## Temporal ConstraintsTechniques

for Autonomous Scheduling
a play in 4 parts

Scheduling: examples
project planning \& scheduling
planning of activities to be executed
in software projects
machine scheduling
allocation of jobs to processors
transportation scheduling
arrival \& departure scheduling of flights
employee scheduling
crew rostering on flights
educational timetabling
timetables at schools and universities
assembly system scheduling
production planning for cars


Example: machine scheduling


## Simple example



Scheduling and constraints
an activity or event $e$ is a process taking space and time.
we characterize events by time point variables and their constraints
start(e) : starting time of event e est(e) : earliest starting time $=\min ($ start $(e))$
end(e) : ending time of event e Ict(e): latest completion time = max(end(e))
d(e) : duration of event e


preemptive vss non-preemptive

preemptive scheduling
interruption is allowed during execution of an event $\quad$ end(e) $\geq$ start(e) $+\mathrm{d}(\mathrm{e})$


EASSS St Etienne august 2010 TUDelft

## precedence constraints


exclusive events:
$e$ and $e^{\prime}$ are exclusive if $e \leqslant e$ ' or $e^{\prime} \leqslant e$


## performance measures

## makespan:

the makespan $\mathrm{F}=\mathrm{C}_{\max }$ of a schedule is the completion time of the last event scheduled.
maximum tardiness
the maximum tardiness is the completion time of the last event scheduled minus the deadline given
average waiting time
the average waiting time is the sum of the starting times of all the jobs divided by the number of jobs

We are most interested in minimizing the makespan of schedules How difficult is that?


## scheduling:

some complexity results

## Basic cases

```
Given a scheduling problem with
one machine (agent) and a set of jobs with durations
there is an efficient algorithm for computing the minimal makespan.
Given a scheduling problem with
two machines (agents) and a set of jobs with durations
there is no efficient algorithm for computing the minimal makespan,
unless \(\mathrm{P}=\mathrm{NP}\). (the problem is NP-hard)
Given a scheduling problem with
one machine (agent) and a set of jobs with durations + precedence constraints, there is no efficient algorithm for computing the minimal makespan, unless \(\mathrm{P}=\mathrm{NP}\).
(will be extended)
TUDelft
```




## autonomous scheduling example

We would like to enable the agents to make their own schedule, starting from a given point in time $z=0$.

Let's look what might happen if only local constraints+ durations are given

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from a given point in time $z=0$

Let's look what might happen if only local constraints+ durations are given

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from a given point in time $z=0$.


## autonomous scheduling example

To ensure a feasible joint schedule, we have to add a (weakest) set of additional constraints

Let's look what might happen if only we add the following constraints to the given set of local constraints+ durations


EASSS St Etienne august 2010 TUDeltt
autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from a given point in time $z=0$.

Let's look what might happen if only local constraints+ durations are given
t's look what might happen if only local constraints+ durations are given

| $\mathrm{A}_{1}$ | deliver bricks <br> $\mathrm{d}=5$ | pickup garbage $d=3$ |  |  | how to find a minimal set of additional constraints? how to find a minimal set of additional constraints preserving makespant |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{2}$ | $\mathrm{d}=5$ | $\mathrm{d}=2$ |  | d=15 |  |
|  | collect garbage | build wall |  | deliver garbage |  |
|  | 0 | 10 | 20 | 30 |  |
| St Etienne august 2010 TUDelft |  |  |  |  |  |

## autonomous scheduling

## First result

Given a set of events with precedence constraints and fixed durations, finding an arbitrary set of additional constraints ensuring conflict-free autonomous scheduling is easy.

## Solution idea

First, take all tasks e such that there is no e' preceding e. Let $E_{1}$ the set of tasks obtained and $d_{1}$ the maximum duration of these tasks. Then, fo every $e^{\prime}$ such that (i) there is an $e$ in $E_{1}$, (ii) $e \leqslant e$ ' and (iii) $e$ and $e^{\prime}$ belong to different agents, add the constraints: end $(e) \leq d_{1}$ and start $\left(e^{\prime}\right) \geq d_{1}$. Continue by obtaining $\mathrm{E}_{2}$ and so on.

## Exercise

Prove that using this idea needs to be refined to constitute a correct solution to the autonomous scheduling problem

## autonomous scheduling

## Example application

The makespan of the optimal schedule is $\max \{5+15,5+2+3\}=20=M$ Adding the required constraints gives:



## autonomous scheduling: variants

- basic variant

Given a set E of events e with fixed durations $\mathrm{d}(\mathrm{e})$ and a precedence ordering $\leqslant$ on E

- extended variant

Given a set E of events with simple linear constraints for start, end times and durations of events e

- full temporal constraint variant

Given a set E of events with arbitrary constraints on start, end times and durations of events e.

EASSS St Etienne august 2010<br>TUDelth

## organisation of the course

- dealing with the general case: the full temporal constraint variant
We will start with an investigation of autonomous scheduling for problems represented by general constraints. This will allow us to characterize the complexity and to point out where the feasible cases are.
- extended variant; dealing with Simple Temporal Problems Then we discuss STPs and autonomous scheduling using the STP formalism. We will discuss a very general technique to solve autonomous scheduling problems here: Temporal Decoupling (TD)
- basic variant: specializing TD to the simple case We specialize the TD technique for STPs to our simple case showing a particularly simple algorithm for solving the autonomous scheduling problem.


## Part II

## Autonomous Scheduling

 usingConstraint Systems
$\qquad$

## Dealing with the general case

We consider constraint systems with temporal variables, having values in a time domain. A solution to such a constraint system is an assignment of variables to time points, i.e., a schedule, satisfying all constraints.

The autonomous scheduling problem in its most general case then is a constraint decomposition problem:

Given a set of variables and constraints and a partitioning of the variables, how to ensure that solutions found for the partitioning induced subsystems constitute a joint solution to the complete system.

