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Scheduling: basics

Given 

- a set of activities (events) whose durations and 

   resource requirements are known 

- a set of temporal constraints between the activities

- and a given cost function

scheduling is about deciding when to perform each activity in a 

cost optimal way.
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Scheduling: examples

project planning & scheduling

! planning of activities to be executed

        in software projects

machine scheduling

    ! allocation of jobs to processors

transportation scheduling

! arrival & departure scheduling of flights

employee scheduling

! crew rostering on flights

educational timetabling

! timetables at schools and universities

assembly system scheduling

! production planning for cars
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Example: machine scheduling

machines (resources) events (tasks) with durations & 

precedences

M1

M2

M3 t1 t3

t2

t4 t6

t8

t5

t7

assign jobs to the sequential machines such that the makespan 

(maximum completion time of a machine) is minimized.
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Simple example

M1

M2

M3 t1 t3

t2 t4 t6

t8t5

t7

0 10 15 20

machines

schedule realising a total 

completion time (makespan) of 20

can’t do better in this case:

t8 has to be executed after t5 has 

been completed
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an activity or event e is a process taking space and time.

we characterize events by time point variables and their constraints

e

start(e) : starting time of event e

end(e)  : ending time of event e

d(e)      : duration of event e

est(e)  : earliest starting time    = min(start(e))

lct(e)   : latest completion time = max(end(e))

est(e) start(e) end(e) lct(e)

d(e)

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Scheduling and constraints
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non-preemptive scheduling

no interruption is allowed during execution of an event

e

start(e) end(e)

d(e)

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

end(e) = start(e) + d(e) 

preemptive scheduling

interruption is allowed during execution of an event

e1

start(e) end(e)
timeline

0 1 2 3 4 5 6 7 8 9 10 11 12 13

end(e) " start(e) + d(e) 

e2 e3

preemptive vss non-preemptive
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sequencing of events

event e has to be completed before event e’ can start,

denoted by  e ! e’, if end(e) # start(e’)

e

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

end(e) # start(e’) 

exclusive events: 

e and e’ are exclusive if e ! e’ or e’ ! e

timeline
0 1 2 3 4 5 6 7 8 9 10 11 12 13

precedence constraints

e’

e e’

e’ e
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performance measures

makespan:
the makespan F = Cmax of a schedule is the completion time of 
the last event scheduled.

maximum tardiness
the maximum tardiness is the completion time of the last event 
scheduled minus the deadline given

average waiting time 

the average waiting time is the sum of the starting times of all the 
jobs divided by the number of jobs

We are most interested in minimizing the makespan of schedules

How difficult is that?
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scheduling:
some complexity results
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Basic cases

Given a scheduling problem with 

one machine (agent) and a set of jobs with durations

there is an efficient algorithm for computing the minimal makespan.

Given a scheduling problem with 

two machines (agents) and a set of jobs with durations

there is no efficient algorithm for computing the minimal makespan, 

unless P=NP. (the problem is NP-hard)

Given a scheduling problem with 

one machine (agent) and a set of jobs with durations + precedence 

constraints, there is no efficient algorithm for computing the minimal 

makespan, unless P=NP.

(will be extended)
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Autonomous scheduling:

the problem
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The problem

Let E be a set of (time-constrained) events (activities) to be performed by 

several agents. Every activity e is given to exactly one agent Ai.

Every agent Ai is allowed to schedule its own set of activities Ei"E

completely independent from the others. Its schedule has to satisfy all the 

constraints belonging to the set Ei

The autonomous scheduling problem is the following problem: 

          How to ensure that the merging of all individual schedule is a 

          schedule that is

- feasible, i.e., satisfies all the constraints

- makespan efficient
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patient schedules

individual scheduling of 

treatments of patients by doctors

how to ensure a feasible total patient 

schedule?

airport planning

agent planning systems for arrival, departure, 

gate assignment, ground handling, taxi-route planning

how to provide a feasible total airport schedule?  

15

 autonomous scheduling examples

multi-modal logistics planning

company specific transportation planning systems 

how to ensure a feasible intermodal transportation schedule? 
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autonomous scheduling example
There are two agents A1 and A2 involved in a construction task.

A1 has to deliver bricks to A2, who has to use them to build a wall.

A2 has to ensure that garbage will be collected and has to deliver it 

to A1 who will pick it up and bring it to a dumping ground.

For each task t , the duration d(t) and the precedence relation with

other tasks is known.

A2A1

precedence constraints

collect garbage

deliver garbagepickup garbage

drive to dumping ground

deliver bricks build wall

d=5 d=15

d=9

d=3

d=5

d=2
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autonomous scheduling example

A2A1

collect garbage

deliver garbagepickup garbage

drive to dumping ground

deliver bricks build wall

d=5 d=15

d=9

d=3

d=5

d=2

We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given
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schedule satisfies local

constraints:

pickup garbage ! drive dumping

collect garbage ! deliver garbage

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

A2

A1

collect 

garbage

deliver 

garbage

pickup 

garbage

drive to 

dumping ground

deliver 

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30

18



EASSS St Etienne august 2010

schedule violates inter-agent

constraints:

deliver bricks ! build wall

collect garbage ! pickup garbage

autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

0 10 20 30

A2

A1

collect 

garbage

deliver 

garbage

pickup 

garbage

drive to 

dumping ground

deliver 

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

INFEASIBLE joint schedule
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autonomous scheduling example

A2A1

collect garbage

deliver garbagepickup garbage

drive to dumping ground

deliver bricks build walle1

e2

e3

e4

e6

e5

d=5 d=15

d=9

d=3

d=5

d=2

To ensure a feasible joint schedule, we have to add a (weakest) set 

of additional constraints

Let’s look what might happen if only we add the following constraints

to the given set of local constraints+ durations 

end(e1) # 5 start(e4) " 5 

start(e3) " 10 

start(e3) " 10 

end(e6) # 10 
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autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

A2

A1

collect 

garbage

deliver 

garbage

pickup 

garbage

drive to 

dumping ground

deliver 

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30

every set of 

schedules

satisfying local

constraints

satisfies interagent 

constraints
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autonomous scheduling example
We would like to enable the agents to make their own schedule, starting from

a given point in time z=0.

Let’s look what might happen if only local constraints+ durations are given

A2

A1

collect 

garbage

deliver 

garbage

pickup 

garbage

drive to 

dumping ground

deliver 

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30

how to find a minimal

set of additional 

constraints?

how to find a minimal

set of additional 

constraints preserving 

makespan?
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autonomous scheduling

First result

Given a set of events with precedence constraints and fixed durations,

finding an arbitrary set of additional constraints ensuring conflict-free 

autonomous scheduling is easy. 

