Engineering Norm-Governed Systems

Part I
Introduction to Norm-Governed Systems

Alexander Artikis'? and Jeremy Pitt!

1Imperial College London, UK
2National Centre for Scientific Research “Demokritos”, Greece

Objectives and Outcomes

> Objectives

» To motivate, explain and demonstrate the use of Action
Languages from Artificial Intelligence for engineering
norm-governed multi-agent systems.

» Outcomes — tutorial attendees will:

» Understand the basic concepts in norm-governed systems:
permission, obligation and (institutional) power;

> Apply these concepts in the (executable) specification of
protocols using Action Languages from Artificial Intelligence;

» Manipulate these specifications for animation of, reasoning
about, and proving properties of such systems;

» Understand how adaptive specifications can be used for
engineering self-organisation, and other self-* properties.

Tutorial Structure

» Part I: Introduction to Norm-Governed Systems

> Part II: Action Languages 1 — Event Calculus & Voting
Protocol

> Part Ill: Action Languages 2 — Action Language C+ &
Resource Sharing Protocol

> Part IV: Dynamic Specifications
» Part V: Run-Time Configurations
» Part VI: Open Issues

Engineering Norm-Governed Systems: Part |

> Motivation

» Norm-Governed Systems
» Organised Adaptation

» Action Languages

» Examples

Motivation

» Pick a network:

» individual people, forming online communities or social
networks via computer-mediated communication

» computing devices, forming ad hoc networks, MANETS,
VANETS, Sensor Networks, etc.

> business processes, forming virtual enterprises/organizations,
holonic manufacturing, computational economies, etc.

» May be classified as open systems (in the sense of Hewitt)

> autonomous components of heterogeneous provenance

> can assume that components can communicate (i.e. a common
language)

> can not assume a common objective or central controller

Features

» Common features of open systems:

» Dynamic and 'volatile’: the environment, network topology

and constituent nodes can vary rapidly and unpredictably

‘Evolutionary’: known nodes can come/go, but can also have

new nodes and node ‘death’

» Co-dependence and internal competition: nodes need others to

satisfy their own requirements, but may also behave to

maximise individual (rather than collective) utility

Partial knowledge: no single source knowledge, union of

knowledge may be inconsistent

» Sub-ideal operation: the nodes may fail to comply according to
the system specification, by accident, necessity, or design.

v

v

» Actuality (what is the case) and ideality (what ought to be
the case) do not necessarily coincide

Addressing the Features

> Distributed functionality and co-dependence
> requires collective and coordinated interaction
» requires role-based ‘co-operative work’
» ‘Evolution’
> requires resilience to (unexpected) change, and scope for
improvement
> Decentralised control and partial knowledge
> requires sub-group decision-making
» Dynamic topology and asynchronous communications
» too fast, too frequent and too complex for operator
intervention
» Unpredictable behaviour and sub-ideal operation
> requires conflict resolution (restoration of compliant states)
> Everything requires agreed rules and well-defined procedures,
and rules and procedures for changing rules and procedures

Proposal (1): Norm-governed Systems

» Encapsulated by the idea of institution
> Institutions (Ostrom)
> Sets of working rules used to determine who is eligible to make
decisions in what area, what actions are allowed or
constrained, what aggregation rules are used, etc.
> As Normative Systems:

> Agents

» Social constraints/rules
» Communication language
> Role

Social Constraints

> Three types of ‘can’
» Physical capability
» Institutional power
> The performance by a designated agent, occupying a specific
role, of a certain action, which has conventional significance,
in the context of an institution
> A special kind of ‘certain action’ is the speech act
> Permission (& obligation)
> Can have (physical or institutional) power with/without
permission
» Sometimes power implies permission

» Sanctions and enforcement policies
» Right, duty, entitlement, and other more complex relations

» Social constraints can be adapted for intentional, run-time
modification of the institution

Proposal (2): Organised Adaptation

» Organised Adaptation vs. Emergence

» Emergent Adaptation:
> the non-introspective application ...
> of hard-wired local computations, ...
> with respect to physical rules and/or the environment, ...
> which achieve unintended or unknown global outcomes

» ... as opposed to ...
» Organised Adaptation:
> the introspective application ...
> of soft-wired local computations, ...
> with respect to physical rules, the environment and
conventional rules, ...
> in order to achieve intended and coordinated global outcomes.

Examples of Organised Adaptation (‘Real’ Life)

<
7 <
AR ﬁq =)
RN <
< <=
<
Emergence
Coordination
=)
Organizational Adaptation Role Assignment Legal Proclamation

(White smoke from the Sistene
Chapel of St. Peter’s Basilica
announces a new Pope)

Achieving Intended Global Outcomes

» Organised Adaptation affects coordination, organization,
institution and norms
» coordination: the collective ability of heterogeneous and
autonomous components to CHANGE THE ARRANGEMENT
OR SYNCHRONISATION OF the performance of specified
actions in sequential or temporal order
organization: THE ABILITY TO MODIFY a formal structure
supporting or producing intentional forms of coordination
institution: ROLE-ASSIGNMENT in an organization where
(inter alia) the performance of designated actions to produce
conventional outcomes can by DIFFERENT empowered agents
OVER TIME
» norms: standards or patterns of behaviour in an institution
CHANGED by decree, agreement etc.,

v

v

Engineering (Adaptable) Norm-Governed Systems:
Action Languages

v

Action languages:
> representation of the agents’ actions and their effects
» exhibit a formal semantics
» exhibit a declarative semantics
» have direct routes to implementation
» Examples:
» Situation Calculus
» Event Calculus
» E
» C+
> We will use the Event Calculus and C+

» Other formalisms may be (have been) used for engineering
norm-governed systems

Norm-Governed Systems: Examples

» Voting Protocol
» There is a set of agents S, a subset of which occupy the role
of voters who are entitled to vote, and a designated agent in S
occupying the role of returning officer, who declares the result
of a vote. The protocol stipulates that the officer calls for a
ballot on a specific motion, the voters cast their votes (express
their preference), the officer counts the votes and declares the
result according to the standing rules.
» Resource Sharing Protocol
> There is a set of agents S, a subset of which occupy the role
of subjects who are entitled to access a resource, and a
designated agent in S occupying the role of chair. The subjects
are empowered to request access to the resource, the chair is
empowered to grant or revoke access.The protocol stipulates
that one or more subjects request access to the resource, the
chair grants access to only one; that agent uses the resource
until it is released it or access is revoked, and the cycle repeats.

Part I: Summary

» Motivated general requirement for adaptive institutions as
approach to issues in open systems

> Proposed Norm-governed systems and Organised Adaptation
as framework for formal approach

> |dentified Action Languages from Atrtificial Intelligence as the
basis for engineering norm-governed systems
> representation of the agents’ actions and their effects
> exhibit a formal semantics
» exhibit a declarative semantics
» have direct routes to implementation
> Will now be demonstrated
» Part Il: Event Calculus and the Voting Protocol
» Part Ill: Action Language C+ and the Resource-Sharing
Protocol
» Part IV: Dynamic Specifications
» Part V: Run-Time Configurations
» Part VI: Open Issues

Engineering Norm-Governed Systems

Part Il
Specifying and Executing Norm-Governed
Systems in the Event Calculus

Alexander Artikis and Jeremy Pitt

Outline

> The Event Calculus (EC) (with thanks to Prof. Marek Sergot,
Imperial College London).
» Running example: a voting protocol.
» Specification in Event Calculus of:
> Institutional Power.

> Permission & Obligation.
> Sanction.

v

EC implementation routes.

» Voting protocol execution.

The Event Calculus (EC)

> General purpose language for representing events, and for
reasoning about effects of events.
> An action language with a logical semantics. Therefore, there
are links to:
» Implementation directly in Prolog.
> Implementation in other programming languages.
» Prolog:

» specification is its own implementation;
» hence executable specification.

