
EASSS St Etienne august 2010

Temporal ConstraintsTechniques

for Autonomous Scheduling

a play in 4 parts

Cees Witteveen,

Algorithmics group,

Delft University of Technology

1

EASSS St Etienne august 2010

2

EASSS St Etienne august 2010

Scheduling: basics

Given

- a set of activities (events) whose durations and

 resource requirements are known

- a set of temporal constraints between the activities

- and a given cost function

scheduling is about deciding when to perform each activity in a

cost optimal way.

3

EASSS St Etienne august 2010

Scheduling: examples

project planning & scheduling

! planning of activities to be executed

 in software projects

machine scheduling

 ! allocation of jobs to processors

transportation scheduling

! arrival & departure scheduling of flights

employee scheduling

! crew rostering on flights

educational timetabling

! timetables at schools and universities

assembly system scheduling

! production planning for cars

4

EASSS St Etienne august 2010

Example: machine scheduling

machines (resources) events (tasks) with durations &

precedences

M1

M2

M3 t1 t3

t2

t4 t6

t8

t5

t7

assign jobs to the sequential machines such that the makespan

(maximum completion time of a machine) is minimized.

5

EASSS St Etienne august 2010

Simple example

M1

M2

M3 t1 t3

t2 t4 t6

t8t5

t7

0 10 15 20

machines

schedule realising a total

completion time (makespan) of 20

can’t do better in this case:

t8 has to be executed after t5 has

been completed

6

EASSS St Etienne august 2010

an activity or event e is a process taking space and time.

we characterize events by time point variables and their constraints

e

start(e) : starting time of event e

end(e) : ending time of event e

d(e) : duration of event e

est(e) : earliest starting time = min(start(e))

lct(e) : latest completion time = max(end(e))

est(e) start(e) end(e) lct(e)

d(e)

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Scheduling and constraints

7

EASSS St Etienne august 2010

non-preemptive scheduling

no interruption is allowed during execution of an event

e

start(e) end(e)

d(e)

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

end(e) = start(e) + d(e)

preemptive scheduling

interruption is allowed during execution of an event

e1

start(e) end(e)
timeline

0 1 2 3 4 5 6 7 8 9 10 11 12 13

end(e) " start(e) + d(e)

e2 e3

preemptive vss non-preemptive

8

EASSS St Etienne august 2010

sequencing of events

event e has to be completed before event e’ can start,

denoted by e ! e’, if end(e) # start(e’)

e

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

end(e) # start(e’)

exclusive events:

e and e’ are exclusive if e ! e’ or e’ ! e

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

precedence constraints

e’

e e’

e’ e

9

EASSS St Etienne august 2010

performance measures

makespan:
the makespan F = Cmax of a schedule is the completion time of
the last event scheduled.

maximum tardiness
the maximum tardiness is the completion time of the last event
scheduled minus the deadline given

average waiting time

the average waiting time is the sum of the starting times of all the
jobs divided by the number of jobs

We are most interested in minimizing the makespan of schedules

How difficult is that?

10

EASSS St Etienne august 2010

scheduling:
some complexity results

11

EASSS St Etienne august 2010

Basic cases

Given a scheduling problem with

one machine (agent) and a set of jobs with durations

there is an efficient algorithm for computing the minimal makespan.

Given a scheduling problem with

two machines (agents) and a set of jobs with durations

there is no efficient algorithm for computing the minimal makespan,

unless P=NP. (the problem is NP-hard)

Given a scheduling problem with

one machine (agent) and a set of jobs with durations + precedence

constraints, there is no efficient algorithm for computing the minimal

makespan, unless P=NP.

(will be extended)

12

EASSS St Etienne august 2010

Autonomous scheduling:

the problem

13

EASSS St Etienne august 2010

The problem

Let E be a set of (time-constrained) events (activities) to be performed by

several agents. Every activity e is given to exactly one agent Ai.

Every agent Ai is allowed to schedule its own set of activities Ei"E

completely independent from the others. Its schedule has to satisfy all the

constraints belonging to the set Ei

The autonomous scheduling problem is the following problem:

 How to ensure that the merging of all individual schedule is a

 schedule that is

- feasible, i.e., satisfies all the constraints

- makespan efficient

14

EASSS St Etienne august 2010

patient schedules

individual scheduling of

treatments of patients by doctors

how to ensure a feasible total patient

schedule?

airport planning

agent planning systems for arrival, departure,

gate assignment, ground handling, taxi-route planning

how to provide a feasible total airport schedule?

15

 autonomous scheduling examples

multi-modal logistics planning

company specific transportation planning systems

how to ensure a feasible intermodal transportation schedule?

15

EASSS St Etienne august 2010

autonomous scheduling example
There are two agents A1 and A2 involved in a construction task.

A1 has to deliver bricks to A2, who has to use them to build a wall.

A2 has to ensure that garbage will be collected and has to deliver it

to A1 who will pick it up and bring it to a dumping ground.

For each task t , the duration d(t) and the precedence relation with

other tasks is known.

A2A1

precedence constraints

collect garbage

deliver garbagepickup garbage

drive to dumping ground

deliver bricks build wall

d=5 d=15

d=9

d=3

d=5

d=2

16

EASSS St Etienne august 2010

autonomous scheduling example

A2A1

collect garbage

deliver garbagepickup garbage

drive to dumping ground

deliver bricks build wall

d=5 d=15

d=9

d=3

d=5

d=2

We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

17

EASSS St Etienne august 2010

schedule satisfies local

constraints:

pickup garbage ! drive dumping

collect garbage ! deliver garbage

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

A2

A1

collect

garbage

deliver

garbage

pickup

garbage

drive to

dumping ground

deliver

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30

18

EASSS St Etienne august 2010

schedule violates inter-agent

constraints:

deliver bricks ! build wall

collect garbage ! pickup garbage

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

0 10 20 30

A2

A1

collect

garbage

deliver

garbage

pickup

garbage

drive to

dumping ground

deliver

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

INFEASIBLE joint schedule

19

EASSS St Etienne august 2010

autonomous scheduling example

A2A1

collect garbage

deliver garbagepickup garbage

drive to dumping ground

deliver bricks build walle1

e2

e3

e4

e6

e5

d=5 d=15

d=9

d=3

d=5

d=2

To ensure a feasible joint schedule, we have to add a (weakest) set

of additional constraints

Let’s look what might happen if only we add the following constraints

to the given set of local constraints+ durations

end(e1) # 5 start(e4) " 5

start(e3) " 10

start(e3) " 10

end(e6) # 10

20

EASSS St Etienne august 2010

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

A2

A1

collect

garbage

deliver

garbage

pickup

garbage

drive to

dumping ground

deliver

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30

every set of

schedules

satisfying local

constraints

satisfies interagent

constraints

21

EASSS St Etienne august 2010

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

A2

A1

collect

garbage

deliver

garbage

pickup

garbage

drive to

dumping ground

deliver

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30

how to find a minimal

set of additional

constraints?

how to find a minimal

set of additional

constraints preserving

makespan?

