLUSION

A new approach, called the RaFu method, has beestrooted and applied in this paper to
uncertainty analysis. Its construction is basethertheory of evidence framework that allows
to handle both aleatory and epistemic uncertaintie®rder to respect the real state of
knowledge. It is coupled with an optimal numerite@datment (based on an extension of
Monte-Carlo simulations to the theory of evidencanrfework and on the introdution of a
decision step before the propagation) that ministbe required computation and allows the
analyst to possibly revise her/his desires. Moretlegs method offers a way to control the
numerical accuracy of the result. The RaFu methal duccessfully been applied to derive
uncertainty margins for a real nuclear power plahe results are less precise (i.e an interval
instead of a value) but are more reliable for sagttidies since the nature of uncertainty is
taken into account and more faithfully represertteah in classical probabilistic modeling.
Moreover, thanks to a numerical strategy, this metis well fitted to uncertainty analysis of
complex computer codes used in many industrialiegidns.
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