Fluents and Events

» Focus on events rather than situations; local states rather
than global states
> Fluents
» A fluent is a proposition whose value changes over time
> A local state is a period of time during which a fluent holds
continuously
> Events
> initiate and terminate ...
> ... a period of time during which a fluent holds continuously

v

Example
> give(X,obj, Y) initiates has(Y, obj)
> give(X,obj, Y) terminates has(X, obj)

» A sequence of such events forms a narrative

Simplified Event Calculus

» Inertial fluents hold their values continuously

> Values are assigned initially (at the start),

> Values are given when asserted (initiated)

> Values persist until disturbed (terminated)

» Otherwise we have ‘missing information’
» A formula of the form

» Event terminates fluent

» Has persistence disturbing effect, but no assertional force
» A formula of the form

» Event initiates fluent

» Has assertional force, but no persistence disturbing effect
» Suppose

> win_lottery initiates rich

> lose_wallet terminates rich

Example
> Given
> win_lottery initiates rich
> Winning the lottery initiates rich (but you might be rich
already)
> lose_wallet terminates rich
> Losing your wallet terminates rich (but you might not be rich
when you lose it)
assume still rich here
_ rich , rich rich, _ rich
win win > lose [winF——+
assertional force no assertional force

no persistence disturbing effect persistence disturbing effect

Events and Narratives in the Simplified EC

» Events occur at specific times (when they ‘happen’)
» Assume that all events are instantaneous
» Aside: there is a refinement of EC for events which have
duration
> Here, we will use non-negative integer time-points
» Does not mean we assume that time is discrete
» Does not mean that time points have to be integers
» We only need a relative/partial ordering for events
» For non-negative integers, < will do
» Read < as ‘earlier than' or ‘before’
> A set of events, each with a given time, is called a narrative
» Inference in the SEC is non-monotonic
» Events in a narrative can be processed in a different order to
that in which they occurred

General Formulation

> The narrative (what happens when) is represented by:
> initially F
> Fluent F holds at the initial time point (usually 0)
» E happensat T
> Event/action of type E occurred/happened at time T
» The effects of actions are represented by:

» E initiates F at T
> The occurrence of event of type E at time T starts a period
of time for which fluent F holds

» E terminates F at T
> The occurrence of event of type E at time T ends a period of
time for which fluent F holds
» The general query:

> F holdsat T
> Fluent F holds at time T

> F holdsfor P
> Fluent F holds for time period P (P is of the form (Ty, T2])

Method of Computation: The EC ‘Engine’

F holdsat T <«

E happensat Te A

Te< T A

E initiates F at Te A

not (F brokenbetween Te and T)
F holdsat T <«

0<T A

initially F A

not (F brokenbetween 0 and T)
F brokenbetween Te and T <«

E’ happensat Ti A

Te<Ti A

Ti<T A

E' terminates F at Ti

Notes

Time comparisons are strict: therefore a fluent does not hold
at the time point in which it is initiated

Negation-as-failure (not(...)) ensures that inferences are
non-monotonic
Action pre-conditions can be expressed as integrity constraints
» Some actions can't be performed at the same time
> For example: give(X, obj, Y) A give(X, obj, Z) A not(Y = Z)
» Every time the narrative changes, query the integrity
constraints to check consistency
A simple extension allows many-valued (as well as boolean)
fluents
» Formis F =V
> For boolean valued fluents, V € {true, false}
There is a difference between:
> kill(X) initiates alive(X) = false at T
> kill(X) terminates alive(X) = true at T

Summary: So far

v

Introduced (Simplified) Event Calculus

v

Events and Fluents
» General computational engine

» Specification of a narrative

v

Next: formalisation of a protocol in SEC

» Then: use it for computation

Voting Protocol: Informal Description

| 4

Informal specification of a decision-making procedure
according to Robert’s Rules of Order (Newly Revised)

» a committee meets and the chair opens a session

» a committee member requests and is granted the floor

» that member proposes a motion

» another member seconds the motion

» the members debate the motion

» the chair calls for those in favour to cast their vote

» the chair calls for those against to cast their vote

> the motion is carried or not, according to the standing rules of
the committee

Voting Protocol: Graphical Description

» Various options for graphical representation

» UML Sequence diagrams
» State diagrams

c: open_session c: close_session

S1
sitting(s)=0~

(50) votin|
sittng(s)=0

sitting(s)=1

v; propose v;: second c: open_ballot c: close_ballot

SO (s1) (S2) (S3) (sS4

pending proposed seconded voting voted

v: vote
v: revoke
v: abstain

» Note certain simplifications to RONR specification

» No floor request, debate or agenda
» Voting, changing of votes etc., concurrently

c: declare

S5

resolved

An Event Calculus Specification

v

v

Basic Items: Events and Fluents
Institutional Powers

Voting and Counting Votes
Permission and Obligation
Sanctions

Objection

Actions

Action Indicating. ..

open_session(Ag, S)
close_session(Ag, S)
propose(Ag, M)
second(Ag, M)
open_ballot(Ag, M)
close_ballot(Ag, M)
vote(Ag, M, aye)
vote(Ag, M, nay)
abstain(Ag, M)
revoke(Ag, M)
declare(Ag, M, carried)
declare(Ag, M, not_carried)

open and close a session
propose and second a motion

open and close a ballot
vote for or against a motion,

abstain or change vote

declare the result of a vote

Fluents

Fluent Range
sitting(S) boolean
status(M) {pending, proposed, seconded
voting(T), voted, resolved }
votes(M) N x N
voted(Ag, M) {nil, aye, nay, abs}

resolutions(S) list of motions
qualifies(Ag, R) boolean
role_of (Ag, R) boolean
pow(Ag, Act) boolean
per(Ag, Act) boolean
obl(Ag, Act) boolean
sanction(Ag) list of integers

Institutional Power

> Recall: an empowered agent performs a designated action in
context which creates or changes an institutional fact.
» We want to express the effects of the designated protocol
(speech) actions, in particular:
> vote

» open_session and open_ballot
> declare

» For the specification of the effects of these actions, it is
important to distinguish between:

> the act of (‘successfully’) casting a vote, and

» the act by means of which the casting of the vote is signalled
(e.g. sending a message of a particular form via a TCP/IP
socket connection).

Institutional Power

» Institutional power to open the ballot on a motion:
pow(C, open_ballot(C, M)) = true holdsat T «+
status(M) = seconded holdsat T A
role_of (C, chair) = true holdsat T

> Institutional power to cast a vote:
pow(V, vote(V, M,)) = true holdsat T <+
status(M) = voting(_) holdsat T A
role_of (V, voter) = true holdsat T A
not role_of (V, chair) = true holdsat T A
voted(V, M) = nil holdsat T

Effects of Institutional Power (1)

» Chair performs open_ballot(C, M)

open_ballot(C, M) initiates votes(M) = (0,0) at T «+
pow(C, open_ballot(C, M)) = true holdsat T

open_ballot(C, M) initiates voted(V,M) = nil at T +
pow(C, open_ballot(C, M)) = true holdsat T A
role_of (V, voter) = true holdsat T

open_ballot(C, M) initiates status(M) = voting(T) at T «+
pow(C, open_ballot(C, M)) = true holdsat T

» Now voters have power to cast votes

Effects of Institutional Power (2)

» Casting and counting votes
vote(V, M, aye) initiates votes(M) = (F1,A) at T +
pow(V, vote(V, M)) = true holdsat T A
votes(M) = (F,A) holdsat T A
Fl=F+1
vote(V, M, aye) initiates voted(V,M) = aye at T «
pow(V, vote(V, M,_)) = true holdsat T
> Power to revoke vote now granted (revocation without vote
was ‘meaningless’)

» Power also used to advance status of motion, perform role
assignment, etc.

