Calculation of high temperature parent orientation maps application to low carbon steels

L. Germain, P. Blaineau, N. Gey & M. Humbert LETAM - CNRS - Université Paul Verlaine METZ

The microstructures of low/medium carbon steels greatly depend on the austenitic (γ) processing and consecutive γ to α ' (bainite or martensite) phase transformations. Unfortunately, it is rarely possible to analyse the γ microstructure from the small fraction of γ retained at room temperature.

Several methods have been applied to characterize the high temperature g microstructure. For example, Bechet-Beaujard etching reveals the austenitic microstructure but is highly irreproducible. Recently we proposed a reconstruction method that automatically calculates the parent orientation maps from the daughter maps in case of the β to α transformation in Titanium and Zirconium alloys. Such a reconstruction method seems also promising in the case of steels. However, it needs to be adapted to the specificities of the γ to α ' transformation.

In this contribution, we present our on-going developments to deduce the shape and orientation of the prior γ grains from the inherited α ' maps. The method was applied to different α ' microtextures measured by EBSD on TRIP or bainitic steels. It was possible to check the reliability of our calculations by comparing the recalculated γ maps to the experimental ones deduced from the low amount of γ retained at room temperature. The results show that, even with a large spread around the γ/α Orientation Relations, the shape and orientation of most of the γ grains are accurately calculated.