22

EASSS St Etienne august 2010

autonomous scheduling

First result

Given a set of events with precedence constraints and fixed durations,

finding an arbitrary set of additional constraints ensuring conflict-free

autonomous scheduling is easy.

Solution idea

First, take all tasks e such that there is no e’ preceding e. Let E1 the

set of tasks obtained and d1 the maximum duration of these tasks. Then, for

every e’ such that (i) there is an e in E1, (ii) e!e’ and (iii) e and e’ belong to

different agents, add the constraints: end(e) # d1 and start(e’) " d1. Continue

by obtaining E2

 and so on.

Exercise

Prove that using this idea needs to be refined to constitute a correct

solution to the autonomous scheduling problem

23

EASSS St Etienne august 2010

autonomous scheduling

Example application

The makespan of the optimal schedule is max{5+15,5+2+3} = 20 = M

Adding the required constraints gives:

A2A1

collect garbage

deliver garbagepickup garbage

drive to dumping

ground

deliver bricks build walle1

e2

e3

e4

e6

e5

d=5 d=15

d=9

d=3

d=5

d=2

end(e1) # 5 start(e4) " 5

start(e3) " 15 end(e6) # 15

24

EASSS St Etienne august 2010

autonomous scheduling example

Resulting schedule

A2

A1

collect

garbage

deliver

garbage

pickup

garbage

drive to

dumping ground

deliver

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30

25

EASSS St Etienne august 2010

autonomous scheduling: variants

• basic variant

Given a set E of events e with fixed durations d(e) and a

precedence ordering ! on E

• extended variant

Given a set E of events with simple linear constraints for start,

end times and durations of events e

• full temporal constraint variant

Given a set E of events with arbitrary constraints on start, end

times and durations of events e.

26

EASSS St Etienne august 2010

organisation of the course
• dealing with the general case: the full temporal constraint

variant
We will start with an investigation of autonomous scheduling for

problems represented by general constraints. This will allow us to

characterize the complexity and to point out where the feasible cases

are.

• extended variant; dealing with Simple Temporal Problems

Then we discuss STPs and autonomous scheduling using the STP

formalism. We will discuss a very general technique to solve

autonomous scheduling problems here: Temporal Decoupling (TD)

• basic variant: specializing TD to the simple case

We specialize the TD technique for STPs to our simple case showing a

particularly simple algorithm for solving the autonomous scheduling

problem.

27

Liverpool 2009

Part II

Autonomous Scheduling

using

Constraint Systems

28

Liverpool 2009

Dealing with the general case

We consider constraint systems with temporal variables, having

values in a time domain. A solution to such a constraint system is

an assignment of variables to time points, i.e., a schedule,

satisfying all constraints.

The autonomous scheduling problem in its most general case then

is a constraint decomposition problem:

Given a set of variables and constraints and a partitioning of the

variables, how to ensure that solutions found for the partitioning

induced subsystems constitute a joint solution to the complete

system.

29

Liverpool 2009

problem specification
distributed problems:

some problems require more than one party to solve them

each party will have to solve a separate part of the
total problem;
parts might be interdependent

approach (decomposition + minimal change)

we are looking for methods to minimally change the problem
specification in such a way that

(i) solutions are preserved

(ii) each party is able to solve its part independently
 from the others

(ii) individual solutions can be easily assembled
 to obtain a total solution.

30

Liverpool 2009

concurrent decomposition would allow for independent and concurrent

solving of smaller subproblems of a given problem.

mechanism design

more efficient problem solving

if a feasible total solution has to be obtained, decomposition

guarantees that no solution strategy of an individual agent

can affect the feasibility of the global solution.

autonomous computing

complete solutions can be obtained by autonomous ‘private/local”

computations without communicating partial results.

decomposition: relevance

31

Liverpool 2009

a set of propositional formulae over a set of n atoms is a

constraint system ;

a system of linear equalities is a constraint system;

a schedule is a set of (temporal) constraints on a set of activities.

constraints: some background

constraint systems

a constraint system is a tuple where

 is a finite set of variables,

 is a set of domains, where is the domain of ,

 is a finite set of constraints for the variables in .

S = (X, D, C)

X = {x1, x2, . . . xn}

D = {Di}
n

i=1
Di xi

C

examples

AΦ

X

S = (A, {{0, 1}i}
n

i=1
,Φ)

Ax = b

32

Liverpool 2009

Let be a constraint system and .

The subsystem generated by is where

 - is the subset of domains for the variables in

 - is the subset of constraints mentioning only variables in

S = (X, D, C) X
� ⊆ X

X
� SX� = (X �, DX� , CX�)

X
�

DX� X
�

CX�

a solution of a constraint system is an assignment

of values to each variable such that all constraints

in are satisfied.

note that a solution can also be represented as a set of constraints

{xi = s(xi) : i = 1, 2, . . . , n}

constraints: background (ii)

solution of a constraint system

S = (X, D, C)

C

s

s(xi) ∈ Di xi ∈ X

the set of solutions of a constraint system is denoted by Sol(S)S

s

subsystems generated by a set of vars

33

Liverpool 2009

Decomposition in constraint systems is a technique to split

a constraint system into several parts such

that

• solving each of the subsystems is easy (or easier)

• a solution can be easily obtained by applying

 a poly-time computable function (merger) to solutions

decomposition: current research

S S1,S2, . . . ,Sk

Si

s ∈ Sol(S)

f si ∈ Sol(Si)

Several such techniques exist:

(hyper)tree decomposition, hinge decomposition, query decomposition,

tree clustering

common aspects

- partitioning (covering) of variables is byproduct of the application of a

 decomposition technique

- result is set of interrelated acyclic subproblems, each

 of which can be solved efficiently

- decomposition does not result in splitting into

 independently solvable subproblems

34

Liverpool 2009

2. we take the idea of decomposability to its extreme i.e., we require

 the subsystems to be concurrently and

 independently solvable such that arbitrary solutions of subsystems

 can always be joined to constitute a solution of .

 We call such a distributed system concurrently decomposable.

1. we take a distributed constraint system

 where is a given partitioning of .