Permission

> ‘Right’ aspect of enfranchisement

> Agents have the power to vote
» Agents have the permission to vote

> In this case (although not always) power implies permission
» Nobody should stop them from exercising their power

> Therefore the chair's power to close the ballot is not always
permitted

pow(C, close_ballot(C, M)) = true holdsat T <+
status(M) = voting holdsat T A
role_of (C, chair) = true holdsat T
per(C, close_ballot(C, M)) = true holdsat T «
role_of (C, chair) = true holdsat T A
status(M) = voting(T’) holdsat T A T > T'+10

Obligation

» ‘Entitlement’ aspect of enfranchisement
» ‘Access’ to ‘voting machine’ is a 'physical’ issue
» Correct vote count: as above
» A 'fair’ outcome: obligation to declare the result correctly: e.g.

a simple majority vote

obl(C, declare(C, M, carried)) = true holdsat T «+
role_of (C, chair) = true holdsat T A
status(M) = voted holdsat T A
votes(M) = (F,A) holdsat T A
F>A

Sanction

» The chair always has the power to close a ballot
» It has permission to exercise the power only after some time
has elapsed
» If it closes the ballot early, it may be sanctioned
close_ballot(C, M) initiates sanction(C) = [(102,M)|S] at T <+
role_of (C, chair) = true holdsat T A
per(C, close_ballot(C, M)) = false holdsat T A
sanction(C) = S holdsat T

> The sanction results in penalty only if someone objects

> Feature of RONR: ‘anything goes unless someone objects’

The Event Calculus: Implementation Routes

» EC has been mainly used for narrative assimilation:
» Given a narrative, check that it is consistent
» Given a consistent narrative, check what holds when
> There are many EC variants and implementations, for
different purposes or requirements
» Discrete Event Calculus Reasoner, for proving properties &

planning
» Cached Event Calculus, for efficient narrative assimilation

> etc. ...
> We will show the use of the Simplified EC for narrative
assimilation
» Pre-process directly into Prolog

The Event Calculus: Narrative Assimilation

Initial Social State

initially(role_of(cAgent,chair) = true).
initially(role_of(cAgent,voter) = true).
initially(role_of(pAgent,voter) = true).

Narrative
happens(open_session(cAgent, sesh),
happens(propose(pAgent, m1), 2)
happens(second(sAgent, m1), 3). . .
happens(open_ballot(cAgent, m1), ~ 4). Resulting Social State
happens(vote(pAgent, m1, aye), 5). roles
happens(vote(sAgent, m1, nay), 6. powers
happens(vote(vAgent, m1, nay), 7). permissions
happens(revoke(sAgent,m1), 8). obligations
sanctions

happens(vote(sAgent, m1, aye), 9.
happens(close_ballot(cAgent, 10)
happens(declare(cAgent, m1, not_carried), 11).
happens(close_session(cAgent, sesh), 12).

Social Constraints

holdsAt(obl(C, declare(C,M,carried))=true, T) :-
holdsAt(role_of(C,chair)=true, T),
holdsA((status(M)=voted, T),
holdsAt(votes(M)=(FA), T),
F>A

Example: The Voting Protocol

» EC Specification pre-processed into Prolog program

> Process narratives for consistency and ‘what holds when’

sanctions

agent roles powers

cAgent chair voter close_ballot close_session close_ballot
pAgent voter proposer

sAgent voter proposer vote vote
vAgent voter

happens(vote(sAgent, m1, aye))
cAgent chair voter close_ballot close_session close_ballot close_ballot
pAgent voter proposer
sAgent voter proposer
vAgent voter

happens(close_ballot(cAgent, m1))
cAgent chair voter declare close_session declare(carried) declare(carried)
pAgent voter proposer
sAgent voter proposer
vAgent voter

happens(declare(cAgent, m1, not_carried))
cAgent chair voter close_session close_session 102
pAgent voter proposer propose propose
sAgent voter proposer propose propose

vAgent voter

Part Il — Summary: The Event Calculus

> Representation of the (non-deterministic, conditional, indirect,
delayed) effects of (concurrent) actions, default persistence of
facts (‘inertia’), etc.
» Structured specifications.
» Direct routes to implementation.
» Efficient implementations for narrative assimilation.

» The domains of variables may be unknown.
» Can directly build upon Prolog's tracing facility.

Engineering Norm-Governed Systems

Part IlI:
Specifying and Executing Norm-Governed
Systems in the Action Language C+

Alexander Artikis and Jeremy Pitt

Outline

v

The action language C+.
Running example: a resource-sharing protocol.

» Specification in C+ of:

> Institutional Power.

> Permission & Obligation.
> Sanction.

v

v

C+ implementation routes.

» Resource-sharing protocol execution.

The C+ Language

> Representation of the (non-deterministic, conditional, indirect,
delayed) effects of (concurrent) actions, default persistence of
facts (‘inertia’), etc.

» Structured specifications.

> An action language with explicit transition system semantics.
Therefore, there are direct links to:
> Model checkers.
» The nC+ language, specifically designed for modelling the
institutional aspects of agent systems.

» Direct routes to implementation.

The C+ Language

> An action signature in C+ includes fluents and actions.

> An action description in C+ is a set of C+ rules that define a
transition system.

» Static rules:
caused F if G

> Dynamic rules:
caused F if G after a A H
» Action dynamic rules:

caused « if H

The C+ Language

Abbreviations for causal rules:

« causes F if H caused F if T aftera A H

nonexecutable « if F caused L if T after a A F
default F caused F if F
caused F iff G caused F if G
default =F
inertial F caused F if F after F

A Resource-Sharing Protocol

(d\(9)

N

(b)\()\(e) @

(@)\(d)

(@) request_floor

(b) assign_floor

(c) extend_assignment
(d) release_floor

(e) revoke_floor

(f) manipulate_resource
(g) request_to_manipulate

T @\

(d)\@)

®
resource

Institutional Power

» We want to express the effects of the protocol actions, eg
assign_floor.

» For the specification of the effects of this action, it is
important to distinguish between:

> the act of (‘successfully’) assigning the floor, and

> the act by means of which the assignment of the floor is
signalled (eg, sending a message of a particular form via a
TCP/IP socket connection).

Institutional Power

» Institutional power to assign the floor:
caused powAssign(C, Sb) if
role_of (C) = chair,
VSb' status(Sb') =0,
requested(Sb)#null

» Effects of assigning the floor:

assign_floor(C, Sb) causes status(Sb) = CL+60 if
powAssign(C, Sb),
clock = CL

Permission & Obligation

Action: assign_floor(C, Sb)

Power Permission Obligation

role_of (C) = chair,
VSb' status(Sb') =0,
requested (Sb)#null

role_of (C) = chair, 1
VSb' status(Sb') =0,
best_candidate = Sb

Institutional Power, Permission & Obligation

Action: request_floor(Sb, C, M)
Action: revoke_floor(C)

Power Permission Obligation

role_of (Sb) = subject, role_of (Sb) = subject 1
requested(Sb) = null

role_of (C) = chair,
status(Sb) > 0,

clock > status(Sb),
best_candidate##Sb

role_of (C) = chair, role_of (C) = chair,
status(Sb) > 0, status(Sb) > 0,
clock > status(Sb), clock > status(Sh),
best_candidate#Sb best_candidate = Sb’,

Sb£Sb/

Institutional Power, Permission & Obligation

Action: request_floor(Sb, C, M)
Action: revoke_floor(C)

Power Permission Obligation

role_of (Sb) = subject, role_of (Sb) = subject \
requested (Sb) = null

role_of (C) = chair,
status(Sb) > 0,

clock > status(Sb),
best_candidate£5Sb

role_of (C) = chair, role_of (C) = chair,

status(Sb) > 0, status(Sb) > 0,

clock > status(Sb), clock > status(Sb),

best_candidate#Sb best_candidate = Sb,
Sb#Sb

Sanction

» Regimentation is not always desirable or practical.
> Sanctions are a means of dealing with ‘undesirable’ or
‘unacceptable’ behaviour. We specify:

» when is an agent sanctioned, and
» what is the penalty that the agent has to face.

» When? Eg:
assign_floor(C, Sb) causes sanctioned(C) if

role_of (C) = chair,
—perAssign(C, Sb)

Sanction

Penalty for chair:

» temporarily lose the power to assign the floor:

caused powAssign(C, Sb) if
role_of (C) = chair,
VSb' status(Sb') =0,
requested(Sb)#null,
—sanctioned(C)

> ban, ie the agent is permanently disqualified from
resource-sharing systems.
Penalty for subjects:

> requests for the floor are given a low priority;
> temporarily lose the power to request the floor;
> ban.