## problem specification

distributed problems:
some problems require more than one party to solve them
each party will have to solve a separate part of the total problem;
parts might be interdependent
approach (decomposition + minimal change)
we are looking for methods to minimally change the problem specification in such a way that
(i) solutions are preserved
(ii) each party is able to solve its part independently from the others
(ii) individual solutions can be easily assembled to obtain a total solution.

```
Liverpooi 2009
TUDelft
```


## decomposition: relevance

more efficient problem solving
concurrent decomposition would allow for independent and concurrent solving of smaller subproblems of a given problem.
autonomous computing
complete solutions can be obtained by autonomous "private/local" computations without communicating partial results.
mechanism design
if a feasible total solution has to be obtained, decomposition
guarantees that no solution strategy of an individual agent
can affect the feasibility of the global solution.

## constraints: some background

constraint systems
a constraint system is a tuple $\mathcal{S}=(X, D, C)$ where
$X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is a finite set of variables,
$D=\left\{D_{i}\right\}_{i=1}^{n}$ is a set of domains, where $D_{i}$ is the domain of $x_{i}$,
$C$ is a finite set of constraints for the variables in $X$.

## examples

a set $\Phi$ of propositional formulae over a set of n atoms $A$ is a constraint system $\mathcal{S}=\left(A,\left\{\{0,1\}_{i}\right\}_{i=1}^{n}, \Phi\right)$;
a system of linear equalities $A x=b$ is a constraint system;
a schedule is a set of (temporal) constraints on a set of activities.

## constraints: background (ii)

## solution of a constraint system

a solution $s$ of a constraint system $\mathcal{S}=(X, D, C)$ is an assignment of values $s\left(x_{i}\right) \in D_{i}$ to each variable $x_{i} \in X$ such that all constraints in $C$ are satisfied.
the set of solutions of a constraint system $\mathcal{S}$ is denoted by $\operatorname{Sol}(\mathcal{S})$
note that a solution $s$ can also be represented as a set of constraints $\left\{x_{i}=s\left(x_{i}\right): i=1,2, \ldots, n\right\}$
subsystems generated by a set of vars
Let $\mathcal{S}=(X, D, C)$ be a constraint system and $X^{\prime} \subseteq X$.
The subsystem generated by $X^{\prime}$ is $\mathcal{S}_{X^{\prime}}=\left(X^{\prime}, D_{X^{\prime}}, C_{X^{\prime}}\right)$ where

- $D_{X^{\prime}}$ is the subset of domains for the variables in $X^{\prime}$
- $C_{X^{\prime}}$ is the subset of constraints mentioning only variables in $X^{\prime}$
decomposition: our approach

1. we take a distributed constraint system $\mathcal{S}=\left(\left\{X_{i}\right\}_{i=1}^{n}, D, C\right)$ where $\left\{X_{i}\right\}_{i=1}^{n}$ is a given partitioning of $X$.
2. we take the idea of decomposability to its extreme i.e., we require the subsystems $\mathcal{S}_{i}=\left(X_{i}, D_{X_{i}}, C_{X_{i}}\right)$ to be concurrently and independently solvable such that arbitrary solutions of subsystems can always be joined to constitute a solution of $\mathcal{S}$.
We call such a distributed system concurrently decomposable.
3. if $\mathcal{S}$ is not concurrently decomposable, we would like to find constraint systems $\mathcal{S}^{\prime}$ closely related to $\mathcal{S}$ such that

- $\mathcal{S}^{\prime}$ is concurrently decomposable,
- there exists some polynomial $p$ such that $\left|\mathcal{S}^{\prime}\right| \leq p(|\mathcal{S}|)$
- $\operatorname{Sol}\left(\mathcal{S}^{\prime}\right) \subseteq \operatorname{Sol}(\mathcal{S})$
- 


## decomposition: current research

Decomposition in constraint systems is a technique to split a constraint system $\mathcal{S}$ into several parts $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{k}$ such that

- solving each of the subsystems $\mathcal{S}_{i}$ is easy (or easier)
- a solution $s \in \operatorname{Sol}(\mathcal{S})$ can be easily obtained by applying
a poly-time computable function $f$ (merger) to solutions $s_{i} \in \operatorname{Sol}\left(\mathcal{S}_{i}\right)$
Several such techniques exist:
(hyper)tree decomposition, hinge decomposition, query decomposition, tree clustering
common aspects
- partitioning (covering) of variables is byproduct of the application of a decomposition technique
- result is set of interrelated acyclic subproblems, each of which can be solved efficiently
- decomposition does not result in splitting into independently solvable subproblems


## concurrently decomposable systems

- concurrently decomposable systems
$\mathcal{S}=\left(\left\{X_{i}\right\}_{i=1}^{n}, D, C\right)$ is concurrently decomposable if,
- for all $i=1,2, \ldots, n, \mathcal{S}_{i}=\left(X_{i}, D_{X_{i}}, C_{X_{i}}\right)$
$-\operatorname{Sol}\left(\mathcal{S}_{1}\right) \times \operatorname{Sol}\left(\mathcal{S}_{2}\right) \times \ldots \times \operatorname{Sol}\left(\mathcal{S}_{n}\right) \subseteq \operatorname{Sol}(\mathcal{S})$
- simple consequence
a constraint system $\mathcal{S}_{i}=\left(X_{i}, D_{X_{i}}, C_{X_{i}}\right)$ is concurrently decomposable iff $\cup_{i=1}^{n} C_{X_{i}} \models C$.


## complexity (i)

Deciding whether a distributed constraint system
$\mathcal{S}=\left(\left\{X_{i}\right\}_{i=1}^{n}, D, C\right)$ is concurrently decomposable, is coNP-complete.

## proof

i) no-instances are easily verified.
ii) LOGICAL CONSEQUENCE can be easily reduced to the concurrent decomposability problem.
Take an instance ( $U, C, C$ ) of LOGICAL CONSEQUENCE and consider a system $S$ where the constraints are $C \cup\{c \vee x\} \cup\{\neg x\}$ and the partitioning of variables is $\{U,\{x\}\}$.

It follows that coNP-completeness already holds for distributed constraint systems where the partition contains only two blocks.

## changing to a decomposable S

idea
if a distributed system $\mathcal{S}$ is not concurrently decomposable, change it to a new system $\mathcal{S}^{\prime}$ such that $\operatorname{Sol}\left(\mathcal{S}^{\prime}\right) \subseteq \operatorname{Sol}(\mathcal{S})$.