Solution idea

First, take all tasks e such that there is no e’ preceding e. Let E1 the

set of tasks obtained and d1 the maximum duration of these tasks. Then, for 

every e’ such that (i) there is an e in E1, (ii) e!e’ and (iii) e and e’ belong to 

different agents, add the constraints: end(e) # d1 and start(e’) " d1. Continue 

by obtaining E2
 
 and so on.

Exercise

Prove that using this idea needs to be refined to constitute a correct 

solution to the autonomous scheduling problem 
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autonomous scheduling

Example application

The makespan of the optimal schedule is max{5+15,5+2+3} = 20 = M

Adding the required constraints gives:

A2A1

collect garbage

deliver garbagepickup garbage

drive to dumping 

ground

deliver bricks build walle1

e2

e3

e4

e6

e5

d=5 d=15

d=9

d=3

d=5

d=2

end(e1) # 5 start(e4) " 5 

start(e3) " 15 end(e6) # 15 

24
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autonomous scheduling example

Resulting schedule

A2

A1

collect 

garbage

deliver 

garbage

pickup 

garbage

drive to 

dumping ground

deliver 

bricks

build wall

d=5

d=15

d=9d=3

d=5 d=2

0 10 20 30
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autonomous scheduling: variants 

• basic variant

Given a set E of events e with fixed durations d(e) and a 

precedence ordering ! on E 

• extended variant

Given a set E of events with simple linear constraints for start, 

end times and durations of events e

• full temporal constraint variant

Given a set E of events with arbitrary constraints on start, end 

times and durations of events e.

26
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organisation of the course 
• dealing with the general case: the full temporal constraint 

variant
We will start with an investigation of autonomous scheduling for 

problems represented by general constraints. This will allow us to 

characterize the complexity and to point out where the feasible cases 

are. 

• extended variant; dealing with Simple Temporal Problems

Then we discuss STPs and autonomous scheduling using the STP 

formalism. We will discuss a very general technique to solve 

autonomous scheduling problems here: Temporal Decoupling (TD)

• basic variant: specializing TD to the simple case

We specialize the TD technique for STPs to our simple case showing a 

particularly simple algorithm for solving the autonomous scheduling 

problem.
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Part II

Autonomous Scheduling

using

Constraint Systems 

28
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Dealing with the general case

We consider constraint systems with temporal variables, having 

values in a time domain. A solution to such a constraint system is 

an assignment of variables to time points, i.e., a schedule, 

satisfying all constraints.

The autonomous scheduling problem in its most general case then 

is a constraint decomposition problem:

Given a set of variables and constraints and a partitioning of the 

variables, how to ensure that solutions found for the partitioning 

induced subsystems constitute a joint solution to the complete 

system.
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problem specification
distributed problems:

some problems require more than one party to solve them

each party will have to solve a separate part of the
total problem; 
parts might be interdependent

approach (decomposition + minimal change)

we are looking for methods to minimally change the problem
specification in such a way that 

(i)   solutions are preserved

(ii)  each party is able to solve its part independently 
     from the others 

(ii)  individual solutions can be easily assembled 
     to obtain a total solution.

30
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concurrent decomposition would allow for independent and concurrent

solving of smaller subproblems of a given problem.

mechanism design

more efficient problem solving

if a feasible total solution has to be obtained, decomposition 

guarantees that no solution strategy of an individual agent 

can affect the feasibility of the global solution. 

autonomous computing

complete solutions can be obtained by autonomous ‘private/local” 

computations without communicating partial results.

decomposition: relevance
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a set     of propositional formulae over a set of n atoms    is a 

constraint system                                      ;

 

a system of linear equalities              is a constraint system;

a schedule is a set of (temporal) constraints on a set of activities.

constraints: some background

constraint systems

a constraint system is a tuple                         where

                                    is a finite set of variables,

                          is a set of domains, where      is the domain of     ,

         is a finite set of constraints for the variables in    .

S = (X, D, C)

X = {x1, x2, . . . xn}

D = {Di}
n

i=1
Di xi

C

examples

AΦ

X

S = (A, {{0, 1}i}
n

i=1
,Φ)

Ax = b
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Let                           be a constraint system and               .

The subsystem generated by       is                                        where

 -            is the subset of domains for the variables in     

 -          is the subset of constraints mentioning only variables in 

S = (X, D, C) X
� ⊆ X

X
� SX� = (X �, DX� , CX�)

X
�

DX� X
�

CX�

a solution    of a constraint system                         is an assignment

of values                    to each variable              such that all constraints

in     are satisfied.

note that a solution     can also be represented as a set of constraints 

{xi = s(xi) : i = 1, 2, . . . , n}

constraints: background (ii)

solution of a constraint system

S = (X, D, C)

C

s

s(xi) ∈ Di xi ∈ X

the set of solutions of a constraint system    is denoted by Sol(S)S

s

subsystems generated by a set of vars
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Decomposition in constraint systems is a technique to split

a constraint system     into several parts                          such 

that 

•  solving each of the subsystems      is easy (or easier) 

•  a solution                     can be easily obtained by applying

 a poly-time computable function     (merger) to solutions  

decomposition: current research

S S1,S2, . . . ,Sk

Si

s ∈ Sol(S)

f si ∈ Sol(Si)

Several such techniques exist: 

(hyper)tree decomposition, hinge decomposition, query decomposition,

tree clustering

common aspects

- partitioning (covering) of variables is byproduct of the application of a 

  decomposition technique

- result is set of interrelated acyclic subproblems, each

  of which can be solved efficiently

- decomposition does not result in splitting into 

  independently solvable subproblems
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2. we take the idea of decomposability to its extreme i.e., we require

    the subsystems                                      to be concurrently and 

    independently solvable such that arbitrary solutions of subsystems

    can always be joined to constitute a solution of    . 

    We call such a distributed system concurrently decomposable.

1. we take a distributed constraint system

    where                is a given partitioning of    .