The C+ Language: Transition System Semantics

The C+ Language: Transition System Semantics

role_of(agc)=chair
role_of(agsy1)=subject
role_of(agss2)=subject
powAssign(agc, agso1)
perAssign(age, agss1)
best_candidate=agsp1
status(agsp1)=0
status(agsp2)=0

The C+ Language: Transition System Semantics

role_of(agc)=chair
role_of(agsp1)=subject
role_of(agss2)=subject
best_candidate=agsp1
status(agsp1)=60
status(ags2)=0

The C+ Language: Transition System Semantics

assign_floor(agc, agss1)

The C+ Language: Proving Properties

s = powRequest(Sb, C, M)

The C+ Language: Proving Properties

s ¥ —perRevoke(C) A oblRevoke(C)

The C+ Language: Implementation Routes

C+ ACTION
DESCRIPTION

CAUSAL THEORY

PROPOSITIONAL LOGIC EXTENDED LOGIC PROGRAM LOGIC PROGRAM
(SATISFIABILITY SOLVER) (ANSWER SETS) EVENT CALCULUS STYLE

C+ Implementation Routes: The Causal Calculator

. X caused pif g
Definite Action caused qif q Input

CHon i O
Description in C caused —~qif =q

itpeiig
Definite Causal Theory itqeig
itmgeiing
@ Computations
peq
Formulas of (Classical) —pel
Propositional Logic qeq
—q < —q

Output
Satisfying Interpretation:

Satisfiability Solver
Pa

The Causal Calculator

The Causal Calculator (CCALC) can be used:
> at design-time
> to prove properties of the specification of a norm-governed
system
> at run-time
> to compute the system state current at each time

Executing the Specification:
Computing Protocol States

Compute all states s’ such that:
> (s,e,s') is a transition of DS,
> s |= powAssign(agc, agsp1) N best_candidate = agp3, and

> ¢ = assign_floor(age, agsp1)-

CCALC computes that
s’ |= status(agsp;) = clock+60 A sanctioned(agc)

Executing the Specification:
Computing Protocol States

Protocol Run

request_floor(agsp1, agec, fileexe)
request_floor(agsps, age, filepqr)
request_floor(agsp2, agec, fileexe)
assign_floor(age, agspa)
request_to_manipulate(agsps, agecs)
request_floor(agsp7, age, filejpg)
request_floor(agsp3, agc, fileexe)

current state = best_candidate = agsp; N
powAssign(age, agsv1) A perAssign(age, agsb1)

Executing the Specification:
Computing Protocol States

Protocol Run

request_floor(agsp1, agc, fileexe)
request_floor(agsps, age, filepar)
request_floor(agspz, age, fileexe)
assign_floor(age, agspa)
request_to_manipulate(agsps, agfes)
request_floor(agsp7, age, filejpg)
request_floor(agsp3, age, fileexe)

current state |= best_candidate = agsp; N
powAssign(age, agsp1) N\ perAssign(age, agsp1)
powAssign(age. agsp4)

Executing the Specification:
Computing Protocol States

Protocol Run

request_floor(agsp1, agc, fileexe)
request_floor(agsps, agec, filepdr)
request_floor(agsp2, age, fileexe)
assign_floor(agc, agsba)
request_to_manipulate(agsps, agecs)
request_floor(agsp7, age, filejpg)
request_floor(agspz, agc, fileexe)

current state = best_candidate = agsp; A
powAssign(age, agsp1) N perAssign(age, agsp1) N
powAssign(age, agsba)
powAssign(age, agsb2)

Executing the Specification:
Computing Protocol States

Protocol Run

request_floor(agsp1, agc, fileexe)
request_floor(agsps, age, filepar)
request_floor(agspz, age, fileexe)
assign_floor(age, agspa)
request_to_manipulate(agsps, agfes)
request_floor(agsp7, age, filejpg)
request_floor(agsp3, age, fileexe)

current state |= status(agsps) = clock+60 A
powRequestManipulate(agspa, agfes) /\
sanctioned(agc)

Summary: The C+ Language

> Representation of the (non-deterministic, conditional, indirect,
delayed) effects of (concurrent) actions, default persistence of
facts (‘inertia’), etc.

v

Structured specifications.
An action language with explicit transition system semantics.
Therefore, there are direct links to:
» Model checkers.
» The nC+ language, specifically designed for modelling the
institutional aspects of agent systems.

v

» Direct routes to implementation.
» Proving properties & narrative assimilation.
CcALC does not scale well to large transition systems.
The domain of each variable must be known.
No tracing facility.

vvyy

Summary: The Event Calculus

> Representation of the (non-deterministic, conditional, indirect,
delayed) effects of (concurrent) actions, default persistence of
facts (‘inertia’), etc.
» Structured specifications.
» Direct routes to implementation.
» Efficient implementations for narrative assimilation.

» The domains of variables may be unknown.
» Can directly build upon Prolog's tracing facility.

Engineering Norm-Governed Systems

Part IV:
Dynamic Specifications
for Norm-Governed Systems

Alexander Artikis and Jeremy Pitt

Static vs Dynamic Specification

‘Static’ specification: developed at design-time, no support for
run-time modification.

Due to environmental, social, or other conditions it is often
desirable, or even necessary, to alter the system specification
during the system execution. Eg:

> a malfunction of a large number of sensors in a sensor network

» manipulation of a voting procedure due to strategic voting

> an organisation conducts its business in an inefficient manner

‘Dynamic’ specification: developed at design-time, may be
modified at run-time by the members of a system.

Outline

» Dynamic specification: Example
» Dynamic specifications in:
> Argument systems
> Formal (logic-based) study of multi-agent systems

Dynamic Specification: Example
move (Ag)=P causes loc(Ag)=P
nonexecutable move(Ag)=P if loc(Ag)=P
nonexecutable move(Ag)=P if move(Ag2)=P and Ag<>Ag2
not-permitted loc(mi)=loc(f) if loc(m2)<>loc(f)
not-permitted loc(m2)=loc(f) if male(ml)<>loc(f)

} Degree of Freedom

Dynamic Specification: Example

move (Ag)=P causes loc(Ag)=P

nonexecutable move(Ag)=P if loc(Ag)=P

nonexecutable move(Ag)=P if move(Ag2)=P and Ag<>Ag2
not-permitted loc(f)<>loc(ml) and loc(f)<>loc(m2)

Dynamic Specification: Example

move (Ag)=P causes loc(Ag)=P

nonexecutable move(Ag)=P if loc(Ag)=P

nonexecutable move(Ag)=P if move(Ag2)=P and Ag<>Ag2
not-permitted loc(mi)=loc(m2)=loc(f)

Dynamic argument systems

» Organised adaptation is common in argument systems.

» Loui, eg, talked about the need for argumentation protocol
change by means of meta-argumentation.

> Vreeswijk also investigated forms of meta-argumentation:

level 1 protocol:
argumentation

level 0 protocol:
argumentation

object protocol
rule ificati

Dynamic argument systems

Observations:

» There are different protocols appropriate for different contexts
(eg, quick and shallow reasoning when time is a constraint;
restricted number of counter-arguments when there are many
rules and cases).

» ‘Points of order’, by which a participant may steer the
protocol to a desired direction, are standard practice in
dispute resolution meetings.

Vreeswijk then:

» Defined a formal protocol for disputes in which points of order
can be raised to allow (partial) protocol changes to be
debated.

> A successful ‘defense’ meant that the parties in the dispute
agreed to adopt a change in the protocol, and the rules of
dispute were correspondingly changed.

Dynamic argument systems

level k-1 protocol:
argumentation

object protocol
level 1 protocol: rule modification

argumentation

level 0 protocol:
argumentation

i

Brewka's dynamic argument systems:
» More than one meta level is allowed.
> Any part of a protocol specification may be modified.

> Very general framework — eg the group in the debate may
vary from level to level, the available actions may differ from
level to level, etc.

Dynamic argument systems

Example run of a dynamic argument system:

claim(pro, murderer(jack), 0)

claim(pro, on(blood, shoe), 0)

claim(opp, illegal _info(on(blood, shoe)), 0)

concede(pro, illegal _info(on(blood, shoe)), 0)

propose(opp, R, 0)

where R is a rule stating that if an agent Ag has a premise P and
P was illegally obtained then the only legal action for Ag is to
retract P

decide(det, R, 1)

At this point the only legal action available to pro is:
retract(pro, on(blood, shoe), 0)

Formal Models of Norm Change

» Formal models of norm change are being actively investigated.
> See, eg, the 2010 and 2007 editions of the FMNC Workshop.

level k-1

object protocol
rule modification

level 0

Formal Models of Norm Change

» Boella et al have presented a formal framework for norm
change.