S = ({Xi}
n

i=1
, D, C)

{Xi}
n

i=1
X

decomposition: our approach

S

Si = (Xi, DXi
, CXi

)

3. if is not concurrently decomposable, we would like to find

 constraint systems closely related to such that

• is concurrently decomposable,

• there exists some polynomial such that

•

S

S
�

S

S
�

Sol(S �) ⊆ Sol(S)

p |S �| ≤ p(|S|)

35

Liverpool 2009

concurrently decomposable
systems

• concurrently decomposable systems

• simple consequence

a constraint system is concurrently

decomposable iff .

is concurrently decomposable if,S = ({Xi}
n

i=1
, D, C)

- for all i=1,2,...,n,

-

Si = (Xi, DXi
, CXi

)

Si = (Xi, DXi
, CXi

)

Sol(S1) × Sol(S2) × . . . × Sol(Sn) ⊆ Sol(S)

∪
n

i=1
CXi

|= C

36

Liverpool 2009

Take an instance (U,C,c) of LOGICAL CONSEQUENCE and consider a system S

where the constraints are C # {c v x} # {¬x} and the partitioning of variables is

{U, {x}}.

It follows that coNP-completeness already holds for distributed constraint

systems where the partition contains only two blocks.

complexity (i)

Deciding whether a distributed constraint system

 is concurrently decomposable, is coNP-complete.S = ({Xi}
n

i=1
, D, C)

proof
i) no-instances are easily verified.

ii) LOGICAL CONSEQUENCE can be easily reduced to the concurrent

decomposability problem.

37

Liverpool 2009

changing to a decomposable S

if a distributed system is not concurrently decomposable, change it to

a new system such that .

S

S
�

idea

Sol(S �) ⊆ Sol(S)

example

Agent A has to choose between x, y and z (exclusive), while Agent B

has to choose between y and z, and between u and v (also exclusive).

Together only # 2 objects can be chosen.

Independent choices cannot be made, as e.g. x, z and u might be chosen.

An obvious solution is to restrict the choices of both A and B to choosing

between y and z.

38

Liverpool 2009

changing to a decomposable S

questions

How difficult is it to find a feasible alternative ?

S
�

How difficult is it to find an alternative that

comes as close to the original system as possible?
S
�

S

if a distributed system is not concurrently decomposable, change it to

a new system such that

S

S
�

idea

Sol(S �) ⊆ Sol(S)

39

Liverpool 2009

Consider a consistent . Then there exists

a solution ;

Add the equality constraints to .

The resulting system will have as its unique solution and every

agent is forced to choose sXi as its solution

finding an alternative S’

arbitrary solution guaranteed (if system is consistent)

S = ({Xi}
n

i=1
, D, C)

xi = s(xi) C

s ∈ Sol(S)

s

40

Liverpool 2009

finding a concurrently decomposable alternative is
polynomially related to finding a solution for the
original system:

finding an alternative S’

Let C be a class of constraint systems.

Then there exists a polynomial algorithm to find a solution

for every S in C iff

there exists a polynomial algorithm that, given S in C and

an arbitrary partitioning of X, finds a decomposable alternative for S.

proof (sketch):

(=>) add solutions fund as equalities to constraints of system

(<=) take the finest partitioning of X; solutions to polynomially bounded sets

of unary constraints can be found in polynomial time. So solve each of the

parts of the system; decomposability guarantees composition.

41

Liverpool 2009

• semantical approach

maximize the set of solutions subject to

• syntactical approach
minimize the amount of change necessary to obtain the resulting

system

Sol(S �) Sol(S �) ⊆ Sol(S)

S
�

idea: find additional constraints to such that

is minimized.
C |Sol(S) − Sol(S �)|

idea: measure the difference in the size of the constraint sets

of and of . S S
�

finding a minimal solution

42

Liverpool 2009

• semantical approach

maximize the set of solutions subject to

• syntactical approach
minimize the amount of change necessary to obtain the resulting

system

Sol(S �) Sol(S �) ⊆ Sol(S)

S
�

idea: find additional constraints to such that

is minimized.
C |Sol(S) − Sol(S �)|

idea: measure the difference in the size of the constraint sets

of and of . S S
�

finding a minimal solution

NP-hard even if the cardinality of the set of solutions is poly-sized

-complete even for the most simple distributed constraint systemsΣ
p
2

43

Planning in Multi Agent SystemsEASSS 2010

Part III

Autonomous scheduling

using

Simple Temporal Networks

44

EASSS 2010

We discuss the autonomous scheduling problem

using a constraint system that allows for efficient

solution finding.

Hence, using such a constraint system, the autonomous

scheduling problem can also be solved efficiently.

The constraints allowed are differences t’ - t # d

between time points bounded above by a constant.

45

EASSS 2010

simple temporal plans

temporal event ee

 t

(start of e)

t’

(end of e)

e starts at or after time 2

e ends at or before time 8

e’s duration is between 3 and 4

t " 2

t’ # 8

3 # t’ - t # 4

z0 = 0fixed time reference point

standard

t - z0 " 2

binarydirect

z0 - t # -2

t’ - z0 # 8 t’ - z0 # 8

t’ - t # 4

t’ - t " 3

t’ - t # 4

t - t’ # -3

time points

46

EASSS 2010

Small example

B

A

Two trains A and B meet each other at a platform.

Train A arrives at 12.00 hrs and stops at most 5 minutes.

Train B must arrive at least 2 minutes later than A, and

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes.

When does A leave, B arrive and B leave?

47

EASSS 2010

Small example

t’A - tA # 5 2 # t’B - tB # 7

tB - tA " 2

Two trains A and B meet each other at a platform.

Train A arrives at 12.00 hrs and stops at most 5 minutes.

Train B must arrive at least 2 minutes later than A, and

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes.

When does A leave, B arrive and B leave?

0 # tA - z0 # 0

 z0 = 12.00

t’B - t’A # 3

time points

tA, tB : arrival of A, B

t’A, t’B : departure of A, B

z0 : time reference

constraints

transforming constraints

to standard form

tj - ti # aij

48

EASSS 2010

Small example

t’A - tA # 5 t’B - tB # 7

tA - tB # -2

Two trains A and B meet each other at a platform.

Train A arrives at 12.00 hrs and stops at most 5 minutes.

Train B must arrive at least 2 minutes later than A, and

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes.

When does A leave, B arrive and B leave?

0 # tA - z0 # 0

 z0 = 12.00

t’B - t’A # 3

time points

tA, tB : arrival of A, B

t’A, t’B : departure of A, B

z0 : time reference

constraints

tB - t’B # -2

This is the standard

representation in

Simple

Temporal

Plans

49

EASSS 2010

Small example

tA
t’A

tB t’Bt’A - tA # 5 t’B - tB # 7

tA - tB # -2
5

7

3-2

Two trains A and B meet each other at a platform.

Train A arrives at 12.00 hrs and stops at most 5 minutes.

Train B must arrive at least 2 minutes later than A, and

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes.

When does A leave, B arrive and B leave?