## example

Agent $A$ has to choose between $x, y$ and $z$ (exclusive), while Agent $B$ has to choose between $y$ and $z$, and between $u$ and $v$ (also exclusive). Together only $\leq 2$ objects can be chosen.

Independent choices cannot be made, as e.g. $x, z$ and $u$ might be chosen. An obvious solution is to restrict the choices of both $A$ and $B$ to choosing between $y$ and $z$.

## changing to a decomposable $S$

## idea

if a distributed system $\mathcal{S}$ is not concurrently decomposable, change it to a new system $\mathcal{S}^{\prime}$ such that $\operatorname{Sol}\left(\mathcal{S}^{\prime}\right) \subseteq \operatorname{Sol}(\mathcal{S})$

## questions

How difficult is it to find a feasible alternative $\mathcal{S}^{\prime}$ ?
How difficult is it to find an alternative $\mathcal{S}^{\prime}$ that
comes as close to the original system $\mathcal{S}$ as possible?

## finding an alternative S'

arbitrary solution guaranteed (if system is consistent)
Consider a consistent $\mathcal{S}=\left(\left\{X_{i}\right\}_{i=1}^{n}, D, C\right)$. Then there exists a solution $s \in \operatorname{Sol}(\mathcal{S})$;
Add the equality constraints $x_{i}=s\left(x_{i}\right)$ to $C$.
The resulting system will have $s$ as its unique solution and every agent is forced to choose sxi as its solution

## finding an alternative S'

finding a concurrently decomposable alternative is
polynomially related to finding a solution for the
original system:
Let C be a class of constraint systems.
Then there exists a polynomial algorithm to find a solution
for every $S$ in C iff
there exists a polynomial algorithm that, given $S$ in C and
an arbitrary partitioning of $X$, finds a decomposable alternative for $S$.
proof (sketch):
$(=>)$ add solutions fund as equalities to constraints of system
(< $=$ ) take the finest partitioning of $X$; solutions to polynomially bounded sets
of unary constraints can be found in polynomial time. So solve each of the parts of the system; decomposability guarantees composition.

## finding a minimal solution

- semantical approach
maximize the set of solutions $\operatorname{Sol}\left(\mathcal{S}^{\prime}\right)$ subject to $\operatorname{Sol}\left(\mathcal{S}^{\prime}\right) \subseteq \operatorname{Sol}(\mathcal{S})$
idea: find additional constraints to $C$ such that $\left|\operatorname{Sol}(\mathcal{S})-\operatorname{Sol}\left(\mathcal{S}^{\prime}\right)\right|$ is minimized.
- syntactical approach
minimize the amount of change necessary to obtain the resulting system $\mathcal{S}^{\prime}$
idea: measure the difference in the size of the constraint sets of $\mathcal{S}$ and of $\mathcal{S}^{\prime}$


## finding a minimal solution

- semantical approach
maximize the set of solutions $\operatorname{Sol}\left(\mathcal{S}^{\prime}\right)$ subject to $\operatorname{Sol}\left(\mathcal{S}^{\prime}\right) \subseteq \operatorname{Sol}(\mathcal{S})$
idea: find additional constraints to $C$ such that $\left|\operatorname{Sol}(\mathcal{S})-\operatorname{Sol}\left(\mathcal{S}^{\prime}\right)\right|$
is minimized.
NP-hard even if the cardinality of the set of solutions is poly-sized
- syntactical approach
minimize the amount of change necessary to obtain the resulting system $\mathcal{S}^{\prime}$
idea: measure the difference in the size of the constraint sets of $\mathcal{S}$ and of $\mathcal{S}^{\prime}$.
$\Sigma_{2}^{p}$-complete even for the most simple distributed constraint systems



## Part III

Autonomous scheduling using

Simple Temporal Networks
$\qquad$

We discuss the autonomous scheduling problem
using a constraint system that allows for efficient solution finding.

Hence, using such a constraint system, the autonomous scheduling problem can also be solved efficiently.

The constraints allowed are differences t ' $-\mathrm{t} \leq \mathrm{d}$
between time points bounded above by a constant.

## simple temporal plans



## Small example

Two trains A and B meet each other at a platform. Train A arrives at 12.00 hrs and stops at most 5 minutes. Train B must arrive at least 2 minutes later than A, and must leave within 3 minutes after $A$ leaves. $B$ stays at most 7 minutes and at least 2 minutes When does $A$ leave, $B$ arrive and $B$ leave?


## Small example

Two trains $A$ and $B$ meet each other at a platform. Train A arrives at 12.00 hrs and stops at most 5 minutes. Train B must arrive at least 2 minutes later than A, and must leave within 3 minutes after A leaves. $B$ stays at most 7 minutes and at least 2 minutes. When does A leave, B arrive and B leave?

time points
$t_{A}, t_{B}$ : arrival of $A, B \quad z_{0}$ : time reference
$t^{\prime} A, t_{B}:$ departure of $A, B$

| constraints |  |
| :---: | :--- |
| $z_{0}=12.00$ | $t_{B}-t_{A} \geq 2$ |
| $0 \leq t_{A}-z_{0} \leq 0$ | $t^{\prime} B-t^{\prime} A \leq 3$ |
| $t^{\prime} A-t_{A} \leq 5$ | $2 \leq t^{\prime} B-t_{B} \leq 7$ |

transforming constraints to standard form $\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \mathrm{a}_{\mathrm{ij}}$

## Small example

Two trains $A$ and $B$ meet each other at a platform. Train A arrives at 12.00 hrs and stops at most 5 minutes. Train B must arrive at least 2 minutes later than A, and must leave within 3 minutes after $A$ leaves. $B$ stays at most 7 minutes and at least 2 minutes. When does $A$ leave, $B$ arrive and $B$ leave?


| time points |
| :--- |
| $t_{A}, t_{B}:$ arrival of $A, B$ |
| $t^{\prime} A, t_{B}:$ departure of $A, B$ |


| constraints |  |  |
| :--- | :--- | :--- |
| $z_{0}=12.00$ | $t_{A}-t_{B} \leq-2$ |  |
| $0 \leq t_{A}-z_{0} \leq 0$ | $t^{\prime} B-t_{A} \leq 3$ |  |
| $t^{\prime} A-t_{A} \leq 5$ | $t^{\prime}{ }_{B}-t_{B} \leq 7$ | $t_{B}-t^{\prime} B \leq-2$ | representation in Simple Temporal Plans