» The framework is produced by replacing the propositional
formulas of the AGM framework of theory change with pairs
of propositional formulas — the latter representing norms —
and adopting several principles from input/output logic.

> The resulting framework includes a set of postulates defining
norm change operations: norm expansion, norm contraction
and norm revision.

Formal Models of Norm Change: Norm Expansion

i{ NORM
| EXPANSION

/ EXPAND BY
(%)

Formal Models of Norm Change: Norm Revision

NORM
REVISION

REVISE BY
(@, %)

U

Formal Models of Norm Change: Norm Contraction

NORM
CONTRACTION

CONTRACT BY
(o, x)

Formal Models of Norm Change: Norm Contraction

Example postulates that must be satisfied by norm contraction:

> Inclusion: For any context b, if something is obligatory after
norm contraction, then it was already obligatory before the
contraction.

> Vacuity: If a norm (a, x) is contracted, but x is not obligatory
in context «, then the contraction has no effect.

> Success: If we remove norm (o, x) from a norm-governed
system N then N will not contain (o, x).

> Recovery: Contracting a norm-governed system by («, x) and
then expanding by the same («, x) should leave N unchanged.

There are postulates defining the remaining norm change
operations.

Formal Models of Norm Change: Abrogation and
Annulment

Formalisation of further norm change operations (Governatori et
al):
» Annulment: remove a norm as well as its effects, irrespective
of when they were produced.
» Abrogation: remove a norm but do not remove the effects of
the norm that were produced prior to the norm removal.
» Formalisation of norm change operations in a Temporal
Defeasible Logic.

Dynamic Systems

level k-1 protocol:
any decision-making
protocol

meta protocol
initialisation

object protocol

level 1 protocol: rule modification

any decision-making
protocol

level 0 protocol:
any protocol

> Any protocol for norm-governed systems can be in level 0.

> Any protocol for decision-making over rule modification can
be in level n, n > 0.

> Emphasis is placed on the formalisation of the transition
protocols: the procedures with which a meta-protocol is
initiated.

Dynamic Systems

level k-1 protocol:

level 1 protocol:
voting

level 0 protocol:

resource-sharing

> Any protocol for norm-governed systems can be in level 0.

object protocol
rule modification

meta protocol
initialisation

> Any protocol for decision-making over rule modification can
be in level n, n > 0.

» Emphasis is placed on the formalisation of the transition
protocols: the procedures with which a meta-protocol is
initiated.

Dynamic Systems: Specification Space

> We define the Degrees of Freedom (DoF) of a protocol.

» A protocol specification with n DoF creates an n-dimensional

specification space, where each dimension corresponds to a
DoF.

» A specification point represents a complete protocol
specification — a specification instance.

Dynamic Systems: Specification Space

DoF,
I

$

3;;5

o

e
L
<
.
\ﬁ

DoF,

Transition Protocol:

Successful vs unsuccessful attempt to initiate a meta protocol

level k-1 protocol:
voting

level 1 protocol:

| voting '
level 0 protocol:
resource-sharing

An agent initiates a meta protocol by exercising its institutional
power to propose a specification change.

meta protocol
initialisation

object protocol
rule modification

caused powPropose(Ag, NSP, PL) if
spec_point(PL)=SP, SP # NSP,
protocol(PL+1) = idle,
properties(NSP, PL)

Specification Space:
Successful vs unsuccessful attempt to initiate a meta protocol

DoF;

DoF;

Transition Protocol:

Controlling run-time specification change

level k-1 protocol:
voting
level 1 protocol:
| voting l

level 0 protocol:
resource-sharing

meta protocol
initialisation

object protocol
rule modification

» We evaluate a proposal for specification change.

> We constrain the enactment of proposals that do not meet
the evaluation criteria.

Transition Protocol:

Evaluating & Constraining Proposals for Specification Change

» We translate a specification space into a metric space:
» eg, we define an application-specific distance function
> We compute the ‘distance’ between the current specification
point and the proposed specification point.
» We forbid the adoption of a specification point that is ‘too
far' from the current specification point.

Specification Space as a Metric Space

DoF;

Specification Space as a Metric Space

DoF;

DoF,

Constraining Specification Change

DoF,

DoF,

Constraining Specification Change

DoF.

DoF;

Executing the Specification

Proving Properties

level k-1 protocol:
voting

meta protocol
initialisation

object protocol
level 1 protocol: rule modification

voting

level 0 protocol:
resource-sharing

I

> s = powPropose(Ag, NSP, PL) A
spec_point(PL) = SP A
distance(SP, NSP) > threshold(PL)
> s ¥ powPropose(Ag, NSP, PL) N\
protocol(PL'") = executing A PL' > 0

Executing the Specification

Proving Properties

level k-1 protocol:
voting

level 1 protocol:
voting I

level 0 protocol:

resource-sharing

meta protocol
initialisation

object protocol
rule modification

> s |= spec_point(0) = sp2 A\ powRequest(Sb, C, M)
> s |= spec_point(1)=sp3z A\ powVote(Ag, V)

Executing the Specification

Proving Properties

level k-1 protocol:
voting

level 1 protocol

| voting l
level 0 protocol:
resource-sharing

meta protocol
initialisation

object protocol
rule modification

> s | spec_point(0) = sp2 A powRequest(S, C, M)
> s |= spec_point(1)=spz A\ powVote(Ag, V)

Executing the Specification
Computing Protocol States

Compute all states s’ such that:
> (s,e,5') is a transition of DPRS,
> s |= spec_point(0) =spz A
distance(sp;, sp2) > threshold(0), and
> ¢ |= propose(agsps, spi, 0).

CcCALC computes that
s’ = protocol(1) = executing A sanctioned(agsp3)

Executing the Specification:
Computing Protocol States

Protocol Run

request_floor(agsp1, age, filepdr)
request_floor(agsp2, age, filejpg)
request_floor(agsp3, age, fileexe)
request_floor(agsps, age, filepqr)
propose(agsp3z, Sps, 1)
vote([agsb2, a8sb3, a8sb4 s Agsbs > Agsbs), for, 2)
vote(agsp1, against, 2)
declare(age, carried, 2)
propose(agsps, Spz, 0)
vote([agsb3, agsba, a8sbe], for, 1)
vote([agsp1, agsp2], against, 1)
declare(age, carried, 1)
assign_floor(agc, agsp3)

Protocol Run

request_floor(agsp1, age, filepqr)
request_floor(agsp2, agec, filejpg)
request_floor(agspz, agc, fileexe)
request_floor(agsps, agec, filepqr)
propose(agsbs, sps, 1)
vote([agsb2, a8sb3, 38sba s a8sbs, agsbs], for, 2)
vote(agspy, against, 2)
declare(age, carried, 2)
propose(agsps, sp3, 0)
vote([agsp3, agsb4, agsbs), for, 1)
vote([agsb1, agsb2], against, 1)
declare(agc, carried, 1)
assign_floor(agc, agsbz)

current state |= protocol(2) = executing

Protocol Run

request_floor(agsp1, age, filepar)
request_floor(agsp2, age, filejpg)
request_floor(agspz, age, fileexe)
request_floor(agsps, age, filepdr)
propose(agsp3z, Sps, 1)
vote([agspz2, agsb3, agsba» A8sbs, A8sbs), for, 2)
vote(agsp1, against, 2)
declare(age, carried, 2)
propose(agsbs, sp3,0)
vote([agsb3, 2gsba, agsbs], for, 1)
vote([agsb1, agsb2], against, 1)
declare(agc, carried, 1)
assign_floor(age, agsp3)

current state |= protocol(1) = executing N
sanctioned(agsps)