S = ({Xi}
n

i=1
, D, C)

{Xi}
n

i=1
X

decomposition: our approach

S

Si = (Xi, DXi
, CXi

)

3. if     is not concurrently decomposable, we would like to find

    constraint systems      closely related to     such that

• is concurrently decomposable,

• there exists some polynomial    such that 

•

S

S
�

S

S
�

Sol(S �) ⊆ Sol(S)

p |S �| ≤ p(|S|)
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concurrently decomposable
systems

• concurrently decomposable systems

• simple consequence

a constraint system                                     is concurrently 

decomposable iff                          . 

is concurrently decomposable if,S = ({Xi}
n

i=1
, D, C)

- for all i=1,2,...,n, 

- 

Si = (Xi, DXi
, CXi

)

Si = (Xi, DXi
, CXi

)

Sol(S1) × Sol(S2) × . . . × Sol(Sn) ⊆ Sol(S)

∪
n

i=1
CXi

|= C

36
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Take an instance (U,C,c) of LOGICAL CONSEQUENCE and consider a system S 

where the constraints are C # {c v x} # {¬x} and the partitioning of variables is

{U, {x}}.

 

It follows that coNP-completeness already holds for distributed constraint 

systems where the partition contains only two blocks.

complexity (i)

Deciding whether a distributed constraint system

                                 is concurrently decomposable, is coNP-complete.S = ({Xi}
n

i=1
, D, C)

proof
i) no-instances are easily verified.

ii) LOGICAL CONSEQUENCE can be easily reduced to the concurrent

decomposability problem.  
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changing to a decomposable S

if a distributed system     is not concurrently decomposable, change it to

a new system      such that                               .

S

S
�

idea

Sol(S �) ⊆ Sol(S)

example

Agent A has to choose between x, y and z (exclusive), while Agent B 

has to choose between y and z, and between u and v (also exclusive).

Together only # 2 objects can be chosen.

Independent choices cannot be made, as e.g. x, z and u might be chosen.

An obvious solution is to restrict the choices of both A and B to choosing 

between y and z. 

38

Liverpool 2009

changing to a decomposable S

questions

How difficult is it to find a feasible alternative      ?

      
S
�

How difficult is it to find an alternative      that

comes as close to the original system      as possible? 
S
�

S

if a distributed system     is not concurrently decomposable, change it to

a new system      such that 

S

S
�

idea

Sol(S �) ⊆ Sol(S)
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Consider a consistent                                   . Then there exists 

a solution                    ;

Add the equality constraints                    to     .

The resulting system will have   as its unique solution and every 

agent is forced to choose sXi as its solution 

finding an alternative S’

arbitrary solution guaranteed (if system is consistent) 

S = ({Xi}
n

i=1
, D, C)

xi = s(xi) C

s ∈ Sol(S)

s

40
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finding a concurrently decomposable alternative is 
polynomially related to finding a solution for the 
original system:  

finding an alternative S’

Let C be a class of constraint systems. 

Then there exists a polynomial algorithm to find a solution 

for every S in C iff 

there exists a polynomial algorithm that, given S in C and 

an arbitrary partitioning of X, finds a decomposable alternative for S.

proof (sketch): 

(=>) add solutions fund as equalities to constraints of system

(<=) take the finest partitioning of X; solutions to polynomially bounded sets

of unary constraints can be found in polynomial time. So solve each of the

parts of the system; decomposability guarantees composition.
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• semantical approach

maximize the set of solutions            subject to 

• syntactical approach
minimize the amount of change necessary to obtain the resulting 

system 

Sol(S �) Sol(S �) ⊆ Sol(S)

S
�

idea: find additional constraints to     such that                                

is minimized. 
C |Sol(S) − Sol(S �)|

idea: measure the difference in the size of the constraint sets

of     and of     .  S S
�

finding a minimal solution

42
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• semantical approach

maximize the set of solutions            subject to 

• syntactical approach
minimize the amount of change necessary to obtain the resulting 

system 

Sol(S �) Sol(S �) ⊆ Sol(S)

S
�

idea: find additional constraints to     such that                                

is minimized. 
C |Sol(S) − Sol(S �)|

idea: measure the difference in the size of the constraint sets

of     and of     .  S S
�

finding a minimal solution

NP-hard even if the cardinality of the set of solutions is poly-sized

-complete even for the most simple distributed constraint systemsΣ
p
2

43
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Part III

Autonomous scheduling 

using

Simple Temporal Networks 

44

EASSS 2010

We discuss the autonomous scheduling problem 

using a constraint system that allows for efficient 

solution finding.

Hence, using such a constraint system, the autonomous 

scheduling problem can also be solved efficiently.

The constraints allowed are differences t’ - t # d 

between time points bounded above by a constant.

45
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simple temporal plans

temporal event ee

       t

(start of e)

t’

(end of e)

e starts at or after time 2 

e ends at or before time 8 

e’s duration is between 3 and 4 

t " 2

t’ # 8

3 # t’ - t # 4

z0 = 0fixed time reference point

standard

t - z0 " 2

binarydirect

z0 - t # -2

t’ - z0 # 8 t’ - z0 # 8

t’ - t # 4

t’ - t " 3

t’ - t # 4

t - t’ # -3

time points

46
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Small example

B

A

Two trains A and B meet each other at a platform. 

Train A arrives at 12.00 hrs and stops at most 5 minutes. 

Train B must arrive at least 2 minutes later than A, and 

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes. 

When does A leave, B arrive and B leave?

47
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Small example

t’A - tA # 5 2 # t’B - tB # 7

tB - tA " 2

Two trains A and B meet each other at a platform. 

Train A arrives at 12.00 hrs and stops at most 5 minutes. 

Train B must arrive at least 2 minutes later than A, and 

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes. 

When does A leave, B arrive and B leave?

0 # tA - z0 # 0

 z0 = 12.00

t’B - t’A # 3

time points

tA, tB  : arrival of A, B

t’A, t’B  : departure of A, B

z0 : time reference

constraints

transforming constraints

to standard form 

tj  - ti  # aij

48
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Small example

t’A - tA # 5 t’B - tB # 7

tA - tB # -2

Two trains A and B meet each other at a platform. 

Train A arrives at 12.00 hrs and stops at most 5 minutes. 

Train B must arrive at least 2 minutes later than A, and 

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes. 

When does A leave, B arrive and B leave?

0 # tA - z0 # 0

 z0 = 12.00

t’B - t’A # 3

time points

tA, tB  : arrival of A, B

t’A, t’B  : departure of A, B

z0 : time reference

constraints

tB - t’B # -2

This is the standard 

representation in

Simple

Temporal

Plans

49
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Small example

tA
t’A

tB t’Bt’A - tA # 5 t’B - tB # 7

tA - tB # -2
5

7

3-2

Two trains A and B meet each other at a platform. 

Train A arrives at 12.00 hrs and stops at most 5 minutes. 

Train B must arrive at least 2 minutes later than A, and 

must leave within 3 minutes after A leaves.

B stays at most 7 minutes and at least 2 minutes. 