 ${ }^{49}$

## Small example

Two trains $A$ and $B$ meet each other at a platform Train A arrives at 12.00 hrs and stops at most 5 minutes. Train B must arrive at least 2 minutes later than A, and must leave within 3 minutes after A leaves.
$B$ stays at most 7 minutes and at least 2 minutes When does $A$ leave, $B$ arrive and $B$ leave?
time points
$t_{A}, t_{B}$ : arrival of $A, B \quad z_{0}$ : time reference
$t^{\prime}$, $\mathrm{t}^{\prime} \mathrm{B}$ : departure of $\mathrm{A}, \mathrm{B}$

| constraints |  |  |
| :--- | :--- | :--- |
| $z_{0}=12.00$ | $t_{A}-t_{B} \leq-2$ |  |
| $0 \leq t_{A}-z_{0} \leq 0$ | $t^{\prime} B-t_{A}^{\prime} \leq 3$ |  |
| $t^{\prime} A_{A}-t_{A} \leq 5$ | $t^{\prime} B-t_{B} \leq 7$ | $t_{B}-t^{\prime} B \leq-2$ |

EASSS 2010


## Simple Temporal Plans

A Simple Temporal Plan (STP) is a tuple $\mathrm{S}=(\mathrm{T}, \mathrm{C})$
where

- $T$ is a set of time-points and
-C is a set of binary constraints of the form $\mathrm{t}^{\prime}-\mathrm{t} \leq \delta$
Simple Temporal Plan

| $\mathrm{S}=(\mathrm{T}, \mathrm{C})$ |
| :---: |
| $T=\left\{z_{0}, t_{A}, t_{B}, t^{\prime}{ }^{\prime}, t^{\prime} B\right\}$ |
| $C= \begin{cases}z_{0}=12.00, & t_{A}-t_{B} \leq-2, \\ 0 \leq t_{A}-z_{0} \leq 0, & t_{A}^{\prime}-t_{A} \leq 5, \\ & t_{B}{ }^{\prime}-t_{A}^{\prime} \leq 3, \\ & t_{B}-t_{B}-t_{B} \leq 7, \\ B & \end{cases}$ |

## Simple Temporal Plans

An STN $S=(T, C)$ can also be represented by a labeled directed graph

$$
\mathrm{G}_{\mathrm{s}}=(\mathrm{T}, \mathrm{E}, \mathrm{I})
$$

called a Simple Temporal Network (STN) or Distance Graph
Nodes are time points, labeled edges are derived from constraints: $t^{\prime}-t \leq \delta \leftrightarrow t \xrightarrow{\delta}$
Simple Temporal Plan
Simple Temporal Network


EASSS 2010


## STN: solution \& consistency

A solution to an STN $S=(T, C)$ is an assignment $\left\{t_{i}=v_{i}: t_{i} \in T\right\}$ of values to variables that satisfies all constraints.

The set of solutions of $S$ is denoted as $\mathrm{Sol}(\mathrm{S})$
$S$ is consistent iff $S o l(S) \neq \varnothing \quad S$ equivalent to $S^{\prime}$ iff $S o l(S)=S o l\left(S^{\prime}\right)$


EASSS 2010
$\frac{\text { TUDelft }}{54}$

## STN: solution \& consistency

A solution to an STN $S=(T, C)$ is an assignment $\left\{t_{i}=v_{i}: t_{i} \in T\right\}$ of values to variables that satisfies all constraints.

The set of solutions of $S$ is denoted as $\mathrm{Sol}(\mathrm{S})$
$S$ is consistent iff $S o l(S) \neq \varnothing \quad S^{\prime}$ equivalent to $S^{\prime}$ iff $S o l(S)=S o l\left(S^{\prime}\right)$

| Solution 1: | Solution 2: |
| :--- | :--- | :--- |
| $z_{0}=0$ | $z_{0}=0$ |
| $t_{A}=0$ | $z_{0}=0$ |
| $t_{A}=0$ |  | TUD

## Distance Graph

explicit constraints can be combined to imply other constraints:

| constraints | some implied constraints |
| :---: | :---: |
| $\mathrm{t}^{\prime}{ }^{\text {- }} \mathrm{t}_{\mathrm{A}} \leq 5$ | $t^{\prime} B-t_{B} \leq\left(t^{\prime} B-t_{A}^{\prime}\right)+\left(t_{A}-t_{A}\right)+\left(t_{A}-t_{B}\right)$ |
| $\begin{aligned} & t_{A}-t_{B} \leq-2 \\ & t_{B}-t_{B} \leq-2 \end{aligned}$ | $\left.\begin{array}{rl}  & \leq 3 \\ & =6 \end{array}\right)+5+-2$ |
| $t_{B}^{\prime}-t^{\prime} A \leq 3$ |  |



## 

Look at the labels of the edges as distances between the corresponding nodes. Finding a tighter constraint comes down to finding a shorter path.

## Distance Graph

explicit constraints can be combined to imply
other constraints:

| constraints | some implied constraints |
| :---: | :---: |
| $\mathrm{t}^{\prime}-\mathrm{t}_{\mathrm{A}} \leq 5$ | $t^{\prime} B-t_{B} \leq\left(t^{\prime} B-t^{\prime} A\right)+\left(t^{\prime} A-t_{A}\right)+\left(t_{A}-t_{B}\right)$ |
| $t_{A}-t_{B} \leq-2$ | $\leq 3+5+-2$ |
| $\mathrm{t}_{\mathrm{B}}-\mathrm{t}^{\prime} \mathrm{B} \leq-2$ |  |
| $\mathrm{t}^{\prime}-\mathrm{t}^{\prime} \leq \leq 3$ |  |
| $\mathrm{t}^{\prime} \mathrm{B}-\mathrm{t}_{\mathrm{B}} \leq 7$ | $\begin{aligned} & \leq 5+-2+-2 \\ & =1 \end{aligned}$ |

strongest constraints in STP correspond to shortest paths in STN
table of all (strongest) implied constraints


## Distance Matrix

Strongest constraints in STP correspond to shortest paths in STN.