Protocol Run

request_floor(agsp1, agec, filepqr)
request_floor(agsp2, agec, filejpg)
request_floor(agsp3, agc, fileexe)
request_floor(agsps, agec, filepqr)
propose(agsbs, sps,1)
vote([ags2, agsb3, a8sba; agsbs s A8sbe]; for, 2)
vote(agsps, against, 2)
declare(age, carried, 2)
propose(agsps, sp3, 0)
vote([agsp3, agsb4, agsbs), for, 1)
vote([agsb1, agsb2], against, 1)
declare(agc, carried, 1)
assign_floor(agc, agsbz)

current state = spec_point(0) = sp3

Summary: Dynamic Specifications

» Dynamic specification: developed at design-time, modified at

run-time by the members of a system

> Degrees of Freedom: specification components that may
change at run-time

» Specification change operations range from simple to very
complex

» Procedures according to which an agent may successfully
change a specification range from simple to very complex

level k-1 protocol:
any decision-making
protocol

object protocol
rule modification

meta protocol
initialisation

level 1 protocol:
any decision-making
protocol

level 0 protocol:
any protocol

Engineering Norm-Governed Systems
Part V:

Run-Time Configurations
for Norm-Governed Systems

Alexander Artikis and Jeremy Pitt

Run-Time Configurations: Total Distribution

The normative positions current at each time are computed in
various distributed configurations — total distribution:

Norm Reasoner

AGENT
INTERNALS

Reasoner

Norm
Reasoner

Norm Reasoner

DOO

Norm
Reasoner

Run-Time Configurations: Regimentation

The normative positions current at each time are computed in
various distributed configurations — regimentation:

Regimentation

."“‘5 —
O A I
AGENT Regimentation

INTERNALS

; O
-
Regimentation
Device

Device

Regimentation
Device

H O
Regimentation O m

Device

DOO

Run-Time Configurations: Partial Distribution

The normative positions current at each time are computed in
various distributed configurations — partial distribution:

agents equipped with s agents without
Norm Resoners Norm Reasoners

Run-Time Configurations

» Offered services:
> prediction
» planning
» postdiction
>

» Policies for publicising the protocol state
» Distributed implementations of automated reasoning tools

» Specification change

Specification Change: Architectural Issues

» When a specification changes, all entities of a system should
be aware of the new specification instance immediately, and in
a virtually atomic manner.

» However, this is not possible in large, distributed,
heterogeneous systems:

» Some entities may be temporarily unreachable, eg due to
network failure.

» Some entities may become aware of the new specification
instance, but may not be ‘able’ to comply with the new
instance because they are in the middle of a transaction
governed by the previous specification instance.

» Consequently, it is often the case that different entities
operate under different specification instances — convergence
period.

» Conflicts are likely during convergence periods.

Specification Change: Architectural Issues

Approach of the Law-Governed Interaction (LGI) framework.

» Communication under specification dispersion:

» Messages from the future: Messages sent by agents operating
under newer specification instances are blocked by the
regimentation device of the receiver.

» Messages from the past: Each new specification instance
states how to deal with messages coming from agents
operating under the previous specification instance.

» Specification change process:

» Seeding: A new specification instance is disseminated to a
subset of the members of a system.

» Peer-to-Peer convergence: When receiving a message from the
past ask the sender to operate under the new specification
instance. Similarly, when receiving a message from the future
update to the new specification instance.

Engineering Norm-Governed Systems

Part VI: Open Issues

Alexander Artikis and Jeremy Pitt

Engineering Norm-Governed Systems: Open Issues

» Efficient automated reasoning tools supporting design-time &
run-time activities (proving properties & narrative
assimilation).

» Complexity of norm change operations for software systems
(as opposed to human legal systems).

» When is adaptation performed? Mechanisms for identifying
the conditions in which a specification change is
desirable/necessary.

» Run-time configurations for norm-governed systems.

» Techniques for dealing with specification dispersion (in
non-regimented systems).

'900¢ Ioquioydog ‘UopuorT Jo AYSIDATU)
SISOT) (TUJ "+ 26DnbunT 10110y 94 40f SWSIUDYII P U0UNIITH "UIARID)

'900% ‘NOV "24eT-GreT soSed ‘(SYWyY)
swayshg quaby -1y pup suaby sSNOwouoIny uo 22uaLfuoy) fo sburpadd

-0 U] $[020301d JuLTHIIIIOd FulzZi[enixojuoy) Ysulg N pue eidoy) 'y

"0002 ‘90T-LF:(-1)8g ‘@auabyoruy oYLy
pup soupweynpy Jo sppuul seyprordde pue SeNsS] :9IUSSI[[AIUT [RIDYILIR
ur 3uruoseal pue uorpejuesaldol rroduwd], "LIRURIUOIN Y PUR OIePIy)) "I

"9661 ‘GRE-65E:(8)TT ‘@ouabiyjoquy uoynInduio) SNINO[RD TUOAD
Ppayped a1y ur Suruoseal [eioduwo) JUSDIE TIRURIUOIN Y PUe OIeI)) "

'600g ‘108uridg 21T seSed ‘Q9ec SON'T dWnoA ‘(SN
-V 0) swaishig quaby -1npy uo uonnidopy pasiunbid) ur doysyioq uowvu
-42pu] Jo sbupaadoLg ‘SI0NPo ‘131 d [puR ‘SIYIRIS "y ‘SIIIY Y ‘SOIMOA "H)
u] e8uRYD WIOU I0J S[PPOW [RII30] SUIUSISOP Ul SONSS] UdsIoorg ‘[

"T100T ‘28G-L8G:(2)1T
‘uoypIndwioy) puv 216077 [0 IDuLnOL “SNMOTRD UOTJRNIIS U0 Paseq sassaooId
QOE@@E@ESMH@ .wo ﬁwﬁos ?«Ep@m e ”mﬁvuw%w wﬁ@ﬁ:ﬂw,ﬂm OME%«:%Q .5&3@&& U

"€00¢ ‘$891d INDV ¢¥8-¢e8 soded
{(SVINVY) swaishg 1uaby wnpy pun sjuaby SnOwWouoIny uo auaiafuoy) Jo
s6ULPIIIOLJ ‘SIOYPO ‘00NOA ‘] PU®R ‘©3PLIP[OOA\ "J\ ‘W[OYpURS "], ‘UDYDS
-UOSOY [U] "SOYI Ul S90lAmes urewop pue Adrjod peseq-TINY(noqe
3uruoseol pue uorpejuesoIdoy] JOOH UrA Y puR ‘SIMUIdIG]\ 9307 [‘Tul
-e[ny] g ‘wosutor ‘N ‘W[" ‘oqreare) ‘N “Apoorg I\ ‘ofudg g ‘nsmb
-y Y ‘wegsing I ‘seARH ‘J ‘LInG "N ‘SIogef Y ‘Yozs() 'Y ‘meyspelrqg ‘[

"600C ‘S21d INOV
'9LT-691 so8ed {(SYNVV) swapshis quaby -y puv spuaby snowouony
U0 2IUUD[U0)) [DUOYDULIIUT [0 $HUIPIIIOLJ U] “DFURYD UWIISAS SAIIRULION
10] YIOMOUIRI] OATJRULION ‘OLIQ], Iop UeA ' pur ‘12z031J 'Y) ‘@[[P0g "0

'600g ‘(1)0T ‘22607 uoyInduioy) U0 sU0WIVSUDLL, N SIIIII08
[euoryeInduiod patieaos-uriou Sutdjedg g ‘[pue ‘)0810g "IN ‘SHIMY Y

2008 ‘P08-922:(ST-0T)TLT ‘@ouabyjaquy (proyfpsy 1000301d uotyejueumsre
[eULIO} ® JO TOTYROYAAS A[BINIOXD UY "I ‘[PUR J08I19G N ‘SINIMY 'Y

"010g ‘G9-T€:(T)ST “TdDI 2y fo [puanop 2boT ‘sweysss
Juede-1ynuw uedo Jo woIpedyIoads o[qrINDLXY '10819g] PUR SI{IMY Y

600G DV F01-L6 so8ed {(Symyy)
,ﬁtwﬂm@% ﬂﬁm\wd\uﬁwﬁé N:\\z mwzwmv\ mﬁ%ﬁsb\:aﬁ:\v\ uo wuﬁw;w\:@@ NB?Q.EG\:LE\EN