0 # tA - z0 # 0

 z0 = 12.00

t’B - t’A # 3

z0

-2

00

STN

time points

tA, tB : arrival of A, B

t’A, t’B : departure of A, B

z0 : time reference

constraints

tB - t’B # -2

50

EASSS 2010

Simple Temporal Plans

S = (T, C)

T = {z0, tA, tB, t’A, t’B }

C = {

A Simple Temporal Plan (STP) is a tuple S = (T, C)

where

- T is a set of time-points and

- C is a set of binary constraints of the form t’ - t # !

t’A - tA # 5,

t’B - tB # 7,

tA - tB # -2,

0 # tA - z0 # 0,

 z0 = 12.00,

t’B - t’A # 3,

tB - t’B # -2 }

Simple Temporal Plan

51

EASSS 2010

An STN S =(T,C) can also be represented by a labeled directed graph

 GS = (T, E, l)

called a (STN)

Nodes are time points, labeled edges are derived from constraints:

Simple Temporal Plans

S = (T, C)

T = {z0, tA, tB, t’A, t’B }

C = {

t’ - t # ! ↔ t t!!

t’A - tA # 5,

t’B - tB # 7,

tA - tB # -2,

0 # tA - z0 # 0,

 z0 = 12.00,

t’B - t’A # 3,

tB - t’B # -2 }

Simple Temporal Network

Simple Temporal Plan

52

EASSS 2010

An STN S =(T,C) can also be represented by a labeled directed graph

 GS = (T, E, l)

called a (STN) or

Nodes are time points, labeled edges are derived from constraints:

Simple Temporal Plans

S = (T, C)

T = {z0, tA, tB, t’A, t’B }

C = {

 Simple Temporal Plan

t’ - t # ! ↔ t t!!

t’A - tA # 5,

t’B - tB # 7,

tA - tB # -2,

0 # tA - z0 # 0,

 z0 = 12.00,

t’B - t’A # 3,

tB - t’B # -2 }

Simple Temporal Network

tA
t’A

tB t’B

5

7

3-2

z0 = 0

-2

00

Simple Temporal Network

(Distance Graph)

Distance Graph

53

EASSS 2010

STN: solution & consistency

A solution to an STN S = (T, C) is an assignment { ti = vi : ti " T } of values to

variables that satisfies all constraints.

The set of solutions of S is denoted as Sol(S)

S is consistent iff Sol(S) ! # S equivalent to S’ iff Sol(S) = Sol(S’)

tA t’A

tB t’B

5

7

3-2

z0

-2

00

Solution 1:

z0 ! = 0

tA ! = 0

t’A " = 1

tB ! = 2

t’B " = 4

how to determine consistency....

= 4

= 0

= 0 = 1

= 42 =

54

EASSS 2010

STN: solution & consistency

A solution to an STN S = (T, C) is an assignment { ti = vi : ti " T } of values to

variables that satisfies all constraints.

The set of solutions of S is denoted as Sol(S)

S is consistent iff Sol(S) ! # S equivalent to S’ iff Sol(S) = Sol(S’)

tA t’A

tB t’B

5

7

3-2

z0

-2

00

Solution 1:

z0 ! = 0

tA ! = 0

t’A " = 1

tB ! = 2

t’B " = 4

Solution 2:

z0 ! = 0

tA ! = 0

t’A " = 5

tB ! = 6

t’B " = 8

how to find solutions….

= 4

= 0

= 0 = 5

= 86 =

55

EASSS 2010

Distance Graph
explicit constraints can be combined to imply

other constraints: tA t’A

tB t’B

5

7

3-2

z0

-2

t’A - tA # 5

t’B - tB # 7

tA - tB # -2

t’B - t’A # 3

tB - t’B # -2

t’B - tB # (t’B - t’A)+ (t’A - tA)+ (tA - tB)

 # 3 + 5 + -2

 = 6

constraints some implied constraints

6

Look at the labels of the

edges as distances between

the corresponding nodes.

Finding a tighter constraint

comes down to finding a

shorter path.

00

56

EASSS 2010

Distance Graph
explicit constraints can be combined to imply

other constraints:

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

7

3-2

z0

-2

00

t’A - tA # 5

t’B - tB # 7

tA - tB # -2

t’B - t’A # 3

tB - t’B # -2

t’A - t’B # (t’A - tA)+ (tA - tB)+ (tB - t’B)

 # 5 + -2 + -2

 = 1

t’B - tB # (t’B - t’A)+ (t’A - tA)+ (tA - tB)

 # 3 + 5 + -2

 = 6

constraints some implied constraints

6

1

strongest constraints in STP

correspond to shortest paths in STN

table of all (strongest) implied constraints

57

EASSS 2010

Distance Matrix

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

7

3-2

z0

-2

00

Strongest constraints in STP

correspond to shortest paths in STN.

The distance matrix DS for an STN

S = (T, C) is defined as:

D(ti, tj) = length of shortest path from

 ti to tj in the distance graph

 of S or $ if no such path exists

D() :

GS :

Given the distance graph GS there

are well-known efficient algorithms

to compute the distance matrix.

Example: all-pairs shortest path algorithm

Floyd-Warshall: O(n3)

58

EASSS 2010

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

7

3-2

z0

-2

00

0 0 5 ! !

0 0 5 6 8

! ! 0 ! 3

! -2 ! 0 7

! ! ! -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

6

3-2

z0

-2

00

-26

5

-1

all-pairs shortest

path computation

-4

8

equivalent

systems

6 1

D:

Complete minimal STN

-1

59

EASSS 2010

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

0 0 5 ! !

0 0 5 6 8

! ! 0 ! 3

! -2 ! 0 7

! ! ! -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

all-pairs shortest

path computation

O(n3)

distance matrix D = [d(t,t’)]original constraint matrix

checking consistency

Given an STN S with its graph Gs and distance graph D, the following statements are

equivalent:

- S is consistent

- D has only 0’s on its diagonal

- G has no negative cycles

this property can be checked in O(n3)

S is consistent

60

EASSS 2010

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

0 0 5 ! !

0 0 5 6 8

! ! 0 ! 3

! -2 ! 0 7

! ! ! -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

all-pairs shortest

path computation

O(n3)

distance matrix D = [d(t,t’)]original constraint matrix

finding solutions

Given an STN S with its distance graph D, if D does not contain negative diagonal

elements,

 - the set { ti = D(z0, ti) : i=1,2, … n} $ {z0 = 0} is a solution

 - the set { ti = -D(ti, z0) : i=1,2, … n} $ {z0 = 0} is a solution

set of solutions

Why

61

EASSS 2010

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [d(t,t’)]

finding solutions

Given an STN S with its distance graph D, if D does not contain negative diagonal

elements,

 - the set { ti = D(z0, ti) : i=1,2, … n} $ {z0 = 0} is a solution

 - the set { ti = -D(ti, z0) : i=1,2, … n} $ {z0 = 0} is a solution

Why

Take an arbitrary constraint t’ - t # !.