When does A leave, B arrive and B leave?

0 # tA - z0 # 0

 z0 = 12.00

t’B - t’A # 3

z0

-2

00

STN

time points

tA, tB  : arrival of A, B

t’A, t’B  : departure of A, B

z0 : time reference

constraints

tB - t’B # -2
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Simple Temporal Plans

S = ( T,  C )

T =  {z0, tA, tB, t’A, t’B }

C =  { 

A Simple Temporal Plan (STP) is a tuple S = ( T, C )

where 

- T is a set of time-points and 

- C is a set of binary constraints of the form t’ - t # !

t’A - tA # 5,

t’B - tB # 7,

tA - tB # -2,

0 # tA - z0 # 0,

 z0 = 12.00,

t’B - t’A # 3, 

tB - t’B # -2                           }

Simple Temporal Plan
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An STN  S =(T,C) can also be represented by a labeled directed graph

       GS = ( T, E, l)

called a                                             (STN)

Nodes are time points, labeled edges are derived from constraints:

Simple Temporal Plans

S = ( T,  C )

T =  {z0, tA, tB, t’A, t’B }

C =  { 

                                        

t’ - t # ! ↔ t          t!!

t’A - tA # 5,

t’B - tB # 7,

tA - tB # -2,

0 # tA - z0 # 0,

 z0 = 12.00,

t’B - t’A # 3, 

tB - t’B # -2                           }

Simple Temporal Network

Simple Temporal Plan
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An STN  S =(T,C) can also be represented by a labeled directed graph

       GS = ( T, E, l)

called a                                             (STN) or

Nodes are time points, labeled edges are derived from constraints:

Simple Temporal Plans

S = ( T,  C )

T =  {z0, tA, tB, t’A, t’B }

C =  { 

                                        Simple Temporal Plan

t’ - t # ! ↔ t          t!!

t’A - tA # 5,

t’B - tB # 7,

tA - tB # -2,

0 # tA - z0 # 0,

 z0 = 12.00,

t’B - t’A # 3, 

tB - t’B # -2                           }

Simple Temporal Network

tA
t’A

tB t’B

5

7

3-2

z0 = 0

-2

00

Simple Temporal Network

(Distance Graph)

Distance Graph
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STN: solution & consistency

A solution to an STN  S = (T, C)  is an assignment { ti = vi  : ti " T } of values to 

variables that satisfies all constraints.

The set of solutions of S is denoted as Sol(S)

S is consistent iff Sol(S) ! #            S equivalent to S’ iff Sol(S) = Sol(S’) 

tA t’A

tB t’B

5

7

3-2

z0

-2

00

Solution 1:

z0 ! = 0

tA  ! = 0

t’A " = 1

tB  ! = 2

t’B  " = 4

how to determine consistency....

= 4

= 0

= 0 = 1

= 42 =
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STN: solution & consistency

A solution to an STN  S = (T, C)  is an assignment { ti = vi  : ti " T } of values to 

variables that satisfies all constraints.

The set of solutions of S is denoted as Sol(S)

S is consistent iff Sol(S) ! #            S equivalent to S’ iff Sol(S) = Sol(S’) 

tA t’A

tB t’B

5

7

3-2

z0

-2

00

Solution 1:

z0 ! = 0

tA  ! = 0

t’A " = 1

tB  ! = 2

t’B  " = 4

Solution 2:

z0 ! = 0

tA  ! = 0

t’A " = 5

tB  ! = 6

t’B  " = 8

how to find solutions….

= 4

= 0

= 0 = 5

= 86 =
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Distance Graph
explicit constraints can be combined to imply

other constraints: tA t’A

tB t’B

5

7

3-2

z0

-2

t’A - tA # 5

t’B - tB # 7

tA - tB # -2

t’B - t’A # 3

tB - t’B # -2

t’B - tB # (t’B  - t’A )+ (t’A - tA )+ (tA - tB )

                #     3       +      5     +    -2 

           =     6

constraints some implied constraints

6

Look at the labels of the 

edges as distances between 

the corresponding nodes.

Finding a tighter constraint 

comes down to finding a 

shorter path.

00
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Distance Graph
explicit constraints can be combined to imply

other constraints:

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

7

3-2

z0

-2

00

t’A - tA # 5

t’B - tB # 7

tA - tB # -2

t’B - t’A # 3

tB - t’B # -2

t’A - t’B # (t’A  - tA )+ (tA - tB )+ (tB - t’B )

           #       5     +    -2    +    -2

           =   1

t’B - tB # (t’B  - t’A )+ (t’A - tA )+ (tA - tB )

                #     3       +      5     +    -2 

           =     6

constraints some implied constraints

6

1

strongest constraints in STP

correspond to shortest paths in STN

table of all (strongest) implied constraints
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Distance Matrix

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

7

3-2

z0

-2

00

Strongest constraints in STP

correspond to shortest paths in STN.

The distance matrix DS for an STN

S = (T, C) is defined as:

D(ti, tj) = length of shortest path from

              ti to tj in the distance graph 

              of S or $ if no such path exists

D(  )  : 

GS  : 

Given the distance graph GS there 

are well-known efficient algorithms 

to compute the distance matrix.

Example: all-pairs shortest path algorithm

Floyd-Warshall: O(n3)
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0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

7

3-2

z0

-2

00

0 0 5 ! !

0 0 5 6 8

! ! 0 ! 3

! -2 ! 0 7

! ! ! -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

tA t’A

tB t’B

5

6

3-2

z0

-2

00

-26

5

-1

all-pairs shortest

path computation

-4

8

equivalent

systems

6 1

D:  

Complete minimal STN

-1
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0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

0 0 5 ! !

0 0 5 6 8

! ! 0 ! 3

! -2 ! 0 7

! ! ! -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

all-pairs shortest

path computation

O(n3)

distance matrix D = [d(t,t’)]original constraint matrix

checking consistency

Given an STN S with its graph Gs and distance graph D, the following statements are 

equivalent:

- S is consistent

- D has only 0’s on its diagonal

- G has no negative cycles 

this property can be checked in O(n3)

S is consistent
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0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

0 0 5 ! !