The distance matrix $D_{s}$ for an STN
$\mathrm{S}=(\mathrm{T}, \mathrm{C})$ is defined as:


Gs:

$D\left(t_{i}, t\right)=$ length of shortest path from $t_{i}$ to $t_{j}$ in the distance graph of $S$ or $\infty$ if no such path exists

Given the distance graph $\mathrm{G}_{\mathrm{s}}$ there are well-known efficient algorithms to compute the distance matrix

Example: all-pairs shortest path algorithm
$D()$


## checking consistency

Given an STN S with its graph $\mathrm{G}_{\text {s }}$ and distance graph D , the following statements are
equivalent:
S is consistent

- D has only O's on its diagonal this property can be checked in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- $G$ has no negative cycles

| original constraint matrix |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $z_{0}$ | $t_{\text {A }}$ |  | $t_{B}$ | 'в |
| zo | 0 | 0 | 5 | $\infty$ | $\infty$ |
| tA | 0 | 0 | 5 | 6 | 8 |
| $\mathrm{t}^{\prime}$ A | $\infty$ | $\infty$ | 0 | $\infty$ | 3 |
| $\mathrm{t}_{\mathrm{B}}$ | $\infty$ | -2 | $\infty$ | 0 | 7 |
| t'B | $\infty$ | $\infty$ | $\infty$ | -2 | 0 |



## finding solutions

Given an STN $S$ with its distance graph $D$, if $D$ does not contain negative diagonal elements,

- the set $\left\{\mathrm{t}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}_{\mathrm{i}}\right): \mathrm{i}=1,2, \ldots \mathrm{n}\right\} \cup\left\{\mathrm{z}_{0}=0\right\}$ is a solution
- the set $\left\{\mathrm{t}_{\mathrm{i}}=-\mathrm{D}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{z}_{0}\right): \mathrm{i}=1,2, \ldots \mathrm{n}\right\} \cup\left\{\mathrm{z}_{0}=0\right\}$ is a solution


## Why

original constraint matrix
zo tA t'A tB $t_{B}$


$z_{0} \quad$| 0 | 0 | 5 | $\infty$ | $\infty$ |
| :--- | :--- | :--- | :--- | :--- |
|  | 0 |  | 5 | 6 |


| $z_{0}$ | 0 |  | 5 | $\infty$ | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{A}$ | 0 | 0 | 5 | 6 | 8 |
| $\mathrm{t}^{\prime} A$ | $\infty$ | $\infty$ | 0 | $\infty$ | 3 |
| $\mathrm{t}_{\mathrm{A}}$ | $\infty$ | -2 | $\infty$ | 0 | 7 |
| $\mathrm{t}^{\prime} B$ | $\infty$ | $\infty$ | $\infty$ | -2 | 0 |

all-pairs shortest path computation $\mathrm{O}\left(\mathrm{n}^{3}\right)$

## finding solutions

Given an STN S with its distance graph $D$, if $D$ does not contain negative diagonal elements,
the set $\left\{\mathrm{t}_{\mathrm{i}}=\mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}_{\mathrm{i}}\right): \mathrm{i}=1,2, \ldots \mathrm{n}\right\} \cup\left\{\mathrm{z}_{0}=0\right\}$ is a solution

- the set $\left\{\mathrm{t}_{\mathrm{i}}=-\mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right): \mathrm{i}=1,2, \ldots \mathrm{n}\right\} \cup\left\{\mathrm{z}_{0}=0\right\}$ is a solution


Take an arbitrary constraint $\mathrm{t}^{\prime}-\mathrm{t} \leq \delta$. We have $D\left(z_{0}, t^{\prime}\right) \leq D\left(z_{0}, t\right)+D\left(t, t^{\prime}\right) \leq D\left(z_{0}, t\right)+\delta$ Hence, $D\left(z_{0}, t^{\prime}\right)-D\left(z_{0}, t\right) \leq \delta$.
So the first set of solutions satisfies every constraint. Likewise,
$D\left(t, z_{0}\right) \leq D\left(t, t^{\prime}\right)+D\left(t^{\prime}, z_{0}\right) \leq \delta+D\left(t^{\prime}, z_{0}\right)$
Hence, $-D\left(t^{\prime}, z_{0}\right)+-D\left(t, z_{0}\right) \leq \delta$
So the second set of solutions satisfies every
constraint.
EASSS 2010
distance matrix $\mathrm{D}=\left[\mathrm{d}\left(\mathrm{t}_{\mathrm{t}} \mathrm{t}^{\prime}\right)\right]$

general recipe for solutions
sol := $\varnothing$
while $T \neq \varnothing$
select some $v \in[-D(t, z o), D(z o, t)]$
add constraint $\{t=v\}$ to STN and update the distance matrix $D$; remove row and column $t$ from $D$; sol := sol $\cup\{t=v\}$

## general recipe for solutions

sol := $\varnothing$
while $T \neq \varnothing$
select some $v \in[-D(t, z o), D(z o, t)]$
add constraint $\{t=v\}$ to STN and update the distance matrix $D$;
remove row and column $t$ from $D$;
sol := sol $\cup\{t=v\}$

general recipe for solutions

```
sol := \varnothing
while \(T \neq \varnothing\)
select some \(v \in\left[-D\left(t, z_{0}\right), D\left(z_{0}, t\right)\right]\)
add constraint \(\{t=v\}\) to STN and update the distance matrix \(D\); remove row and column \(t\) from \(D\); sol := sol \(\cup\{t=v\}\)
```


general recipe for solutions

## sol $:=\varnothing$

while $T \neq \varnothing$
select some $v \in\left[-D\left(t, z_{0}\right), D\left(z_{0}, t\right)\right]$
add constraint $\{t=v\}$ to STN and update the distance matrix $D$;
remove row and column $t$ from $D$;
sol := sol $\cup\{t=v\}$

distance matrix $\mathrm{D}=\left[\mathrm{D}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)\right]$
start with $t_{A} \in[0,0]$; select $t_{A}=0$
take $t_{B} \in[2,6]$; select $t_{B}=4$; update
take $t^{\prime} A \in[3,5]$; select $t^{\prime} A=3$; update

general recipe for solutions

```
sol:=\varnothing
while}T\not=
    select some v }\in[-D(t,zo),D(zo,t)
    add constraint {t=v} to STN and update the distance matrix D;
    remove row and column t from D;
    sol:= sol \cup{t=v}
```

take $t_{A} \in[0,0]$; select $t_{A}=0$; update
take $t_{B} \in[2,6]$; select $t_{B}=4$; update
take $t^{\prime}{ }_{A} \in[3,5]$; select $\mathrm{t}^{\prime} A=3$; update
take $\mathrm{t}^{\prime} \in[6,6]$; select $\mathrm{t}^{\prime} \mathrm{B}=6$
distance matrix $\mathrm{D}=\left[\mathrm{D}\left(\mathrm{t}, \mathrm{t}^{\mathrm{t}}\right)\right]$