We have D(z0,t’) # D(z0,t)+D(t,t’) # D(z0,t) + !

Hence, D(z0,t’) - D(z0,t) # !.

So the first set of solutions satisfies every

constraint. Likewise,

D(t,z0) # D(t,t’) + D(t’,z0) # !+ D(t’,z0)

Hence, -D(t’,z0) + -D(t,z0) # !

So the second set of solutions satisfies every

constraint.

62

EASSS 2010

general recipe for solutions

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := #

while T ! #

 select some v " [-D(t,z0), D(z0,t)]

 add constraint {t = v} to STN and update the distance matrix D;

 remove row and column t from D;

 sol := sol $ {t=v}

start with tA " [0,0] ; select tA = 0

63

EASSS 2010

general recipe for solutions

0 5 6 8

-1 0 1 3

-2 3 0 6

-4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := #

while T ! #

 select some v " [-D(t,z0), D(z0,t)]

 add constraint {t = v} to STN and update the distance matrix D;

 remove row and column t from D;

 sol := sol $ {t=v}

start with tA " [0,0] ; select tA = 0

take tB " [2, 6] ; select tB = 4; update
4

-4

64

EASSS 2010

general recipe for solutions

0 5 8

-3 0 3

-6 -1 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := #

while T ! #

 select some v " [-D(t,z0), D(z0,t)]

 add constraint {t = v} to STN and update the distance matrix D;

 remove row and column t from D;

 sol := sol $ {t=v}

start with tA " [0,0] ; select tA = 0

take tB " [2, 6] ; select tB = 4; update

65

EASSS 2010

general recipe for solutions

0 5 8

-3 0 3

-6 -1 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := #

while T ! #

 select some v " [-D(t,z0), D(z0,t)]

 add constraint {t = v} to STN and update the distance matrix D;

 remove row and column t from D;

 sol := sol $ {t=v}

start with tA " [0,0] ; select tA = 0

take tB " [2, 6] ; select tB = 4; update

take t’A " [3, 5] ; select t’A = 3; update

3

66

EASSS 2010

general recipe for solutions

0 6

-6 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := #

while T ! #

 select some v " [-D(t,z0), D(z0,t)]

 add constraint {t = v} to STN and update the distance matrix D;

 remove row and column t from D;

 sol := sol $ {t=v}

take tA " [0, 0] ; select tA = 0; update

take tB " [2, 6] ; select tB = 4; update

take t’A " [3, 5] ; select t’A = 3; update

take t’B " [6, 6] ; select t’B = 6

67

EASSS 2010

adding constraints to S

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

add t’A - tA # 0

D

Let D be a distance matrix of a consistent STN S.

Let c: t - t’ # ! be a new constraint and S’ = S + c.

Then

• S’ is consistent if ! " [-D(t’,t), D(t,t’)]

• S’ is inconsistent if ! < -D[t’,t]

-! -! -! -! -!

-! -! -! -! -!

-! -! -! -! -!

-! -! -! -! -!

-! -! -! -! -!

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

S’ is inconsistent:

0 # 1

68

EASSS 2010

adding constraints to S

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

add t’A - tA # 2

D

Let D be a distance matrix of a consistent STN S.

Let c: t - t’ # ! be a new constraint and S’ = S + c.

Then

• S’ is consistent if ! " [-D(t’,t), D(t,t’)]

• S’ is inconsistent if ! < -D[t’,t]

0 0 2 3 5

0 0 2 3 5

-1 -1 0 1 3

-2 -2 0 0 3

-4 -4 -2 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

S’ is inconsistent:

0 # 1

consistent

69

EASSS 2010

temporal decoupling
In finding solutions, we assumed that one agent controls the assignment

of values to all the variables.

What happens if there is more than one agent and every agent Ai controls

a disjoint subset Ti of time-point variables?

Each of these agents Ai wants to determine a local solution to the

sub-STN Si generated by its set Ti.

 We are facing a major problem here

70

EASSS 2010

temporal decoupling: example

tA t’A

tB t’B

5

6

3-2z0

-2

0

0

Consider the train example discussed before.

Train A and Train B would like to determine their schedule

independently from each other.

Suppose:

A chooses Sol(SA) % { tA = 0, t’A = 2 }

B chooses Sol(SB) % { tB = 3, t’B = 6 }
controlled by A

controlled by B

71

EASSS 2010

temporal decoupling: example

tA t’A

tB t’B

5

6

3-2z0

-2

0

0

Consider the train example discussed before.

Train A and Train B would like to determine their schedule

independently from each other.

Suppose:

A chooses Sol(SA) % { tA = 0, t’A = 2 }

B chooses Sol(SB) % { tB = 3, t’B = 6 }

intuitive reason for failure:

inter-agent constraints are not

implied by local constraints

then

Sol(SA) Sol(SB) %

{ tA = 0, t’A = 2 , tB = 3, t’B = 6 }

is not a solution of S !

controlled by A

controlled by B

= 0 = 2

= 3 = 6

72

EASSS 2010

temporal decoupling: method

t’

t

D(t’,t)

D(z0,t’)

z0
D(t,t’)

Take an arbitrary constraint t!- t " D(t,t!) such that t and t! belong to different blocks.

Consider the intra-agent constraints t!- z0 # D(z0,t’), z0 - t # D(t,z0).

D(z0,t)

D(t’,z0)

D(t,z0)

If D(t,z0) + D(z0,t’) > D(t,t!) then t!- t " D(t,t!)

is not implied by t!- z0 # D(z0,t’) , z0 - t # D(t,z0)

We can ensure implication of t!- t " D(t,t!) by

intra-agent constraints by tightening

t!- z0 # D(z0,t’) and z0 - t # D(t,z0)

Method: Choose !t and !t’ such that

 1. -D(z0,t) # !t < D(t,z0)

 2. -D(t,z0) # !t’ < D(z0,t’)

 3. !t + !t’ # D(t,t!)

Add constraints t!- z0 # !t and z0 - t # !t to S

compute new distance matrix.

73

EASSS 2010

temporal decoupling: method

t’

t

D(t’,t)

!t’

z0
D(t,t’)

Take an arbitrary constraint t!- t " D(t,t!) such that t and t! belong to different blocks.

Consider the intra-agent constraints t!- z0 # D(z0,t’), z0 - t # D(t,z0).