0 0 5 6 8

! ! 0 ! 3

! -2 ! 0 7

! ! ! -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

all-pairs shortest

path computation

O(n3)

distance matrix D = [d(t,t’)]original constraint matrix

finding solutions

Given an STN S with its distance graph D, if D does not contain negative diagonal 

elements, 

    - the set { ti = D(z0, ti)  : i=1,2, … n} $ {z0 = 0} is a solution

    - the set { ti = -D(ti, z0) : i=1,2, … n} $ {z0 = 0} is a solution

set of solutions

Why
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0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [d(t,t’)]

finding solutions

Given an STN S with its distance graph D, if D does not contain negative diagonal 

elements, 

    - the set { ti = D(z0, ti)  : i=1,2, … n} $ {z0 = 0} is a solution

    - the set { ti = -D(ti, z0) : i=1,2, … n} $ {z0 = 0} is a solution

Why

Take an arbitrary constraint t’ - t # !.

We have D(z0,t’) # D(z0,t)+D(t,t’) # D(z0,t) + !

Hence, D(z0,t’) - D(z0,t) # !.

So the first set of solutions satisfies every 

constraint. Likewise,

D(t,z0) # D(t,t’) + D(t’,z0) # !+ D(t’,z0)

Hence, -D(t’,z0) + -D(t,z0) # !

So the second set of solutions satisfies every 

constraint.
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general recipe for solutions

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := # 

while T ! #

   select some v " [-D(t,z0), D(z0,t)]

   add constraint {t = v} to STN and update the distance matrix D;

   remove row and column t from D;

   sol := sol $ {t=v}

start with tA " [ 0,0] ; select tA = 0
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general recipe for solutions

0 5 6 8

-1 0 1 3

-2 3 0 6

-4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := # 

while T ! #

   select some v " [-D(t,z0), D(z0,t)]

   add constraint {t = v} to STN and update the distance matrix D;

   remove row and column t from D;

   sol := sol $ {t=v}

start with tA " [ 0,0] ; select tA = 0

take tB " [ 2, 6 ] ; select tB = 4; update
4

-4
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general recipe for solutions

0 5 8

-3 0 3

-6 -1 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := # 

while T ! #

   select some v " [-D(t,z0), D(z0,t)]

   add constraint {t = v} to STN and update the distance matrix D;

   remove row and column t from D;

   sol := sol $ {t=v}

start with tA " [ 0,0] ; select tA = 0

take tB " [ 2, 6 ] ; select tB = 4; update
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general recipe for solutions

0 5 8

-3 0 3

-6 -1 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := # 

while T ! #

   select some v " [-D(t,z0), D(z0,t)]

   add constraint {t = v} to STN and update the distance matrix D;

   remove row and column t from D;

   sol := sol $ {t=v}

start with tA " [ 0,0] ; select tA = 0

take tB " [ 2, 6 ] ; select tB = 4; update

take t’A " [ 3, 5 ] ; select t’A = 3; update

3
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general recipe for solutions

0 6

-6 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

distance matrix D = [D(t,t’)]

sol := # 

while T ! #

   select some v " [-D(t,z0), D(z0,t)]

   add constraint {t = v} to STN and update the distance matrix D;

   remove row and column t from D;

   sol := sol $ {t=v}

take tA " [ 0, 0 ] ; select  tA = 0;   update

take tB " [ 2, 6 ] ; select  tB = 4;   update

take t’A " [ 3, 5 ] ; select t’A = 3; update

take t’B " [ 6, 6 ] ; select t’B = 6
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adding constraints to S

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

add t’A - tA # 0

D 

Let D be a distance matrix of a consistent STN S.

Let c: t - t’ # ! be a new constraint and S’ = S + c.

Then

• S’ is consistent if ! " [ -D(t’,t), D(t,t’) ]

• S’ is inconsistent if ! < -D[t’,t]

-! -! -! -! -!

-! -! -! -! -!

-! -! -! -! -!

-! -! -! -! -!

-! -! -! -! -!

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

S’ is inconsistent:

0 # 1
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adding constraints to S

0 0 5 6 8

0 0 5 6 8

-1 -1 0 1 3

-2 -2 3 0 6

-4 -4 1 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

add t’A - tA # 2

D 

Let D be a distance matrix of a consistent STN S.

Let c: t - t’ # ! be a new constraint and S’ = S + c.

Then

• S’ is consistent if ! " [ -D(t’,t), D(t,t’) ]

• S’ is inconsistent if ! < -D[t’,t]

0 0 2 3 5

0 0 2 3 5

-1 -1 0 1 3

-2 -2 0 0 3

-4 -4 -2 -2 0

z0

tA

tB

t’A

t’B

z0 tA tBt’A t’B

S’ is inconsistent:

0 # 1

consistent
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temporal decoupling
In finding solutions, we assumed that one agent controls the assignment 

of values to all the variables.

What happens if there is more than one agent and every agent Ai controls

a disjoint subset Ti of  time-point variables?

Each of these agents Ai wants to determine a local solution to the

sub-STN Si  generated by its set Ti.

                    

                    We are facing a major problem here
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temporal decoupling: example

tA t’A

tB t’B

5

6

3-2z0

-2

0

0

Consider the train example discussed before. 

Train A and Train B would like to determine their schedule

independently from each other.

Suppose:

A chooses  Sol(SA) % { tA = 0, t’A = 2 }

B chooses  Sol(SB) % { tB = 3, t’B = 6 }
controlled by A

controlled by B
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temporal decoupling: example

tA t’A

tB t’B

5

6

3-2z0

-2

0

0

Consider the train example discussed before. 

Train A and Train B would like to determine their schedule

independently from each other.

Suppose:

A chooses  Sol(SA) % { tA = 0, t’A = 2 }

B chooses  Sol(SB) % { tB = 3, t’B = 6 }

intuitive reason for failure: 

inter-agent constraints are not 

implied by local constraints

then

Sol(SA) Sol(SB)  % 

{ tA = 0, t’A = 2 , tB = 3, t’B = 6 }

is not a solution of S !

controlled by A

controlled by B

= 0 = 2

= 3 = 6
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temporal decoupling: method

t’

t

D(t’,t)

D(z0,t’)

z0
D(t,t’)

Take an arbitrary constraint t!- t " D(t,t!) such that t and t! belong to different blocks.

Consider the intra-agent constraints t!- z0  # D(z0,t’), z0 - t # D(t,z0). 

D(z0,t)

D(t’,z0)

D(t,z0)

If D(t,z0) + D(z0,t’) > D(t,t!) then t!- t " D(t,t!) 

is not implied by t!- z0  # D(z0,t’) , z0 - t # D(t,z0)

We can ensure implication of t!- t " D(t,t!) by 

intra-agent constraints by tightening 

t!- z0  # D(z0,t’) and z0 - t # D(t,z0)

Method: Choose !t and !t’ such that

 1.  -D(z0,t) # !t < D(t,z0)  

 2.  -D(t,z0) # !t’ < D(z0,t’)

 3.   !t + !t’ # D(t,t!)

