

a new system \hat{S}' such that $Sol(S') \subseteq Sol(S)$. a new system \hat{S}' such that $Sol(S') \subseteq Sol(S)$. a new system \hat{S}' such that $Sol(S') \subseteq Sol(S)$. b Construction of the concurrent decomposability problem. Take an instance (U, C, c) of LOGICAL CONSEQUENCE and consider a system S where the constraints are $C \cup \{c \ v \ x\} \cup \{\neg x\}$ and the partitioning of variables is $U, \{x\}\}$. Together only ≤ 2 objects can be chosen.	Deciding whether a distributed constraint system $S = (\{X_i\}_{i=1}^n, D, C)$ is concurrently decomposable, is coNP-complete.	idea if a distributed system S is not concurrently decomposable, change it to
DOGICAL CONSEQUENCE can be easily reduced to the concurrent decomposability problem.exampleAgent A has to choose between x, y and z (exclusive), while Agent B has to choose between y and z , and between u and v (also exclusive). Together only ≤ 2 objects can be chosen. $V, \{x\}\}.$	proof	
Take an instance (U, C, c) of LOGICAL CONSEQUENCE and consider a system S where the constraints are $C \cup \{c \ v \ x\} \cup \{\neg x\}$ and the partitioning of variables is $U, \{x\}\}$.	ii) LOGICAL CONSEQUENCE can be easily reduced to the concurrent	example
	Take an instance (U,C,c) of LOGICAL CONSEQUENCE and consider a system S where the constraints are $C \cup \{c \ v \ x\} \cup \{\neg x\}$ and the partitioning of variables is	has to choose between y and z , and between u and v (also exclusive).
t follows that coNP-completeness already holds for distributed constraint An obvious solution is to restrict the choices of both A and B to choosin	It follows that coNP-completeness already holds for distributed constraint systems where the partition contains only two blocks.	Independent choices cannot be made, as e.g. <i>x</i> , <i>z</i> and <i>u</i> might be chosen. An obvious solution is to restrict the choices of both <i>A</i> and <i>B</i> to choosing between <i>y</i> and <i>z</i> .

Finding an optimal TD	Finding an optimal TD		
Idea: given a distributed STN $S = ({X_i}_{i=1}^n, D, C)$ we associate to it an LP problem having the variables p_{xy} for every $x, y \in X$. These variables encode the upper bounds of the constraints in the resulting decoupled STN: $x - y \le p_{xy}$ and therefore completely specify the decomposable alternative. The linear (in)equalities encode the conditions each of the p_{xy} and have to satisfy:	Consider the following linear constraints for the variables p_{xy} $\forall u, w, v \in X :$ $p_{vx} \leq p_{vw} + p_{wx}$ (minimality conditions) $\forall x \in X :$ $p_{xx} = 0$ (consistency) $\forall x - y \leq w_{yx} \in C : p_{yx} \leq w_{yx}$ (preserving solutions) $\forall x - y \leq w_{yx} \in C \text{ s.t.}$ x and y in different partitions: $p_{yz} + p_{zx} \leq w_{yx}$ (temporal decoupling)		
- the minimal STN conditions - the consistency conditions - the temporal decoupling conditions SSS St Elienne august 2010	Consider the following objective function: maximize $\sum_{X_i} \sum_{x,y \in X_i} p_{xy}$ The solution of this LP will return an optimal decoupled STN EASSS St Elemme august 2010		

Examp	le for the I	Fuelling	Compan	у	Determining Resource Needs: Minimum and Maximum Method
Flight	EST	LST	EET	LET	
KL1857	12:00:00	12:00:00	12:12:00	13:38:58	 minimum method (optimistic)
KL1013	12:10:00	12:10:00	12:22:00	13:46:15	 EET + traveltime(v,w) ≤ LST
KL1667	12:17:03	12:17:03	12:48:03	14:09:58	
KL1577	12:29:30	12:29:30	3:00:30	14:17:15	 12:12:00 + 00:05:00 ≤ 12:17:03
KL8004	12:57:13	12:57:13	13:28:13	14:40:58	For example: KL1577 can be serviced after KL1857
KL1113	13:00:30	13:00:30	13:27:30	15:51:49	For example. RE1577 can be serviced after RE1657
KL0713	13:28:13	13:28:13	14:00:13	15:12:58	
KL8114	13:29:15	13:29:15	13:56:15	16:18:49	• mentioners method (constitutio)
KL3411	13:56:15	13:56:15	14:11:26	16:34:00	 maximum method (pessimistic)
KL8437	14:00:13	14:00:13	14:31:13	15:43:58	 LET+ traveltime (v,w) ≤ EST
KL4103	14:11:26	14:11:26	14:43:26	17:19:00	• 13:14:28 + 00:05:00 < 12:17:03
KL1725	14:31:13	14:31:13	14:43:13	16:34:00	 13:14:28 + 00:05:00 ≤ 12:17:03
KL1795	14:43:13	14:43:13	14:55:13	17:39:45	 For example: KL1577 cannot be serviced after KL1857
KL0435	16:48:01	16:48:01	17:19:01	18:10:45	FASSS 2010