D(z0,t)

D(t’,z0)

!t

If D(t,z0) + D(z0,t’) > D(t,t!) then t!- t " D(t,t!)

is not implied by t!- z0 # D(z0,t’) , z0 - t # D(t,z0)

We can ensure implication of t!- t " D(t,t!) by

intra-agent constraints by tightening

t!- z0 # D(z0,t’) and z0 - t # D(t,z0)

Method: Choose !t and !t’ such that

 1. -D(z0,t) # !t < D(t,z0)

 2. -D(t,z0) # !t’ < D(z0,t’)

 3. !t + !t’ # D(t,t!)

Add constraints t!- z0 # !t’ and z0 - t # !t to S

compute new distance matrix.

74

EASSS 2010

temporal decoupling: method

t’

t

D(t’,t)

!t’

z0
D(t,t’)

Take an arbitrary constraint t!- t " D(t,t!) such that t and t! belong to different blocks.

Consider the intra-agent constraints t!- z0 # D(z0,t’), z0 - t # D(t,z0).

D(z0,t)

D(t’,z0)

!t

If D(t,z0) + D(z0,t’) > D(t,t!)

is implied by t!- z0 # !t’ and z0 - t # !t it

can be removed from S without any

consequence.

This procedure can be repeated for every

inter agent constraint not implied by

intra-agent constraints.

The resulting system is a decoupled STN

75

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

3-2

z0

-2

00

-26

5

-1

6 1
-1

Step 1: ensure that tA - tB # -2

-4

8

76

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-1

6 1
-1

Step 1: ensure that tA - tB # -2.

This constraint is implied.

remove it.

-4

8

77

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-1

6 1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

-4

8

78

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-1

-4

8

1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 3: take t’B - t’A # 3.

This constraint is not implied.

Take z0 - t’A # -3 and t’B - z0 # 6.

Then t’B - t’A # 3 is implied.

Update D.

79

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-3

-4

6

1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 3: take t’B - t’A # 3.

This constraint is not implied.

Take z0 - t’A # -3 and t’B - z0 # 6.

Then t’B - t’A # 3 is implied.

Update D and remove t’B - t’A # 3

80

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

z0

-2

00

-26

5

-3

-4

6

1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 4: take t’A - tB # 1.

This constraint is implied.

remove it.

81

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

z0

-2

00

-26

5

-3

-4

6

-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 4: take t’A - tB # 1.

This constraint is implied.

remove it.

The constraints between tA and t’B

and t’A and tB are treated analogously

82

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

z0

-2

00

-26

5

-3

-4

6

-1

For decoupled systems, local

solutions always imply a global

solution: every combination of local

solutions is a global solution.

(every inter-agent constraint is

satisfied by any combination of local

solutions)

Example:

{tA = 0, t’A = 4} and {tB = 3, t’B= 5}

satisfies all constraints.

83

EASSS St Etienne august 2010

Temporal decoupling in STNs

a temporal decoupling S is said to be locally optimal if there

does not exists an alternative decoupling S’ where

• all the constraints are at most as tight as the

corresponding constraints in S and

• at least one constraint is less tight than the corresponding

constraint in S

Hunsberger presented an algorithm for obtaining locally optimal

decouplings.

We will present an algorithm for obtaining a globally optimal

temporal decoupling minimizing the total tightness of the

constraints.

84

EASSS St Etienne august 2010

Finding an optimal TD

Idea:

given a distributed STN we associate to it

an LP problem having the variables pxy for every x,y $ X .

These variables encode the upper bounds of the constraints in

the resulting decoupled STN: x - y ! pxy and therefore

completely specify the decomposable alternative.

The linear (in)equalities encode the conditions each of the pxy

and have to satisfy:

- the minimal STN conditions

- the consistency conditions

- the temporal decoupling conditions

S = ({Xi}
n

i=1
, D, C)

85

EASSS St Etienne august 2010

Finding an optimal TD
Consider the following linear constraints for the variables pxy

 %u,w,v $ X : pvx ! pvw + pwx (minimality conditions)

 %x $ X : pxx = 0 (consistency)

 % x - y ! wyx $ C : pyx ! wyx (preserving solutions)

% x - y ! wyx $ C s.t.

x and y in different partitions:

 pyz + pzx ! wyx (temporal decoupling)

Consider the following objective function:

maximize

The solution of this LP will return an optimal decoupled STN

ΣXi
Σx,y∈Xi

pxy

86

EASSS St Etienne august 2010

Finding an optimal TD (ii)

Whenever the objective function is linear, an optimal solution
for the optimal temporal decoupling problem can be obtained
in polynomial time.

For some quadratic objective functions, the solution cannot
be obtained in polynomial time unless P = NP.

(Vertex cover can be encoded in LP with a quadratic objective
 function)

87

Planning in Multi Agent SystemsEASSS 2010

Part IV

Applications

of

Temporal Decoupling

88

EASSS 2010

The Turnaround Process

At airports, planes have to be serviced at the gates.

Typically, multiple services have to be applied

(baggage handling, container loading, catering,

fueling, lavatory services, cleaning) by different

independent service providers.

For each aircraft unique durations and

dependencies of these services are known.

There is a daily specification of the schedule for

this turnaround process, on a mid-size to large

airport requiring to service a few hundred to a few

thousand planes.

89

EASSS 2010

Turnaround servicing arrangement

Fueling
2

Bulk
cargo
loader

Bulk cargo
train

Vacuum
lavatory
service

Cabin cleaning
truck

Electric
power

1

Galley service truck
(1st position)

Potable
water truck

Galley service truck
(2nd position)

Bulk cargo
loader

Bulk
cargo
train

Passenger
bridge

1

Air-conditioning

Starting air
sequenced

1

P

T

E

AS

F

AC

 an

ns

e

1 Not required if auxiliary power unit is in use

2 Sequence fueling with cargo loading

E Electrical

AC Air-conditioning

AS Air start

F Fuel

T Toilet service

P Potable water

source:
Improving

Ramp / Terminal Operation
for Shorter Turn-Times
By Troy Barnett

Principal Maintenance Engineer,

Maintenance and Ground Operations Systems

90

EASSS 2010

Turnaround timeline (Boeing 737)
 TYPICAL NEXT-GENERATION 737 TIMELINE

Engine Shutdown / Chocks On 0.3

P
A

S
S

E
N

G
E

R

S
E

R
V

IC
E

S

Position Passenger Bridge / Open Door 0.2

Deplane Passengers 3.7

Service Cabin 9.6

Service Forward Galley 6.7

Service Aft Galley 1.3

Board Passengers 9.8

Remove Passenger Bridge / Close Door 0.5

C
A

R
G

O
 B

A
G

G
A

G
E

H
A

N
D

L
IN

G

Unload Forward Compartment 2.2

Unload Mid Compartment 11.4

Unload Aft Compartment 5.5

Load Forward Compartment 7.1

Load Mid Compartment 7.3

Load Aft Compartment 13.8

A
IR

P
L

A
N

E

S
E

R
V

IC
IN

G Fuel Airplane 9.9

Service Lavatories 2.0

Service Potable Water 2.0

Chocks Off / Pushback 1.0

0 5 10 15 20 25 30

MINUTES

 = Position Equipment = Critical Path
PARAMETERS

 142 passengers off, 121 passengers on

 2 doors used to deplane and enplane

 1 galley service truck

 1 lavatory service truck

 1 potable water service truck

NOTE

 Belt loader used at cargo hold

 Aft galley, potable water, and lavatory service

complete before passenger boarding

source:

Improving

Ramp / Terminal Operation
for Shorter Turn-Times
By Troy Barnett

Principal Maintenance Engineer,

Maintenance and Ground Operations Systems

91

EASSS 2010

The problem

Given a daily turnaround plan and a set of autonomous service

providers

! How to obtain for each ground handling agent a

temporal plan such that it can schedule its activities

independently of the others, whilst the feasibility of

the overall solution is ensured.

! How to provide each agent with an estimation of the

 number of resources it minimally needs to carry out

 the activities listed in its schedule.

4

92

EASSS 2010

The problem

Given a daily turnaround plan and a set of autonomous service

providers

! How to obtain for each ground handling agent a

temporal plan such that it can schedule its activities

independently of the others, whilst the feasibility of

the overall solution is ensured.

! How to provide each agent with an estimation of the

 number of resources it minimally needs to carry out

 the activities listed in its schedule.

4

TEMPORAL

DECOUPLING

SPECIALISED

ALGORITHM

93

EASSS 2010

Solving the decoupling problem

94

EASSS 2010

modeling the turnaround process

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

fuelling: 10-20 min

fuelling after deboarding

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"- !"2

[aij , bij]

aij ! xj " xi ! bij

is represented as

turnaround constraints

95

EASSS 2010

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

fuelling after deboarding

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

turnaround constraints

modeling the turnaround process

96

EASSS 2010

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

turnaround constraints

!)%&"$'

modeling the turnaround process

97

EASSS 2010

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

turnaround constraints

!)%&"$'

!"$%&#$'

modeling the turnaround process

98

EASSS 2010

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 X4

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

turnaround constraints

!)%&"$'

!"$%&#$'

modeling the turnaround process

99

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

turnaround constraints

30 ! X5 – X4 ! "

!)%&"$'

!"$%&#$'

modeling the turnaround process

100

EASSS 2010

Dispatching the process

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!":!1!$:@##

!"6!1!$6@$:

!"5!1!$6@#:

!"3!1!$6@#:

!"$!1!$6@##

!"#!1!$3@##

earliest possible dispatching

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

turnaround constraints

30 ! X5 – X4 ! "

!)%&"$'

!"$%&#$'

101

EASSS 2010

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

turnaround constraints

30 ! X5 – X4 ! "

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!":!1!$:@##

!!"#$#%"&'(

!!'#$#%"&)(

#!)#$#%"&%(

!"$!1!$6@##

!"#!1!$3@##

latest possible dispatching

Dispatching the process

102

EASSS 2010

Decoupling turnaround in 4 steps

construct STN

using airport planning domain, construct overall problem

representation using Simple Temporal Networks

decouple

decouple this STN into the relevant local (service-provider)

domains, adding additional constraints where needed.

local solving

decoupled STN’s are solved locally by each service provider, applying

its own preferences, tools and methods

merging

local solutions (schedules) are merged into a total airport turnaround

schedule which is guaranteed to be conflict-free

103

EASSS 2010

Decoupling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

Two parties involved

deboarding

fuelling

Each party controls a sub

STN

CONFLICTING

SOLUTIONS POSSIBLE

104

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

Two parties involved

deboarding

fuelling

Each party controls a sub

STN

CONFLICTING

SOLUTIONS

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling: Example

Decoupling

105

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

Two parties involved

deboarding

fuelling

Each party controls a sub

STN

INTER AGENT

CONSTRAINTS

VIOLATED

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling: Example

Decoupling

106

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

No more conflicting

solutions

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling Idea

Tighten some intra-agent

constraints such that all

inter agent constraints are

satisfied.

Result

two decoupled subsystems,

independently solvable

Temporal Decoupling: Example

Decoupling

107

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

No more conflicting

solutions

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling: Example

Temporal Decoupling Idea

Tighten some intra-agent

constraints such that all

inter agent constraints are

satisfied.

Result

two decoupled subsystems,

independently solvable

Decoupling

108

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!!(#$#%)&((
!%'(+#!,

-%.(+#%.(,

Temporal Decoupling: Example

!%&'(&!78*99-./

Decoupling Process

1. Add temporal constraint for

 (X0,X3):

 130 ! X3 – X0 ! #

2. Add temporal constraint for

 (X0,X5):

 180 ! X5 – X0 ! 180

Decoupling

109

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!!(#$#%)&((
!%'(+#!,

-%.(+#%.(,

3. Remove superfluous

 inter agent constraints

Temporal Decoupling: Example

Decoupling Process

1. Add temporal constraint for

 (X0,X3):

 130 ! X3 – X0 ! #

2. Add temporal constraint for

 (X0,X5):

 180 ! X5 – X0 ! 180

Decoupling

110

EASSS 2010

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./
!":

;<=+9,>?

!+$%&!'

!!(#$#%)&((
!%'(+#!,

-%.(+#%.(,

Temporal Decoupling: Example

Decoupling Process

1. Add temporal constraint for

 (X0,X3):

 130 ! X3 – X0 ! #

2. Add temporal constraint for

 (X0,X5):

 180 ! X5 – X0 ! 180

3. Remove superfluous

 inter agent constraints

Decoupling

111

EASSS 2010

status first problem

Question

How to obtain for each ground handling agent a

temporal plan such that it can schedule its activities

independently of the others, whilst the feasibility of

the overall solution is ensured.

Result

After decoupling, each agent can decide

upon its own schedule.

All individual schedules are mergeable into an conflict-free

schedule for the overall schedule.

Conclusion

Temporal decoupling solves our autonomous scheduling

problem for the turnaround process at airports

112

EASSS 2010

Determining Resource Needs

113

!"#$%&'()*"+'),-().,/, Determining Resource needs of Autonomous
Agents in Decoupled Plans

10

01231$456)$#7849#)3+&5$

!&,

!&/ !&.

!"#$%&"#$'

!)%&"$'

%&'(&!)*+,'()-./!

A-/B&!CD$3##
4.)!)*+,'()-./!