Add constraints t!- z0  # !t and z0 - t # !t to S

compute new distance matrix.
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temporal decoupling: method

t’

t

D(t’,t)

!t’

z0
D(t,t’)

Take an arbitrary constraint t!- t " D(t,t!) such that t and t! belong to different blocks.

Consider the intra-agent constraints t!- z0  # D(z0,t’), z0 - t # D(t,z0). 

D(z0,t)

D(t’,z0)

!t

If D(t,z0) + D(z0,t’) > D(t,t!) then t!- t " D(t,t!) 

is not implied by t!- z0  # D(z0,t’) , z0 - t # D(t,z0)

We can ensure implication of t!- t " D(t,t!) by 

intra-agent constraints by tightening 

t!- z0  # D(z0,t’) and z0 - t # D(t,z0)

Method: Choose !t and !t’ such that

 1.  -D(z0,t) # !t < D(t,z0)  

 2.  -D(t,z0) # !t’ < D(z0,t’)

 3.   !t + !t’ # D(t,t!)

Add constraints t!- z0  # !t’ and z0 - t # !t to S

compute new distance matrix.
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temporal decoupling: method

t’

t

D(t’,t)

!t’

z0
D(t,t’)

Take an arbitrary constraint t!- t " D(t,t!) such that t and t! belong to different blocks.

Consider the intra-agent constraints t!- z0  # D(z0,t’), z0 - t # D(t,z0). 

D(z0,t)

D(t’,z0)

!t

If D(t,z0) + D(z0,t’) > D(t,t!) 

is implied by t!- z0  # !t’ and z0 - t # !t it

can be removed from S without any 

consequence.

This procedure can be repeated for every 

inter agent constraint not implied by 

intra-agent constraints.

The resulting system is a decoupled STN 
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Temporal Decoupling in action

tA t’A

tB t’B

5

6

3-2

z0

-2

00

-26

5

-1

6 1
-1

Step 1: ensure that tA - tB # -2

-4

8
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Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-1

6 1
-1

Step 1: ensure that tA - tB # -2.

This constraint is implied.

remove it.

-4

8
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Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-1

6 1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

-4

8
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Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-1

-4

8

1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 3: take t’B - t’A # 3.

This constraint is not implied.

Take z0 - t’A # -3 and t’B - z0 # 6.

Then t’B - t’A # 3 is implied.

Update D.
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Temporal Decoupling in action

tA t’A

tB t’B

5

6

3

z0

-2

00

-26

5

-3

-4

6

1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 3: take t’B - t’A # 3.

This constraint is not implied.

Take z0 - t’A # -3 and t’B - z0 # 6.

Then t’B - t’A # 3 is implied.

Update D and remove t’B - t’A # 3
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Temporal Decoupling in action

tA t’A

tB t’B

5

6

z0

-2

00

-26

5

-3

-4

6

1
-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 4: take t’A - tB # 1.

This constraint is implied.

remove it.

81

EASSS 2010

Temporal Decoupling in action

tA t’A

tB t’B

5

6

z0

-2

00

-26

5

-3

-4

6

-1

Step 1: take tA - tB # -2.

This constraint is implied.

remove it.

Step 2: take tB - tA # 6.

This constraint is implied.

remove it.

Step 4: take t’A - tB # 1.

This constraint is implied.

remove it.

The constraints between tA and t’B 

and t’A and tB are treated analogously
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Temporal Decoupling in action

tA t’A

tB t’B

5

6

z0

-2

00

-26

5

-3

-4

6

-1

For decoupled systems, local

solutions always imply a global 

solution: every combination of local 

solutions is a global solution. 

(every inter-agent constraint is 

satisfied by any combination of local 

solutions)

Example:  

{tA = 0, t’A = 4} and {tB = 3, t’B= 5} 

satisfies all constraints.
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Temporal decoupling in STNs

a temporal decoupling S is said to be locally optimal if there 

does not exists an alternative decoupling S’ where 

• all the constraints are at most as tight as the 

corresponding constraints in S and 

• at least one constraint is less tight than the corresponding 

constraint in S

Hunsberger presented an algorithm for obtaining locally optimal 

decouplings.

We will present an algorithm for obtaining a globally optimal 

temporal decoupling minimizing the total tightness of the 

constraints.  
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Finding an optimal TD

Idea: 

given a distributed STN                                   we associate to it 

an LP problem having the variables pxy for every x,y $ X . 

These variables encode the upper bounds of the constraints in 

the resulting decoupled STN:  x - y ! pxy and therefore 

completely specify the decomposable alternative.

The linear (in)equalities encode the conditions each of the pxy 

and have to satisfy:

- the minimal STN conditions

- the consistency conditions

- the temporal decoupling conditions

S = ({Xi}
n

i=1
, D, C)
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Finding an optimal TD
Consider the following linear constraints for the variables pxy

 %u,w,v $ X :           pvx ! pvw + pwx              (minimality conditions)

 %x $ X :                 pxx = 0                          (consistency)

 % x - y ! wyx $ C : pyx ! wyx                                 ( preserving solutions)

% x - y ! wyx $ C s.t. 

x and y in different partitions:

                             pyz + pzx ! wyx                       (temporal decoupling)

Consider the following objective function:

maximize 

The solution of this LP will return an optimal decoupled STN

ΣXi
Σx,y∈Xi

pxy
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Finding an optimal TD (ii)

Whenever the objective function is linear, an optimal solution 
for the optimal temporal decoupling problem can be obtained 
in polynomial time.

For some quadratic objective functions, the solution cannot 
be obtained in polynomial time unless P = NP.

( Vertex cover can be encoded in LP with a quadratic objective 
  function)
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Part IV

Applications 

of 

Temporal Decoupling 
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The Turnaround Process

At airports, planes have to be serviced at the gates.

Typically, multiple services have to be applied

(baggage handling, container loading, catering, 

fueling, lavatory services, cleaning) by different 

independent service providers.

For each aircraft unique durations and 

dependencies of these services are known.