Jo sbupaasosg uy -sweyshs juafe uado 10§ s[000301d OTWRUA(SI{IMY Y

F00Z ‘OF1-G0T:(g-T)€GT ‘uabyppyuy [1orfig.iy
“I07R[NOTRY) [Rsne)) oY) JO oendue] oY) Ul P[I0M DTJeI) 81} PUR P[IOM 00Z oY}
Suruosordoy] “oWINT, "H Pue ‘ZJYOSHIT ‘A ‘00 [‘URSOpPIY 'S ‘URWNY A

[

[

S9OUBIdJOY

'/npe

‘s1e8an1-sesow’ ann//:daay [Fp ‘9¢ ‘L€] TUOIORIOIU] POUTOAOD)-MBT —

‘[og “2 ‘8¢ ‘€p ‘9g] :se01A0p mONRIIOUNISYY —
‘[gg] :suoryem8yuod own-uny —
A MR @
‘[g] sweysAg orureudq —
' /Ze8uRyOUIOU/SqUeAS /TU " SO * MMM/ /
:daay ‘[z ‘€% ‘Cg ‘1¢ ‘0T ‘9 ‘6) :eSuURYD ULIOU JO S[OPOUW [RULIO] —
'8 ‘PG ‘1g] sweysAs juemmSre orureukq —
‘[Ly] epdurexs swooy —
AL HRd o

'[g] :swmoysAs poutosos-urIon
Bureauidue 09 109dsal YIIM snmoe)) WA pue +;) jo uostredwo)) —

‘low
‘6g] :seSenSuel uoror I9YI0 pue snmoe)) LAY ‘+) Jo uostreduwoy) —

fer v ‘or p1 ‘€T 8p ‘a1
‘2¥] 4 (JO SUOISIBA PIPUL)Xa) UL SWB)SAS Pautss0S-twiou Sukjoadg —
'/90/3e3/sIesN /NP8 sexeln s qenissn//:daay (1 ‘61] +0 —
I Aed e

gAR:
‘e ‘GG ‘g¥| snoTR) JUPAF] A} Ul SWR)SAS patosoS-uwiou Surdjoadg —

(TG ‘0¢ ‘P& ‘1T ‘6F ‘01 ‘6] snmorep Juory —
A1 R e

(19 ‘L& ‘28 ‘G ‘8¢ ‘GE ‘LT ‘e ‘Ge] SwoIsAg pauteron-wLoN —
'[87 ‘gg] sweysdg uad(—

TR e
191 AWeIof pue Sy IopUeXs[y

S9OUQI0JOY SAIYeIIPU]
SWOISAG POULIOAO)-ULION SULIOOULIUS]

8661 ‘6T-G:(T)TT ‘suoyvorunuuio)
JV S1oIeu UOIONE DIUOIIID[E Ul sjuede SUIpel) I0J pa(-1s9) © SpIemo],
"RIII§ ") pue ‘endIer) 'J ‘@3LION ‘J ‘UNMRIN f ‘Te[MmSy-zen3upoy ‘f

'900Z ‘0LT-9ST:(3)6¥ ‘pusnop wagnduwioy) *sw)sks
Juege-1u ul Surjop Sy Y pue ‘30810G ‘] ‘erewrey] T ‘Mg [

‘0661 ‘SSIJ AYSI0ATU() OSpLIqUIRY) 10D 901799]]0,)
J0f suoungsur fo wounjoas YL suowuoy) Y[burionor wWoISQO ‘f

"9008 ‘620T-LTOT:(TT)OLT ‘@2uabigppruy
10112477 “poreduwod o150 uorIoR [RI0dWwo) pue SNNOTEd JUOAT "ID[[ANIN “H

‘9007 ‘uuRMNRY] WRSION HUtU0SDIY 2SUISUOWULOL) “TO[[ONIN

"GB6T ‘TIS-€S:(9)FT ‘@ouabyjopur iYLy
pup suagnduioy) "SWAYSAS [RID0S [RIDYIYIY “Z)[OYUOUUD], "]\ PUR SISO\ " &

'0002
‘c0e-€L2:(£)6 ‘(WHSO.I) fibojopoypapy pun butiaauibusy 24pmifos 1o suowon
-SUDAT, I "SWOISAS PIINLIISIP SI00UDF0I9101 0] WSTURTDIUWL [0IJUOD PUR
UOIJRUIPIOOD B UOIDRIOIUI POULIOAOS-MRT MURdINSU() *A puR ANSUI ‘N

00z ‘108uridg
'90z—68T so8ed ‘OF6z SONT ‘suonwoyddy [D1IDLg PUD SINSS] YIUDISIY
‘IT swagshig quaby -mnpy 4of burudauibusg auvmifog U "SW0ISAS JuoFfe-1ymnur
uado Jo ssoupsnqol pue AjiqeaSeurwn U(CejeImjy I, pue AYSurjy ‘N

1661 ‘G6T-E8T:(0)LT ‘Burioousbusy 2anmifos uo suowIDSUDAL, FHAT
‘swo)sAs ponqusip uodo 10a0 s[oo0j0xd jo uorpisodwr ory, CANSUIN N

6661 ‘GOT-LL:(V)E ‘@ouabiyppjur
Néﬁﬁm\wtv\ uo w:&ﬁu@wﬁwﬁrm UN?Q&“U&NQ .\.a Né;sﬁa\, .mﬁOEﬁNﬁﬁﬁmomuﬁm ®>Eﬂwihwp
-[e — 9130 [BOISSR[D ® UI SN[IO[RD JULAS Y], "UeyeueyS ‘N Pue [N Y

‘66T ‘SuUog pue A9[IA\ [uounoy1oadg wagshis 901)
-DULLON 10Ud10G 4agnduioy) ur 21607 219u09(] "RSULIDIA\ "y puR IoLoIN "[-'[*

‘9861 ‘Geh—£0r:GT o owydosopyd
Jo uanop -suoryelar RS Jo uoryejuesoIdol [RULIO] oY) U() ‘uosuney ‘q

"T661 9oUAdG
Toduwoy) jo juounjreda(] ‘AYSIoATu) UOISUIYSAN ‘Y10dol [eOTUYD], *juoul

-N3Ie SAIYRIJISUOWDP-UOU PIPUNOG-90INn0saYy :Ad1jod pue $s9001J "MOT Y

€00 ‘9TT-£6:(1)2
‘owbor payddy fo usnop we[qold UOISSTWUSURIY I 9} Ul JUSTIIIONUD

pue ‘A19A0091 10119 ‘UOIYR[OIA JO UOIR[NULIO} Y *108I9G T\ PUE OLSNUIOT Y

"986T ‘96-L9:(1)¥ ‘Buwndwo) uoyn
-1OUIE) MAN] "SIUOAD JO SNNO[RD PIaseq-0130] y "10319G "\ pue D{S[emoy] "

"€002 ‘68T-6L1:(¢—1)L ‘swapshis quaby -y
pup SpUabY snowouony fo pusnos Yjyesp juede Jo ased oY) SWISAS
Juode-1ynu uodo 9snqol dqreud 09 sad1AIRs Surpuey uorydedxe juepusdopur
-urewrop Sulsf) SOOIR[A() Puv ‘Ie[mdy-zonsupoy - ‘ulpy N

L¢]

9¢

cel

szl

9661 ‘SHF-62:(€) “TdDOI 241 Jo puinop ~tomod
muwm:ﬁ.ﬁomuﬂusnﬂm wo ﬂompﬁwfmuoﬁ\;ﬁﬂu ﬁﬁﬁzo.« < .GOWme —4 Uiﬁ. mmzoh. <«

"€661 ‘suog pue
Ko[IA ["L0€-GLg so8ed ‘wonporfioadg wiayshis 201DWLON :20Ud1DG 4Ind
-woy) ur 2o 21uod(Ul -aA1poadsiad SWVYSAS SATJRULIOU A} :SWII)SAS
Iomduwod pue me[JO UOIIRSLIOIORIRYD o) U() "10819G]\ Pue souor 'y

T66T ‘90T-6L:LF ‘@ouabiyjopuf (0101194 -oouASI[OUT
[RIDYIJIR PIINLIJSIP I0] SOTJURUIOS SWD)SAS uorjewiojur uod() “19ImoH D