## adding constraints to S

```
Let D be a distance matrix of a consistent STN S
Let c: t-\mp@subsup{t}{}{\prime}\leq\delta be a new constraint and S'=S + c.
Then
    - S' is consistent if \delta\in[-D(t',t),D(t,t')]
    - S' is inconsistent if \delta <-D[t',t]
```

D


adding constraints to $S$
Let $D$ be a distance matrix of a consistent STN S.
Let $\mathrm{c}: \mathrm{t}-\mathrm{t}^{\prime} \leq \delta$ be a new constraint and $\mathrm{S}^{\prime}=\mathrm{S}+\mathrm{c}$.
Then

- $S^{\prime}$ is consistent if $\delta \in\left[-D\left(t^{\prime}, t\right), D\left(t, t^{\prime}\right)\right]$
- $S^{\prime}$ is inconsistent if $\delta<-D\left[t^{\prime}\right.$, t]

D

ASSS 2010

## temporal decoupling

In finding solutions, we assumed that one agent controls the assignment of values to all the variables.

What happens if there is more than one agent and every agent $A_{i}$ controls a disjoint subset $T_{i}$ of time-point variables?

Each of these agents $A_{i}$ wants to determine a local solution to the sub-STN $S_{i}$ generated by its set $T_{i}$.

We are facing a major problem here

temporal decoupling: example
Consider the train example discussed before.
Train A and Train B would like to determine their schedule
independently from each other.
Suppose:
A chooses Sol $\left(S_{A}\right) \ni\left\{t_{A}=0, t^{\prime} A=2\right\}$
B chooses $\mathrm{Sol}_{\mathrm{B}}\left(\mathrm{S}_{\mathrm{B}}\right) \ni\left\{\mathrm{t}_{\mathrm{B}}=3, \mathrm{t}_{\mathrm{B}}=6\right\}$


TUDeltt
temporal decoupling: example


## temporal decoupling: method

Take an arbitrary constraint $\mathrm{t}^{\prime}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ such that t and $\mathrm{t}^{\prime}$ belong to different blocks. Consider the intra-agent constraints $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}^{\prime}\right), \mathrm{z}_{0}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right)$.


If $D\left(t, z_{0}\right)+D\left(z_{0}, t^{\prime}\right)>D\left(t, t^{\prime}\right)$ then $t^{\prime}-t \leq D\left(t, t^{\prime}\right)$ is not implied by $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}^{\prime}\right), \mathrm{z}_{0}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right)$
We can ensure implication of $t^{\prime}-t \leq D\left(t, t^{\prime}\right)$ by intra-agent constraints by tightening $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}^{\prime}\right)$ and $\mathrm{z}_{0}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right)$

Method: Choose $\delta_{t}$ and $\delta_{t^{\prime}}$ such that

1. $-D\left(z_{0}, t\right) \leq \delta_{t}<D\left(t, z_{0}\right)$
2. $-D\left(t, z_{0}\right) \leq \delta_{t^{\prime}}<D\left(z_{0}, \mathrm{t}^{\prime}\right)$
3. $\delta_{t}+\delta_{t^{\prime}} \leq D\left(t, t^{\prime}\right)$

Add constraints $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \delta_{\mathrm{t}}$ and $\mathrm{z}_{0}-\mathrm{t} \leq \delta_{\mathrm{t}}$ to S compute new distance matrix.
temporal decoupling: method

Take an arbitrary constraint $\mathrm{t}^{\prime}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ such that t and $\mathrm{t}^{\prime}$ belong to different blocks. Consider the intra-agent constraints $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}^{\prime}\right), \mathrm{z}_{0}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right)$.


If $D\left(t, z_{0}\right)+D\left(z_{0}, t^{\prime}\right)>D\left(t, t^{\prime}\right)$ then $t^{\prime}-t \leq D\left(t, t^{\prime}\right)$ is not implied by $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}^{\prime}\right), \mathrm{z}_{0}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right)$
We can ensure implication of $\mathrm{t}^{\prime}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ by intra-agent constraints by tightening $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}^{\prime}\right)$ and $\mathrm{z}_{0}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right)$

Method: Choose $\delta_{t}$ and $\delta_{t^{\prime}}$ such that

1. $-D\left(z_{0}, t\right) \leq \delta_{t}<D\left(t, z_{0}\right)$
2. $-\mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right) \leq \delta_{\mathrm{t}^{\prime}}<\mathrm{D}\left(\mathrm{zo}_{0}, \mathrm{t}^{\prime}\right)$
3. $\delta_{t}+\delta_{t^{\prime}} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$

Add constraints $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \delta_{\mathrm{t}^{\prime}}$ and $\mathrm{z}_{0}-\mathrm{t} \leq \delta_{\mathrm{t}}$ to S compute new distance matrix
temporal decoupling: method

Take an arbitrary constraint $\mathrm{t}^{\prime}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ such that t and $\mathrm{t}^{\prime}$ belong to different blocks. Consider the intra-agent constraints $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \mathrm{D}\left(\mathrm{z}_{0}, \mathrm{t}^{\prime}\right), \mathrm{z}_{0}-\mathrm{t} \leq \mathrm{D}\left(\mathrm{t}, \mathrm{z}_{0}\right)$.


If $D\left(t, z_{0}\right)+D\left(z_{0}, t^{\prime}\right)>D\left(t, t^{\prime}\right)$
is implied by $\mathrm{t}^{\prime}-\mathrm{z}_{0} \leq \delta_{\mathrm{t}^{\prime}}$ and $\mathrm{z}_{0}-\mathrm{t} \leq \delta_{\mathrm{t}}$ it can be removed from $S$ without any consequence.