There is a daily specification of the schedule for 

this turnaround process, on a mid-size to large 

airport requiring to service a few hundred to a few 

thousand planes. 
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Turnaround servicing arrangement

Fueling
2

Bulk 
cargo 
loader

Bulk cargo
train

Vacuum
lavatory
service

Cabin cleaning
truck

Electric
power

1

Galley service truck
(1st position)

Potable
water truck

Galley service truck
(2nd position)

Bulk cargo
loader

Bulk
cargo
train

Passenger
bridge

1

Air-conditioning

Starting air
sequenced

1

P

T

E

AS

F

AC

 an 

ns 

e 

1  Not required if auxiliary power unit is in use 

2  Sequence fueling with cargo loading

E  Electrical 

AC Air-conditioning 

AS Air start 

F  Fuel 

T  Toilet service 

P  Potable water

source:
Improving 

Ramp / Terminal Operation
for Shorter Turn-Times 
By Troy Barnett 

Principal Maintenance Engineer, 

Maintenance and Ground Operations Systems
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Turnaround timeline (Boeing 737)
 TYPICAL NEXT-GENERATION 737 TIMELINE

Engine Shutdown / Chocks On 0.3

P
A

S
S

E
N

G
E

R
 

S
E

R
V

IC
E

S

Position Passenger Bridge / Open Door 0.2

Deplane Passengers 3.7

Service Cabin 9.6

Service Forward Galley 6.7

Service Aft Galley 1.3

Board Passengers 9.8

Remove Passenger Bridge / Close Door 0.5

C
A

R
G

O
 B

A
G

G
A

G
E

 

H
A

N
D

L
IN

G

Unload Forward Compartment 2.2

Unload Mid Compartment 11.4

Unload Aft Compartment 5.5

Load Forward Compartment 7.1

Load Mid Compartment 7.3

Load Aft Compartment 13.8
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S
E
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V

IC
IN

G Fuel Airplane 9.9

Service Lavatories 2.0

Service Potable Water 2.0

Chocks Off / Pushback 1.0

0 5 10 15 20 25 30

MINUTES

 = Position Equipment   = Critical Path
PARAMETERS

 142 passengers off, 121 passengers on

 2 doors used to deplane and enplane

 1 galley service truck

 1 lavatory service truck

 1 potable water service truck

NOTE

 Belt loader used at cargo hold

 Aft galley, potable water, and lavatory service 

complete before passenger boarding

source:

Improving 

Ramp / Terminal Operation
for Shorter Turn-Times 
By Troy Barnett 

Principal Maintenance Engineer, 

Maintenance and Ground Operations Systems
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The problem

Given a daily turnaround plan and a set of autonomous service 

providers 

! How to obtain for each ground handling agent a 

temporal plan such that it can schedule its activities 

independently of the others, whilst the feasibility of 

the overall solution is ensured.

!  How to provide each agent with an estimation of the 

 number of resources it minimally needs to carry out 

 the activities listed in its schedule.

4
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The problem

Given a daily turnaround plan and a set of autonomous service 

providers 

! How to obtain for each ground handling agent a 

temporal plan such that it can schedule its activities 

independently of the others, whilst the feasibility of 

the overall solution is ensured.

!  How to provide each agent with an estimation of the 

 number of resources it minimally needs to carry out 

 the activities listed in its schedule.

4

TEMPORAL 

DECOUPLING

SPECIALISED

ALGORITHM
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Solving the decoupling problem
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modeling the turnaround process

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

fuelling: 10-20 min

fuelling after deboarding

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"- !"2

[ aij , bij ]

aij ! xj " xi ! bij 

is represented as  

turnaround constraints
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on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

fuelling after deboarding

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

turnaround constraints

modeling the turnaround process
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on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

turnaround constraints

!)%&"$'

modeling the turnaround process
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on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

turnaround constraints

!)%&"$'

!"$%&#$'

modeling the turnaround process
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on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 X4

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

turnaround constraints

!)%&"$'

!"$%&#$'

modeling the turnaround process
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

turnaround constraints

30 ! X5 – X4 ! "

!)%&"$'

!"$%&#$'

modeling the turnaround process
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Dispatching the process 

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3

!4.)!)*+,'()-./

!"5 !"6

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!":!1!$:@##

!"6!1!$6@$:

!"5!1!$6@#:

!"3!1!$6@#:

!"$!1!$6@##

!"#!1!$3@##

earliest possible dispatching

on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

turnaround constraints

30 ! X5 – X4 ! "

!)%&"$'

!"$%&#$'
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on-block+start deboarding

at 14.00 o’clock

120 ! X1 – X0 ! 120 

deboarding: 5-10 min

5 ! X1 – X2 ! 10

fuelling: 10-20 min

10 ! X4 – X3 ! 20

fuelling after deboarding

0 ! X3 – X2 ! "

turnaround: 60 min

60 ! X5 – X1 ! 60

off-block $30 after fuelling

turnaround constraints

30 ! X5 – X4 ! "

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!":!1!$:@##

!!"#$#%"&'(

!!'#$#%"&)(

#!)#$#%"&%(

!"$!1!$6@##

!"#!1!$3@##

latest possible dispatching

Dispatching the process 
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Decoupling turnaround in 4 steps

construct STN

using airport planning domain, construct overall problem 

representation using Simple Temporal Networks

decouple

decouple this STN into the relevant local (service-provider)

domains, adding additional constraints where needed.

local solving

decoupled STN’s are solved locally by each service provider, applying 

its own preferences, tools and methods

merging

local solutions (schedules) are merged into a total airport turnaround 

schedule which is guaranteed to be conflict-free
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Decoupling

!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

Two parties involved

deboarding

fuelling

Each party controls a sub 

STN

CONFLICTING 

SOLUTIONS POSSIBLE
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

Two parties involved

deboarding

fuelling

Each party controls a sub 

STN

CONFLICTING 

SOLUTIONS

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling: Example

Decoupling
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

Two parties involved

deboarding

fuelling

Each party controls a sub 

STN

INTER AGENT 

CONSTRAINTS

VIOLATED

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling: Example

Decoupling
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

No more conflicting 

solutions

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling Idea

Tighten some intra-agent 

constraints such that all 

inter agent constraints are 

satisfied.

Result

two decoupled subsystems,

independently solvable

Temporal Decoupling: Example

Decoupling
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

No more conflicting 

solutions

#!)#$#%"&%(

#!%#$#%"&((

!!(#$#%)&((

#!*#$#%"&((

!!"#$#%'&'(

!!'#$#%'&)(

Temporal Decoupling: Example

Temporal Decoupling Idea

Tighten some intra-agent 

constraints such that all 

inter agent constraints are 

satisfied.

Result

two decoupled subsystems,

independently solvable

Decoupling
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3
!)%&"$'

!4.)!)*+,'()-./

!"5 !"6
!"$%&#$'

4.)!78*99-./!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!!(#$#%)&((
!%'(+#!,

-%.(+#%.(,

Temporal Decoupling: Example

!%&'(&!78*99-./

Decoupling Process 

1.  Add temporal constraint for

 (X0,X3):

 130 ! X3 – X0 ! #

2.  Add temporal constraint for

     (X0,X5):

 180 ! X5 – X0 ! 180

Decoupling
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./

!$%&!'