2008 ‘WOV "(TIVDI)
mpT gy oubu AU PIYILY U0 2OUILIJUOY) [PUODULIIUT [0 SEUIPIII0L]
U] "SUOIROYIPOUW ULIOU JUI[[opoul 10] s$o130] o[qIseajop [eioduio) jo sjue
-LIRA “I0}IRG D) puR ‘TURIUW[R] T\ ‘90I0ATY Y ‘0[030Y 'Y ‘LIOJRUISAOY) "X)

8002 ‘LeT-¢TT so8ed ‘(SYIWYON) swayshig yusbvyynpy
200DULLON U0 dOYSYLOA| fO SHULPIIIOL ‘SIONPO ‘TOFRYIDA “H pue ‘Ysurg ‘JA
‘12081J "©) ‘e[[POg ") U] d130[o[qIseajop pastrerodway, (] 4Ied JUOINUTR
pue uonesolqy :Swo)sAs [e39] Jurduey)) "0[0j0Y Y PUR LIOJRILIOAOY) 'K)

8007 “w08uridg "g1-¢ sofed ‘9206 SON'T (NOH () 2ouawog donduwio)) uy
21607 219U02(T U0 UL[U0)) [0 sHUIPIIIOLJ ‘SIONPd ‘DIIQT, 19P URA T pUR
UOpASI\ Iop URA "} U] ‘SOLIOSY) S[(ISEJOp JO UOISIAQY] MeJ ‘jueulnuue
pue wonesoIqy :Swo)sAs [e39] Furduey) "0[0j0Y Y PUR LIOJRUIOAOL) 'K)

6002
‘ss01d SOI gg-€T soded ‘(XTr) swaishs uouvwiofur pun abpamouyy
b7 uo 20udLdfuoy) fo sbuipasasosg U OI0[S[(ISLaJOP Ul SUOIIROYIPOUT
ULION "I0}IeG "©) PU® ‘0[0J0Y 'Y ‘19I0ATY Y ‘TURIUR] '\ ‘TI0JRILIDAOY) 'T)

'900¢ ‘wsutdg
“0p-1¢ s98ed ‘6607 SON'T (TVOINd) 2usbyopur iy uo aouaiafuoy)
1PUOUDULIUT WY 21101 [o sburpaadosg Ul -o130] d[qIsesjop pasiferodurey
ur sjuaSe poseq-o[y "0[00Y 'Y PUR ‘qRiqeuRmpR] ‘A ‘LIOJRUIDAOL) ‘Y)

F00G FOT-6¥:(C-1)€ST ‘9ouabyjapuy [iofig.Lly "SOLIOS) [eSTED DIUO)
-OUOWUON "IOUWINT, “H Pu® ‘Ure)oN "N ‘ZIYISJIT *A ‘00T [‘erdryounts) g

T66T ‘SET-L0T:(£-T)L¥ ‘@ouabyjajuy 1p1o1fig4f “sorpuewos swoysss uodo pue
SuoTyepUNOJ [y (J :UOTDR pue aFpaymouy Jo suorydootod [eIDOG ‘Iasser) '

'600% ‘TeqO[D) THI "SNNORD JUIAD dT[) SUISN SUOIINITISUT
[eIOYILIR JO uoTIedyIdads [euLIo] I9detpd ‘sjpapopy puoyvziunbi() fo sonunu
-fiq puv sonuPWAG SwWaIshG bl -mpy 119OQUIOI0D) ‘] PUR RIRTLIOL ‘N

'G00Z ‘631-66:(€-¢) ‘swarshig uoyvw.iofur 202342dooy)
Jo puunor puoyDULRIU] SPORIIOD JO RIS SAIJRULIOU oY) SUrPRI) I0J
STNOTRD JUOAD 1) SUls() "TUIjojIRg ") puR ‘e "\ 908108 ‘N ‘[PirR] 'V

800G ‘161-GL1:(¢)9 2w panyddy fo jvu.nor
*+Hu oFengue uoOIPOR oY) Ul SPURI)S JUOFY "J0SI0G ‘N PUR UOARID) "y

"5002 ‘96
~¢L:(1)6L ‘Da16oT DipmaG “-+D) UT TOTYRSTIRD JUR)SI(J 108108 "\ PUR WARID) Y]

[22]

[ve]

(]

[ee]

1]

[0g]

[61]

s1]

[21]

[91]

a1]

[71

n

00T “€58—LET: (E-T)h ouabygu] [Ifigly puv sopouwa
-y fo sppuuyy -sjooojoad Surnooxe pue Suidjooads 10f yorordde wy :sny
-TIO[RD JUOAD O} UT SHUSTHIUWIUIOD JNOR SUTTOSRIY "Y3UIG [PUR WN[OX "d

"000% ‘T€5-08:(€/g)8 ‘mv puv ouabiyjopur iYLy
"I0pIo Furpue)s © YIm o dsIp [euwioj jo uworyejuosordoy] N(IMsedIp H)

0102 ‘(Y1) uovwuasaday
abpaymou)] fo sbuipardoLg U] ‘SWOISAS JU0Se-)NW POUIDAOS-TLIOU 10} 310d
-dns ewryuNI SpIRMOT, ‘SINIIIY 'Y PUR ‘SIYIRIg "3 ‘LInwolrg 'S ‘1A0IN) A

8661 “L7-07:(gT) 1€ wu2gndwop
AA] sordoutid o) SunuIylal :so8engur| UOI)RIIUNTIOD JUASY YIUIS T\

F00T ‘GPL-T1€L:(Q)PT ‘wonvindwoy puv 21607 fo ppuinof Aypqe
-gstyes ysnoay) suruue[d snmoreds JUoAF IYSMONITA T\ puR weyrueys ‘J\

"0008 ‘6€¢—L0T: V¥ ‘Buswwnil
-0.4g 01607 fo ppuanop -1oute[d SNNOTRD JUOAD DATIONPR UY “URTRURYS]\

6661 ‘wsutdg "¢y
—607 s98ed ‘0091 TVN'T “fivpaf aouabypapu] [ioyfigLly ‘SI0YIPd ‘0SOPA "IN
pue 9SpLIP[OOA\ ‘JN U] poure[dXe Snno[ed JuoAo OUJ, UeyRURYS T\

'900g ‘w8undg “Leg-gge sofed ‘§0F IVN'T ((NOHZ)
0U10G AINduL0)) UL 2U6OT 219U0d(T ‘SIONPI ‘TOASIN ") "[-[PUR d[(OX) T U]
*+Hu 9Fendue] UOIOR JO ILUOAUIOD DTJUOIP O], "UdARI)) “} PuR 103198 ‘]

"800z ‘10Suntdg pg-T sofed ‘G667 IVNT TIIA MVST
Jo sbupaasoa g ‘S1031pd ‘SOIMOA "H) pue ‘smyelq 3 ‘OIRH, () O ‘SHIMY Y
U] "SWO)SAS JUIFe-1)NUW POUIOAOS-ULION Ul Aouo8e pue UOIDY 108108 "\

700 ‘Seftop-108urdg "gLT
~191 soed ‘Surnduwoy) 1j0g Ul $90URAPY ‘(S YSIN) swapshis quabviynpy ua
sanbiuya] anasay puv ‘figrunsag ‘buriopuopy uo doysyio| Jo sbuipaadoig
‘SIONPO ‘BNZOzZG N PUR ‘TWOIMONS Y ‘Dysmoyuer 'y ‘zordey-urund g
ul INOIARTR(JuSe AYIIOMISIIJUN PUR S[CRI[DIUN SUIPPOIN 108108 "

100G ‘186-85S:(V)g Vw0 puoypinduio)) 1o suoon
-sun4f, NV -suonisod earjeuwiou jo A10ot) reuoneinduod y 108108 I\

"600¢ ‘HHHAT "TVI-FET soSed ‘syiompon pun swayshig
PINQLUISLT 40f 210104 w0 wnisodwifig PUODULIIUT U] "TOISAS PIJNLIY
-SIP ® WIOAOS Jer[) so1o1[0d JO UOIN[0AD OATA U] “ANSUI[N "N PU® URqIOg)

n

[67]

i

L7]

[ov]

(52!

[77]