This procedure can be repeated for every inter agent constraint not implied by intra-agent constraints.
The resulting system is a decoupled STN
 ( TUDelt ${ }^{75}$

Temporal Decoupling in action


Step 1: ensure that $t_{A}-t_{B} \leq-2$. This constraint is implied. remove it.

Temporal Decoupling in action


Step 1: take $\mathrm{t}_{\mathrm{A}}-\mathrm{t}_{\mathrm{B}} \leq-2$. This constraint is implied remove it.

Step 2: take $t_{B}-t_{A} \leq 6$
This constraint is implied. remove it.

Temporal Decoupling in action


Step 1: take $t_{A}-t_{B} \leq-2$ This constraint is implied. remove it.
Step 2: take $\mathrm{t}_{\mathrm{B}}-\mathrm{t}_{\mathrm{A}} \leq 6$. This constraint is implied. remove it.

Step 3: take $\mathrm{t}_{\mathrm{B}}$ - $\mathrm{t}_{\mathrm{A}} \leq 3$. This constraint is not implied. Take $z_{0}-\mathrm{t}^{\prime} \mathrm{A} \leq-3$ and $\mathrm{t}^{\prime} \mathrm{B}-\mathrm{Z}_{0} \leq 6$. Then $\mathrm{t}^{\prime} \mathrm{B}-\mathrm{t}^{\prime} \mathrm{A} \leq 3$ is implied. Update D.

## Temporal Decoupling in action



Step 1: take $t_{A}-t_{B} \leq-2$
This constraint is implied remove it.
Step 2: take $\mathrm{t}_{\mathrm{B}}-\mathrm{t}_{\mathrm{A}} \leq 6$. This constraint is implied. remove it.

Step 3: take $\mathrm{t}_{\mathrm{B}}$ - $\mathrm{t}_{\mathrm{A}} \leq 3$.
This constraint is not implied.
Take $z_{0}-t^{\prime} A \leq-3$ and $t^{\prime} B-z_{0} \leq 6$.
Then $\mathrm{t}^{\prime} \mathrm{B}$ - $\mathrm{t}^{\prime} \mathrm{A} \leq 3$ is implied.
Update D and remove $\mathrm{t}^{\prime} \mathrm{B}-\mathrm{t}_{\mathrm{A}} \leq 3$

## EASSS 2010

 TuDelt

Temporal Decoupling in action

For decoupled systems, local
solutions always imply a global
solution: every combination of local
solutions is a global solution.
(every inter-agent constraint is
satisfied by any combination of local solutions)

Example:
$\left\{\mathrm{t}_{\mathrm{A}}=0, \mathrm{t}^{\prime} \mathrm{A}_{\mathrm{A}}=4\right\}$ and $\left\{\mathrm{t}_{\mathrm{B}}=3, \mathrm{t}^{\prime}{ }_{\mathrm{B}}=5\right\}$ satisfies all constraints.

## Temporal decoupling in STNs

a temporal decoupling $S$ is said to be locally optimal if there does not exists an alternative decoupling $S$ ' where

- all the constraints are at most as tight as the corresponding constraints in S and
- at least one constraint is less tight than the corresponding constraint in S

Hunsberger presented an algorithm for obtaining locally optimal decouplings.

We will present an algorithm for obtaining a globally optimal temporal decoupling minimizing the total tightness of the constraints.

## Finding an optimal TD

## Idea:

given a distributed STN $\mathcal{S}=\left(\left\{X_{i}\right\}_{i=1}^{n}, D, C\right)$ we associate to it an LP problem having the variables $p_{x y}$ for every $x, y \in X$.

These variables encode the upper bounds of the constraints in the resulting decoupled STN: $x-y \leq p_{x y}$ and therefore completely specify the decomposable alternative.

The linear (in)equalities encode the conditions each of the $p_{x y}$ and have to satisfy:

- the minimal STN conditions
- the consistency conditions
- the temporal decoupling conditions


## Finding an optimal TD

Consider the following linear constraints for the variables $p_{x y}$
$\forall u, w, v \in X: \quad p_{v x} \leq p_{v w}+p_{w x} \quad$ (minimality conditions)
$\forall x \in X: \quad p_{x x}=0 \quad$ (consistency)
$\forall x-y \leq w_{y x} \in C: p_{y x} \leq w_{y x} \quad$ (preserving solutions)
$\forall x-y \leq w_{y x} \in C$ s.t.
$x$ and $y$ in different partitions:

$$
p_{y z}+p_{z x} \leq w_{y x}
$$

(temporal decoupling)

Consider the following objective function:
maximize $\Sigma_{X_{i}} \Sigma_{x, y \in X_{i}} p_{x y}$
The solution of this LP will return an optimal decoupled STN

## Finding an optimal TD (ii)

Whenever the objective function is linear, an optimal solution
for the optimal temporal decoupling problem can be obtained in polynomial time.

For some quadratic objective functions, the solution cannot be obtained in polynomial time unless $P=N P$.
( Vertex cover can be encoded in LP with a quadratic objective function)
${ }^{3} \boldsymbol{T}^{87}$

## Part IV

Applications
of
Temporal Decoupling

EASSS $2010 \quad$ TUDelft


Turnaround timeline (Boeing 737)


## The problem

Given a daily turnaround plan and a set of autonomous service providers

- How to obtain for each ground handling agent a temporal plan such that it can schedule its activities independently of the others, whilst the feasibility of the overall solution is ensured.
- How to provide each agent with an estimation of the number of resources it minimally needs to carry out the activities listed in its schedule.


## The problem

Given a daily turnaround plan and a set of autonomous service providers

- How to obtain for each ground handling agent a temporal plan such that it can schedule its activities independently of the others, whilst the feasibility of the overall solution is ensured.
- How to provide each agent with an estimation of the number of resources it minimally needs to carry out the activities listed in its schedule.