A-/B&!CD$3##

Flight KL1200 deboarding:
Gate: F12
Earliest start: 14:00
Latest start: 14:00
Earliest end: 14:05
Latest end: 14:10

$3@##

114

EASSS 2010

Flight EST LST EET LET

KL1857 12:00:00 12:00:00 12:12:00 13:38:58

KL1013 12:10:00 12:10:00 12:22:00 13:46:15

KL1667 12:17:03 12:17:03 12:48:03 14:09:58

KL1577 12:29:30 12:29:30 13:00:30 14:17:15

KL8004 12:57:13 12:57:13 13:28:13 14:40:58

KL1113 13:00:30 13:00:30 13:27:30 15:51:49

KL0713 13:28:13 13:28:13 14:00:13 15:12:58

KL8114 13:29:15 13:29:15 13:56:15 16:18:49

KL3411 13:56:15 13:56:15 14:11:26 16:34:00

KL8437 14:00:13 14:00:13 14:31:13 15:43:58

KL4103 14:11:26 14:11:26 14:43:26 17:19:00

KL1725 14:31:13 14:31:13 14:43:13 16:34:00

KL1795 14:43:13 14:43:13 14:55:13 17:39:45

KL0435 16:48:01 16:48:01 17:19:01 18:10:45

Determining Resource Needs:
Example for the Fuelling Company

115

EASSS 2010

• minimum method (optimistic)

• EET + traveltime(v,w) # LST

• 12:12:00 + 00:05:00 # 12:17:03

• For example: KL1577 can be serviced after KL1857

• maximum method (pessimistic)

• LET+ traveltime (v,w) # EST

• 13:14:28 + 00:05:00 # 12:17:03

• For example: KL1577 cannot be serviced after KL1857

Determining Resource Needs:
Minimum and Maximum Method

116

EASSS 2010

Determining Resource Needs:
Reachability Graph

Maximum method:

v
LET

+ traveltime(v,w) ! w
EST

Problem: find a smallest number of node-disjoint paths covering the reachability graph

Big Idea

Using the reachability

graph, the minimum

number of vehicles

needed equals the

smallest number of

node-disjoint paths that

cover the graph

Small Idea

To service KL1857,

KL8437 and KL0435, we

need one vehicle

117

EASSS 2010

Example of a path cover

requiring 9 vehicles to

do the fuelling

Can we do better?

Determining Resource Needs:
Minimum Capacity based on the Maximum Method

118

EASSS 2010

Determining Resource Needs:
Flow Graph

maximum flow: 6

Reduction to

Max-Flow problem

resources needed: 14 -6 = 8

Flow is assigned to

all flights not

serviced first!

119

EASSS 2010

Determining Resource Needs:
Translating back

Flights: 14.

Maximum flow: 6

Paths with length 2:

{(KL1857,KL8437, KL0435)}

Paths with length 1:

{(KL1667,KL4103),

(KL1577,KL1725),

(KL8004,KL1795,

(KL1013,KL3411)}

Paths with length 0:

{KL1113, KL0713, KL8114}

Required capacity:

|V| - f, with

E |V| = #nodes in graph

E f = maximum flow in

flowgraph

Required capacity: 14-6=8

120

EASSS 2010

Tool Implementation

• Rather fast algorithm presented to determine resource needs:
O(n3)

• Execution time for a problem instance of 207 flights:

- Minimum required capacity calculated in 23 sec.

- Maximum required capacity in 17 sec.

- Entire planning tool (both temporal planning and decoupling

and determining resource needs):%

- Less than 3 minutes.

• Realistic application:

- Execution time for a full-day scenario calculated in less than

20 minutes.

121

EASSS 2010

Conclusions

We presented a multi-agent solution to a real-life distributed
planning problem presented solving the

! Autonomous Scheduling Problem:

! ! Agents can plan their activities independently while the

 feasibility of the overall solution is ensured.

• Determining Resource Needs Problem:

! Agents can obtain an estimation of the number of

 resources it minimally needs to carry out the activities

 listed in its schedule

122

EASSS 2010

Future Research

! More realistic resource determination by including

! Resource availability in time
(e.g. fuelling vehicles need re-fuelling themselves)

! Shortest route calculation (reducing travel time)

! Re-planning in case of large disruptions:

! Taking backup resources into account (including
corresponding extra costs)

! Adapting the level of decoupling (merge)

! Look at swap as an operation to solve specific disruptions

• Integrating decoupling and minimisation of resource needs

! Development of validated decision support tool becoming
operational at a real airport

123

EASSS 2010

References

Buzing, P.C. and A.W. ter Mors and J.M. Valk and C.
Witteveen (2006). Coordinating Self-Interested Planning
Agents. Autonomous Agents and Multi-Agent Systems 12
(2):199--218.

Brambilla,A., M Lavagna, A coordination mechanism to
solve common resource contention in multi agent space
systems, International Symposium on Artificial
Intelligence, Robotics and Automation in Space-iSAIRAS
pp. 26–29, 2008.

L. Hunsberger, Distributing the control of a temporal

network among multiple agents, Proceedings of the

AAMAS, pp 899-906, 2003

L. Hunsberger, Algorithms for a temporal decoupling

problem in multi-agent planning, Proceedings of the

AAAI, 2002.

L. Hunsberger. 2008. A Practical Temporal Constraint

Management System for Real-Time Applications. In

Proceedings of European Conference on Artificial

Intelligence (ECAI-2008).

P. van Leeuwen, C. Witteveen, Temporal Decoupling and

Determining Resource Needs of Autonomous Agents in

the Airport Turnaround Process, IAT2009,

pp. 185-192, 2009.

Planken, L.R. and Mathijs M. de Weerdt and Cees

Witteveen (2010). Optimal Temporal Decoupling in

Multiagent Systems. In Van der Hoek and Kaminka and

Lesperance and Luck and Sen (Eds.). Proceedings of the

Ninth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS-10), pp.

789-796, Toronto.

Smith, S.F., "Is Scheduling a Solved Problem?",

Proceedings First Multi-Disciplinary International

Conference on Scheduling: Theory and Applications

(MISTA 03), Nottingham, UK, 2003

Yadati, C. and Cees Witteveen and Yingqian Zhang and

Mengxiao Wu and Han La Poutre (2008). Autonomous

Scheduling with unbounded and bounded agents. In

Ralph Bergmann and Gabriela Lindemann and Stefan

Kirn and Michal Pechoucek (Eds.). Multiagent System

Technologies. 6th German Conference, MATES 2008,

pp. 195-206, Kaiserlautern, Germany. Lecture Notes In

Computer Science Springer -Verlag.

Witteveen, C., W. van der Hoek and N. Roos (2009).

Concurrently Decomposable Constraint Systems. In

L.Braubach et al. (Eds.). Multiagent System

Technologies, 7th German Conference, MATES

Multiagent System Technologies MATES 2009, pp.

153-164.

124