!":

;<=+9,>?

!*$%&*$'

!+$%&!'

!!(#$#%)&((
!%'(+#!,

-%.(+#%.(,

3. Remove superfluous 

    inter agent constraints 

Temporal Decoupling: Example

Decoupling Process 

1.  Add temporal constraint for

 (X0,X3):

 130 ! X3 – X0 ! #

2.  Add temporal constraint for

     (X0,X5):

 180 ! X5 – X0 ! 180

Decoupling
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!"#

!"$

!"#$%&"#$'

%&'(&!)*+,'()-./!01!

"#($$

!"3!)%&"$'

!4.)!)*+,'()-./

!"5 !"6

!"$%&#$'

4.)!78*99-./

!%&'(&!78*99-./
!":

;<=+9,>?

!+$%&!'

!!(#$#%)&((
!%'(+#!,

-%.(+#%.(,

Temporal Decoupling: Example

Decoupling Process 

1.  Add temporal constraint for

 (X0,X3):

 130 ! X3 – X0 ! #

2.  Add temporal constraint for

     (X0,X5):

 180 ! X5 – X0 ! 180

3. Remove superfluous 

    inter agent constraints 

Decoupling
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status first problem

Question

How to obtain for each ground handling agent a 

temporal plan such that it can schedule its activities 

independently of the others, whilst the feasibility of 

the overall solution is ensured.

Result

After decoupling, each agent can decide 

upon its own schedule.

All individual schedules are mergeable into an conflict-free 

schedule for the overall schedule.

Conclusion

Temporal decoupling solves our autonomous scheduling 

problem for the turnaround process at airports
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Determining Resource Needs

113

!"#$%&'()*"+'),-().,/, Determining Resource needs of Autonomous 
Agents in Decoupled Plans

10

01231$456)$#7849#)3+&5$

!&,

!&/ !&.

!"#$%&"#$'

!)%&"$'

%&'(&!)*+,'()-./!

A-/B&!CD$3##
4.)!)*+,'()-./!

A-/B&!CD$3##

Flight KL1200 deboarding:
Gate:  F12
Earliest start: 14:00
Latest start: 14:00 
Earliest end: 14:05
Latest end: 14:10

$3@##
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Flight EST LST EET LET

KL1857 12:00:00 12:00:00 12:12:00 13:38:58

KL1013 12:10:00 12:10:00 12:22:00 13:46:15

KL1667 12:17:03 12:17:03 12:48:03 14:09:58

KL1577 12:29:30 12:29:30 13:00:30 14:17:15

KL8004 12:57:13 12:57:13 13:28:13 14:40:58

KL1113 13:00:30 13:00:30 13:27:30 15:51:49

KL0713 13:28:13 13:28:13 14:00:13 15:12:58

KL8114 13:29:15 13:29:15 13:56:15 16:18:49

KL3411 13:56:15 13:56:15 14:11:26 16:34:00

KL8437 14:00:13 14:00:13 14:31:13 15:43:58

KL4103 14:11:26 14:11:26 14:43:26 17:19:00

KL1725 14:31:13 14:31:13 14:43:13 16:34:00

KL1795 14:43:13 14:43:13 14:55:13 17:39:45

KL0435 16:48:01 16:48:01 17:19:01 18:10:45

Determining Resource Needs: 
Example for the Fuelling Company
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• minimum method (optimistic)

• EET + traveltime(v,w) # LST

• 12:12:00 + 00:05:00 # 12:17:03

• For example: KL1577 can be serviced after KL1857

• maximum method (pessimistic)

• LET+ traveltime (v,w) # EST

• 13:14:28 + 00:05:00 # 12:17:03

• For example: KL1577 cannot be serviced after KL1857

Determining Resource Needs: 
Minimum and Maximum Method
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Determining Resource Needs: 
Reachability Graph

Maximum method:

v
LET

+ traveltime(v,w) ! w
EST

Problem: find a smallest number of node-disjoint paths covering the reachability graph

Big Idea

Using the reachability

graph, the minimum 

number of vehicles 

needed equals the 

smallest number of 

node-disjoint paths that 

cover the graph

Small Idea

To service KL1857, 

KL8437 and KL0435, we 

need one vehicle
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Example of a path cover

requiring 9 vehicles to

do the fuelling

Can we do better?

Determining Resource Needs: 
Minimum Capacity based on the Maximum Method
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Determining Resource Needs: 
Flow Graph 

maximum flow: 6

Reduction to

Max-Flow problem

resources needed: 14 -6 = 8

Flow is assigned to 

all flights not 

serviced first!
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Determining Resource Needs: 
Translating back

Flights: 14.

Maximum flow: 6

Paths with length 2:

{(KL1857,KL8437, KL0435)}

Paths with length 1:

{(KL1667,KL4103),

(KL1577,KL1725),

(KL8004,KL1795,

(KL1013,KL3411)}

Paths with length 0:

{KL1113, KL0713, KL8114}

Required capacity:

|V| - f, with

E |V| = #nodes in graph

E f = maximum flow in 

flowgraph

Required capacity: 14-6=8
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Tool Implementation 

• Rather fast algorithm presented to determine resource needs:  
O(n3)

• Execution time for a problem instance of 207 flights:

- Minimum required capacity calculated in 23 sec.

- Maximum required capacity in 17 sec.

- Entire planning tool (both temporal planning and decoupling 

and determining resource needs):%

-  Less than 3 minutes. 

• Realistic application:

- Execution time for a full-day scenario calculated in less than 

20 minutes.
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Conclusions

We presented a multi-agent solution to a real-life distributed 
planning problem presented solving the

!  Autonomous Scheduling Problem:

! ! Agents can plan their activities independently while the

    feasibility of the overall solution is ensured.

•  Determining Resource Needs Problem:

!         Agents can obtain an estimation of the number of 

    resources it  minimally needs to carry out the activities 

    listed in its schedule
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Future Research

! More realistic resource determination by including 

! Resource availability in time 
(e.g. fuelling vehicles need re-fuelling themselves)

! Shortest route calculation (reducing travel time)

! Re-planning in case of large disruptions:

! Taking backup resources into account (including 
corresponding extra costs)

! Adapting the level of decoupling (merge)

! Look at swap as an operation to solve specific disruptions

• Integrating decoupling and minimisation of resource needs

! Development of validated decision support tool becoming 
operational at a real airport
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