DECOUPLING

SPECIALISED ALGORITHM

Solving the decoupling problem

TUDelft

## modeling the turnaround process


modeling the turnaround process

modeling the turnaround process


| turnaround constraints |
| :--- |
| on-block+start deboarding |
| at 14.00 o'clock |
| $120 \leq X 1-X 0 \leq 120$ |
| deboarding: $5-10 \mathrm{~min}$ |
| $5 \leq X 1-X 2 \leq 10$ |
| fuelling: $10-20$ min |
| $10 \leq X 4-X 3 \leq 20$ |
| fuelling after deboarding |
| turnaround: 60 min |
| off-block $\geq 30$ after fuelling |
| TifUDelft |

EASSS 2010 TUDelft
modeling the turnaround process

modeling the turnaround process


Dispatching the process

modeling the turnaround process


## Dispatching the process



## Decoupling turnaround in 4 steps

construct STN
using airport planning domain, construct overall problem
representation using Simple Temporal Networks
decouple
decouple this STN into the relevant local (service-provider)
domains, adding additional constraints where needed.
local solving
decoupled STN's are solved locally by each service provider, applying its own preferences, tools and methods

## merging

local solutions (schedules) are merged into a total airport turnaround schedule which is guaranteed to be conflict-free

## Decoupling



## Decoupling



## Decoupling



Decoupling


## Decoupling



Temporal Decoupling Idea
Tighten some intra-agent constraints such that all inter agent constraints are satisfied.

Result
two decoupled subsystems,
independently solvable

No more conflicting
solutions
$\frac{\text { TUDelft }}{108}$


## Decoupling



## status first problem

## Question

How to obtain for each ground handling agent a
temporal plan such that it can schedule its activities
independently of the others, whilst the feasibility of
the overall solution is ensured.

## Result

After decoupling, each agent can decide
upon its own schedule.
All individual schedules are mergeable into an conflict-free schedule for the overall schedule.

## Conclusion

Temporal decoupling solves our autonomous scheduling
problem for the turnaround process at airports

| Com <br> Start deboarding flight KL1200 | ing service <br> End deboarding flight KL1200 $t_{2}$ | ans <br> Flight KL120 <br> Gate: <br> Earliest start: <br> Latest start: <br> Earliest end: <br> Latest end: | eboarding: F12 14:00 14:00 14:05 14:10 |
| :---: | :---: | :---: | :---: |
| Tuesday, Juy 06,2010 | Determining Resource needs of Aut Agents in Decoupled Plans |  | 10 |

Determining Resource Needs:
Example for the Fuelling Company

| Flight | EST | LST | EET | LET |
| :--- | :---: | :---: | :---: | :---: |
| KL1857 | $12: 00: 00$ | $12: 00: 00$ | $12: 12: 00$ | $13: 38: 58$ |
| KL1013 | $12: 10: 00$ | $12: 10: 00$ | $12: 22: 00$ | $13: 46: 15$ |
| KL1667 | $12: 17: 03$ | $12: 17: 03$ | $12: 48: 03$ | $14: 09: 58$ |
| KL1577 | $12: 29: 30$ | $12: 29: 30$ | $1: 00: 30$ | $14: 17: 15$ |
| KL8004 | $12: 57: 13$ | $12: 57: 13$ | $13: 28: 13$ | $14: 40: 58$ |
| KL1113 | $13: 00: 30$ | $13: 00: 30$ | $13: 27: 30$ | $15: 51: 49$ |
| KL0713 | $13: 28: 13$ | $13: 28: 13$ | $14: 00: 13$ | $15: 12: 58$ |
| KL8114 | $13: 99: 15$ | $13: 29: 15$ | $13: 56: 15$ | $16: 18: 49$ |
| KL3411 | $13: 56: 15$ | $13: 56: 15$ | $14: 11: 26$ | $16: 34: 00$ |
| KL8437 | $14: 00: 13$ | $14: 00: 13$ | $14: 31: 13$ | $15: 43: 58$ |
| KL4103 | $14: 11: 26$ | $14: 11:: 26$ | $14: 43: 26$ | $17: 19: 00$ |
| KL1725 | $14: 31: 13$ | $14: 31: 13$ | $14: 43: 13$ | $16: 34: 00$ |
| KL1795 | $14: 43: 13$ | $14: 43: 13$ | $14: 55: 13$ | $17: 39: 45$ |
| KL0435 | $16: 48: 01$ | $16: 48: 01$ | $17: 19: 01$ | $18: 10: 45$ |

EASSS 2010

## Determining Resource Needs:

Minimum and Maximum Method

- minimum method (optimistic)
- EET + traveltime $(\mathrm{v}, \mathrm{w}) \leq$ LST
- 12:12:00 $+00: 05: 00 \leq 12: 17: 03$
- For example: KL1577 can be serviced after KL1857


## - maximum method (pessimistic)

- LET+ traveltime ( $\mathrm{v}, \mathrm{w}$ ) $\leq$ EST
- 13:14:28 $+00: 05: 00 \leq 12: 17: 03$
- For example: KL1577 cannot be serviced after KL1857

EASSS 2010


## Determining Resource Needs:

Minimum Capacity based on the Maximum Method


Determining Resource Needs:
Flow Graph


## Determining Resource Needs:

Translating back


## Tool Implementation

## Conclusions

- Rather fast algorithm presented to determine resource needs: $\mathrm{O}\left(n^{3}\right)$
- Execution time for a problem instance of 207 flights:
- Minimum required capacity calculated in 23 sec .
- Maximum required capacity in 17 sec
- Entire planning tool (both temporal planning and decoupling and determining resource needs):
- Less than 3 minutes.
- Realistic application:
- Execution time for a full-day scenario calculated in less than 20 minutes.

We presented a multi-agent solution to a real-life distributed planning problem presented solving the

- Autonomous Scheduling Problem:

Agents can plan their activities independently while the feasibility of the overall solution is ensured.

- Determining Resource Needs Problem:

Agents can obtain an estimation of the number of resources it minimally needs to carry out the activities listed in its schedule

## Future Research

- More realistic resource determination by including
- Resource availability in time
(e.g. fuelling vehicles need re-fuelling themselves)
- Shortest route calculation (reducing travel time)
- Re-planning in case of large disruptions:
- Taking backup resources into account (including corresponding extra costs)
- Adapting the level of decoupling (merge)
- Look at swap as an operation to solve specific disruptions
- Integrating decoupling and minimisation of resource needs
- Development of validated decision support tool becoming operational at a real airport


## References

$\qquad$

